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One Sentence Summary: A copper-catalyzed direct enantioselective oxidative coupling of allylic 

and propargyl C(sp3)–H bonds with carboxylic acids is developed. 

Abstract: Direct enantioselective functionalization of C(sp3)–H bonds in organic molecules could 

fundamentally transform the synthesis of chiral molecules. In particular, the enantioselective oxidation 

of these bonds would dramatically change the production of chiral alcohols and esters, which are 

prevalent in natural products, pharmaceuticals, and fine chemicals. Remarkable advances have been 

made in the enantioselective construction of carbon-carbon and carbon-nitrogen bonds through C(sp3)–

H bond functionalization. However, the direct enantioselective formation of carbon-oxygen bonds from 

C(sp3)–H bonds remains a considerable challenge. We herein report a highly enantioselective C(sp3)–H 

bonds oxidative coupling with carboxylic acids using molecular copper catalyst activated by blue light. 

The method applies to allylic and propargyl C–H bonds and more importantly employs various 

carboxylic acids as oxygenating agents. By this method, we have successfully synthesized a range of 

chiral esters directly from readily available alkenes and alkynes, greatly simplifying the synthesis of 

chiral esters and related alcohols. 

Introduction 

Direct enantioselective functionalization of C(sp3)–H bonds in organic molecules is one of the 

ultimate goals of organic synthesis due to its remarkable atom-economy and step-economy (1–6). 

Methods such as the enantioselective oxidation of the C(sp3)–H bonds, which involve directly 

introducing oxygen functionalities into alkanes, hold significant potential for the discovery and 

development of new pharmaceuticals (7–9). Chiral oxygenated aliphatic structures are common in 

bioactive compounds such as natural products and pharmaceuticals (10, 11). Recent progress has 

been made in enantioselective C–C and C–N bond formation from C(sp3)–H bonds using transition-

metal catalysts (12–16). However, the enantioselective formation of C–O bonds by C(sp3)–H 

oxidation remains a formidable challenge (Fig. 1A) (17–24). This difficulty stems from oxygen's 

tendency as a harder base to coordinate strongly with hard acids according to the Hard and Soft 

Acids and Bases (HSAB) theory (25–26). Oxygen often exhibits poor coordination with late-

transition metals, which are soft acids (27–29). This mismatch results in low reactivity and 

enantioselectivity in these oxidation reactions and frequently causes overoxidation to ketones. (30). 
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In nature, enzymes such as cytochrome P-450 (Fig. 1A) demonstrate remarkable efficiency in 

catalyzing stereoselective oxidations (31, 32), utilizing an iron-porphyrin center to target C(sp3)–H 

bonds (33–40). Inspired by the high oxidation state (Fe(IV)) iron-oxo complexes in heme-containing 

enzymes, we hypothesized that increasing the electropositivity at the metal center of catalysts may 

benefit the enantioselective oxidation of the C(sp3)–H bonds (Fig. 1A) (27–29). Our strategy 

employs a bulky counter anion, tetrakis[3,5-bis(trifluoromethyl)phenyl]borate (BArF‾), to enhance 

the electropositivity of the copper center of the catalyst (Fig. 1B). This electropositivity 

enhancement improves the coordination of carboxylic acids with copper, and facilitates their 

interactions with radicals generated by the C(sp3)–H hydrogen atom abstraction. Crucially, the anion 

BArF‾ stabilizes the copperIII intermediate, which undergoes reductive elimination to form the C–O 

bond. 

 

Fig. 1 | Overview of the strategies for enantioselective C(sp3)–H oxidation. A, Challenges of 

enantioselective oxidation of C(sp3)–H bonds. B, Effect of electropositivity at the copper center. C, 
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Design for enantioselective oxidative coupling of C(sp3)–H with carboxylic acids using a molecular 

copper catalyst. PMP, para-MeOC6H4. DTBP, di-tert-butyl peroxide. 

We are excited to present our newly developed method for the enantioselective oxidative coupling 

of C(sp3)–H bonds with various carboxylic acids using a cationic copper catalyst under blue light 

irradiation (Fig. 1C). This innovative approach addresses major limitations that have constrained 

the Kharasch reaction—a traditional method for oxidizing alkenes into allyl esters—for over six 

decades (41, 42). While recent progress has been made in improving the enantioselectivity of the 

Kharasch reaction of cyclic alkenes (43–50), challenges remain, in particular the poor performance 

of open-chain alkenes and the limitations imposed by the use of peroxy esters as oxygen 

nucleophiles. By utilizing open-chain alkenes and alkynes, our method greatly expands the 

reaction’s scope. More significantly, our method employs carboxylic acids instead of peroxy esters 

as oxygen nucleophiles, thus endowing the C(sp3)–H bond oxidation reaction practical. Furthermore, 

we have identified CuIII intermediates in this reaction using electron paramagnetic resonance. 

Traditionally, only CuI and CuII states have been observed in catalytic cycles; the identification of 

high oxidation states such as CuIII adds an essential dimension to our understanding of copper-

catalyzed oxidation reactions. 

Results and discussion 

We initiated our study by exploring the oxidative coupling reaction of (E)-1-phenyl-1-butene (1a) 

with 4-methoxybenzoic acid (2a), detailed in the Supplementary Material. After an extensive 

screening process, such as various copper sources, ligands, oxidants, solvents, temperature settings, 

and light sources, we found that the chiral copper catalyst, with BArF‾ as counter anion, promoted 

the enantioselective oxidation of the allylic C–H bond of 1a under mild conditions (10 °C, 

illuminated by 395 nm LEDs). Under the optimal conditions, the reaction yielded the target product 

3a with high yield (82%) and excellent enantioselectivity (96:4 enantiomer ratio [er]) (see Table. 

S1). Control experiments confirmed the necessity of CuCl, ligand L1, NaBArF, di-tert-butyl 

peroxide (DTBP), and light for the success of the reaction. Among the tested oxidants, DTBP was 

superior, with others like Selectfluor and N-fluorobenzenesulfonimide (NFSI) yielding low yield 

and enantioselectivity, or failing to produce the target product at all. Bisoxazoline ligands with bulky 

substituents enhanced enantioselectivity, with the ligand L1 containing 3,5-di-tert-butylphenyl 

groups, having the highest enantioselectivity (Table. S1–S4). 

Substrate scope. Under optimal conditions, we first studied a range of (E)-1-arylbutenes 1 in the 

reaction with p-methoxybenzoic acid (2a) (Fig. 2). The substituent at the para position of the 

benzene ring of the alkene substrates has little impact on the enantioselectivity of the reaction (3b–

3k, 91:9–98:2 er), but the strong electron-withdrawing group p-CF3 (3e) leads to a decrease in yield 

(40%). Notably, in the presence of both benzylic and allylic C–H bonds, the oxidation occurred 

exclusively at the allylic C–H bond (3h). Substrates with meta- (3l–3n, 3q) and ortho-substituents 

(3o and 3p) on the benzene ring afforded higher enantioselectivities (94:6–99:1 er) due to steric 

effect. However, the 3-bromo- (3n, 45%) and 3,5-dichloro-substitution (3q, 38%) resulted in lower 

yields. The alkene substrate with a 2-naphthyl ring also worked well, yielding the desired product 

3r with 51% yield and 93:7 er. Furthermore, the reaction has good compatibility with the substrate 

alkyl chain and its functional groups, and the corresponding chiral allyl esters (3s–3w) were 

obtained with a yield of 51–70% and enantioselectivity of 92:8–98:2 er. The configuration of the 
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product 3k was determined to be S by single crystal X-ray diffraction analysis. 

Next, we investigated a range of carboxylic acids in the reaction with alkene 1a. The allylic C–H 

oxidation reaction has a broad scope of carboxylic acids (Fig. 2). Aromatic acids, including those 

with diverse substituents on the aryl ring and heteroaromatic acids afforded the desired allyl esters 

(3x–3ae) with good yields (69–88%) and high enantioselectivities (91:9–96:4 er). Aliphatic acids 

with different alkyl chains, alkyl rings and ketone group can undergo the reaction, and showed high 

enantioselectivity (3af–3am, 94:6–96:4 er). Moreover, the unsaturated cinnamic acid can also react 

with alkene 1a, yielding oxidative coupling product 3an with excellent enantioselectivity (98:2 er). 

These results demonstrated that the reaction has a broad substrate scope. 

 

Fig. 2 | Enantioselective oxidative coupling of alkene C(sp3)–H bonds with carboxyl acids. PMP, 

para-MeOC6H4. 

Alkynes are also suitable substrates for the enantioselective oxidative coupling with carboxylic 

acids, producing propargyl esters (51–52). By switching the solvent from hexafluorobenzene to 1,2-

dichlorobenzene, changing the light wavelength from 395 nm to 365 nm, and lowering the reaction 

temperature to 0 °C, we successfully realized the reaction of various alkynes with acid 2a (Fig. 3). 

All tested aryl alkynes, including those with substituents at the aryl ring and heteroarylalkynes 
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showed reasonable yield and high enantioselectivities (5s–5v, 91:9–97:3 er). The effect of substrate 

alkyl chain and its ester group on the enantioselectivity of the reaction is negligible (5s–5v). 

 

Fig. 3 | Enantioselective oxidative coupling of alkyne C(sp3)–H bonds with carboxyl acids. 

 

Applications. To demonstrate the potential of enantioselective oxidative coupling reaction in 

organic synthesis, we applied our method to the derivatization of bioactive molecules, which is a 

commonly used strategy for drug discovery (Fig. 4). Medicines containing a carboxylic acid group, 

such as ibuprofen, naproxen, probenecid, and gemfibrozil, reacted with (E)-but-1-en-1-ylbenzene 

to produce the corresponding allyl esters (3ao–3ar) with high diastereoselectivity or 

enantioselectivity. The natural product ursolic acid has three allyl sites, and only one site (3as and 

3at) reacts with p-methoxybenzoic acid, showing an excellent site-selectivity. The alkynes derived 

from tigogenin (5w) and dihydrocholesteol (5x) can be coupled with acid to form propargyl C–H 

bond oxidation products with high enantioselectivity. These examples underscored the high 

efficiency of the enantioselective oxidative coupling of C(sp3)–H bonds with carboxylic acids—the 

direct synthesis of chiral esters from alkenes and alkynes—and their broad applicability in bioactive 

molecule synthesis and drug discovery. 
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Fig. 4 | Applications of enantioselective C(sp3)–H bond oxidation in the derivatization of 

bioactive molecules. 

Mechanism studies. Although the mechanism of copper-catalyzed alkene oxidation reactions like 

the Kharasch reaction has been proposed, some key issues have not been clarified. In particular, the 

CuIII intermediates frequently mentioned in the mechanism have not been experimentally confirmed 

(53,54). To elucidate the mechanism of the oxidative coupling of C(sp3)–H bonds with carboxylic 

acids, we conducted radical trapping experiments using 2,2,6,6-tetramethyl-1-oxylpiperidine 

(TEMPO). The inhibition of the reaction by TEMPO indicated that radicals are involved in the 

reaction (Fig. 5A). The kinetic isotope effect experiments showed that the kH/kD ratios of the three 

reactions are 3.1 and 3.3, respectively (Fig. 5B), suggesting that the hydrogen atom abstraction from 

the C(sp3)–H bond may be a rate-limiting step. We prepared the complexes CuII-OtBu and CuII-OBz, 

called Int-I and Int-II respectively, and used them to catalyze the reaction to obtain the desired 

product (Fig. 5C), which indicates that the reaction went through the intermediates Int-I and Int-II. 

A series of electron paramagnetic resonance (EPR) measurements were performed to identify the 

various free radicals in the reaction. The EPR spectra of intermediates Int-I, Int-II, and catalyst 

prepared in-situ showed the presence of CuII (Fig. 5D). We are excited to have detected CuIII 

intermediate in the reaction solution by low-temperature EPR analysis (Fig. 5E), which is the first 

experimental confirmation of the presence of CuIII in a Cu-catalyzed reaction. We also verified by 

EPR analysis that the tert-butoxy radicals were mainly generated by the photodecomposition of 

DTBP (Fig. 5F). Finally, the light on/off experiments showed that ceasing irradiation halted the 

reaction (Fig. 5G), indicating that the reaction does not involve the radical chain mechanism. 
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Fig. 5 | Mechanism studies. A, Radical trapping experiment. B, Kinetic isotope effect (KIE) 

experiments. C, Catalytic reactivity of Cu-intermediates. D, EPR measurements of Int-I, Int-II, 

and the catalyst prepared in-situ. E, EPR measurements of CuIII-intermediates in reaction. F, EPR 

measurements of tert-butoxyl radicals. G, Light on/off experiments. 

 

DFT calculation. DFT calculations were conducted to gain a better understanding of the reaction 

mechanism. The results are shown in Fig. 6. Starting from the CuI catalyst, the complexation with 

tert-butoxy radical to form CuII-OtBu intermediate Int-I and subsequent ligand substitution with 

carboxylic acid to form CuII-OBz intermediate Int-II are both significantly exergonic. Radical 

addition of 1a to the CuII center to form a CuIII intermediate Int-III requires an energy barrier of 7.6 

kcal/mol via an open-shell singlet (OSS) transition state TS-III-OSS. The CuIII intermediate Int-

III lies 2.4 kcal/mol above the CuII-OBz intermediate Int-II. Intermediate Int-III then undergoes 

an outer-sphere reductive elimination process via TS-S-allylic-RA with a barrier of 4.6 kcal/mol to 

form Int-IV. Finally, radical addition of another tBuO radical to Int-IV facilitates its dissociation 

to afford product 3a while recycling the catalyst to Int-1. Besides, the generation of 1a radical 

requires an energy barrier of 9.8 kcal/mol, which is the rate-determining step in the proposed 

mechanism and is consistent with kinetic isotope effect experiments. 
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Both enantio- and regioselectivity achieved by using L1 are well reproduced with this mechanism. As 

shown in Fig. 6B, TS-R-allylic-RA and TS-S-benzylic-RA are 3.9 kcal/mol and 5.8 kcal/mol less stable 

than TS-S-allylic-RA, respectively. These calculated results agree well with experimental findings on 

enantioselectivity (96:4 er) and regioselectivity. The enantioselectivity likely arises from stronger steric 

repulsions in transition state structures leading to unfavored products compared with TS-S-allylic-RA. 

Indeed, changing the ligand from L1 to a simplified ligand L4 leads to decreased enantioselectivity 

(Table. S1–S4), and the calculated results show a consistent trend (Fig. S17), which further supports 

the reliability of the proposed mechanism. 

 

Fig. 6 | A, Energy profile of proposed mechanism, B, Transition state structures of the proposed 

mechanism using L1. H atoms are hidden for better clearance. Numbers in figures of optimized structures 

of transition states denote key bond lengths. Unit: Å. 
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Our DFT simulations also explained the importance of BArF‾ as the counter ion for separating CuI 

center and Cl‾ ion. In Fig. S18, if the CuI center is coordinated by a Cl‾ ion, starting from Catalyst-

Cl, the overall reaction to afford 3a is still downhill. However, the transition state TS-S-Cl 

necessitates an energy barrier of 18.2 kcal/mol for reductive elimination to afford 3a while recycling 

Catalyst-Cl. The significantly high energy barrier handicaps the overall reaction so that the yield is 

low (16%) without NaBArF, as shown in Fig. 1B. Besides the proposed reaction pathway, other 

possible coordination structures are also tested (Fig. S19). However, energy changes for forming 

such structures are significantly more positive compared with that of TS-III-OSS. 

On the basis of our experimental findings, DFT calculations, and literature reports (15, 16, 56–59) 

we propose that the enantioselective oxidative coupling of C(sp3)–H with carboxylic acids proceed 

by the mechanism shown in Fig. 7. In the reaction, irradiation decomposes DTBP to tert-butoxy 

radicals, which react with CuI complex to form CuII-OtBu intermediate Int-I and abstract a hydrogen 

atom from the substrate to form allyl radical. The Int-I undergoes a ligand exchange reaction with 

acid to generate CuII-OBz intermediate Int-II, which combines with allyl radical to generate 

intermediate Int-III. Intramolecular coupling of the acyl and allyl groups on the catalyst results in 

the intermediate Int-IV. The intermediate Int-IV reacts with the tert-butoxy radical to produce allyl 

ester and regenerate catalyst Int-I. 

 

Fig. 7 | Proposed mechanism. 

In summary, we have developed a cationic copper catalysis approach that enables the 

enantioselective oxidative coupling of allylic and propargyl C(sp3)–H bonds with carboxylic acids 

under blue light. This method not only broadens the asymmetric Kharasch reaction to encompass 

open-chain alkenes and alkynes, but also eliminates the need for peroxy esters as oxygen 

nucleophiles. Utilizing this method, we successfully synthesized various chiral esters directly from 

readily accessible C(sp3)–H substrates, achieving good to high enantioselectivities. Our research 
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opens new avenues for the asymmetric functionalization of unactivated C(sp3)–H bonds. 

Furthermore, the identification of CuIII intermediate not only deepens understanding of copper-

catalyzed reaction but also lays a solid foundation for its exploration and application in a wide field 

of chemistry. 

Methods 

Enantioselective oxidative coupling of (E)-but-1-en-1-ylbenzene with p-methoxybenzoic acid 

In an argon atmosphere, CuCl (1.0 mg, 0.01 mmol), L1 (15.1mg, 0.02 mmol), NaBArF (10.6 mg, 

0.012 mmol), C6F6 (2 mL) were mixed in a vial. The mixture was stirred for 15 min, and p-

methoxybenzoic acid (15.2 mg, 0.1 mmol) and (E)-but-1-en-1-ylbenzene (40 mg, 0.3 mmol) and 

DTBP (75 uL, 0.4 mmol) were added into the vial. The mixture was stirred at 10 °C (internal 

temperature) under the irradiation of 12 W 395 nm LEDs. After stirring for 9 h, the reaction mixture 

was quenched by exposure to air. The solvent was removed under vacuum and the residue was 

purified by flash chromatography on silica gel to obtain product 3a in 82% yield with 96:4 er. 
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