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Polymer informatics, which involves applying data-driven science to polymers, has attracted considerable research interest. However, 

developing adequate descriptors for polymers, particularly copolymers, to facilitate machine learning (ML) models with limited data sets 

remains a challenge. To address this issue, we computed sets of parameters, including reaction energies and activation barriers of elementary 

reactions in the early stage of radical polymerization, for 2500 radical–monomer pairs derived from 50 commercially available monomers 

and constructed an open database named “Copolymer Descriptor Database.” Furthermore, we built ML models using our descriptors as 

explanatory variables and physical properties such as the reactivity ratio, monomer conversion, monomer composition ratio, and molecular 

weight as objective variables. These models achieved high predictive accuracy, demonstrating the potential of our descriptors to advance 

the field of polymer informatics. 
 

Introduction 

In recent years, data-driven research on polymers, known as 

polymer informatics, has been gaining attention, with a rapid 

increase in the number of reported studies.1–10 Polymers exhibit 

a wide range of physical properties dictated by various 

hierarchical parameters, including monomer species, molecular 

weight distribution, crystal structure, manufacturing process 

(such as temperature, solvent, and additives), and molding 

methods (such as film, fiber, and plate). Designing polymers 

with specific properties is a formidable challenge that often 

necessitates the exploration of only a subset of these 

parameters to narrow the vast search space. The availability of 

high-quality and comprehensive digital polymer databases is 

essential to facilitate data-driven research in this area. Since 

2010, polymer databases such as PoLyInfo,11 Polymer 

Genome,12-14 and NanoMine15,16 have gradually proliferated. 

Open-source libraries applicable to polymer informatics, such as 

RadonPy17 and XenonPy,18 have promoted data-driven research 

in laboratory settings. Additionally, data-driven research efforts 

increasingly integrate polymer data obtained from high-

throughput19–21 and robot-automated experiments22.  

Another critical aspect of polymer informatics is the definition 

of appropriate descriptors. For instance, BIGSMILES23–26 and 

Polymer Markup Language27 have emerged as string-based 

descriptors for polymers, serving well in database construction 

and forming the backbone of data-driven research. However, 

because string-based descriptors do not directly represent 

molecular structures or properties, a vast amount of data is 

typically required to build machine learning (ML) models using 

these features as explanatory variables. Alternatively, Attentive 

Fingerprints of monomers and dimers have been proposed as 

descriptors for graph attention networks aimed at predicting 

the physical properties of copolymers.28 However, constructing 

such networks requires a substantial data set of up to 4000 data 

points. Given the difficulties in accumulating extensive data in 

polymer-synthesis laboratories, even with automated 

experimental equipment, developing effective descriptors is 

imperative for constructing ML models capable of predicting 

the physical properties of polymers, even with limited data sets. 

In particular, in the search for polymers or copolymers with 

specific properties obtained by varying monomers or monomer 

pairs along with process variables (synthesis conditions), 

selecting appropriate descriptors for monomers or monomer 

pairs is crucial, because ML models must exhibit high prediction 

accuracy for untested monomers or monomer pairs to ensure 

reliable extrapolation accuracy. In our previous study,29 we 

demonstrated that incorporating density functional theory 

(DFT) parameters, including the activation barriers and reaction 

energies of the initial stage of radical polymerization, as 

descriptors, along with process variables, improved the 

extrapolation accuracies of copolymer properties (monomer 

conversion and monomer composition ratio) for monomer pairs 

not included in the learning process.  

In this study, we computed the descriptors of copolymers, 

including reaction energies and activation barriers, for 2500 

radical–monomer pairs of 50 commercially available monomer 

species and compiled them into an open database named the 

“Copolymer Descriptor Database (CopDDB).” The remainder of 

this paper is organized as follows: First, the radical–monomer 

pair descriptors and their calculation methods are described, 

followed by an explanation of the conversion of radical–

monomer pair descriptors to those for copolymers. 

Subsequently, three case studies were conducted. In the first 

and second case studies, we constructed ML models to predict 
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several physical properties using the descriptors in the CopDDB 

as explanatory variables and validated their predictive abilities. 

The objective variable in the first case study was the reactivity 

ratio r1 from the literature, which is an important parameter 

used to estimate the monomer composition ratio from the 

monomer ratio to be prepared (i.e., the copolymerization 

composition curve). The objective variables in the second case 

study were the physical properties of binary copolymers, such 

as the monomer conversion, the monomer composition ratio, 

and the molecular weights, measured under different 

monomers and process variables in our previous study.29 In the 

third case study, we applied Bayesian optimization (BO) with 

only one step, called one-shot BO, to find the appropriate 

process variables to achieve the desired physical property using 

an untested monomer. Through these three case studies 

described, we have demonstrated the usefulness of CopDDB 

descriptors. 

Methodology for constructing a descriptor 
database 

Preprocessing the monomer dataset 

We focused on the 50 monomers shown in Figure S1 and Table 

S1. These monomers include commercially available acrylate 

monomers, methacrylate monomers, and styrene derivatives 

listed in “17019 Chemical Products”.30 First, we generated the 

Cartesian coordinates of these 50 monomers from their 

simplified molecular input line entry system (SMILES) 

representations using the ETKDGv3 method implemented in the 

RDKit package. The conformations of each monomer were also 

generated, and up to five conformers were selected based on 

the root-mean-square deviations of the heavy atoms, as 

implemented in RDKit.  

 

Calculating descriptors for radical–monomer pairs 

CopDDB includes parameters for radical–monomer pairs (M1* 

and M2) and consists of four types of parameters: (1) reactivity 

parameters, (2) electronic parameters, (3) geometrical 

parameters, and (4) other conventional parameters. 

Parameters (1)–(3) are based on DFT calculations and are 

referred to as DFT-based parameters. The details of each 

parameter are as follows 

The reactivity parameters represent the relative electronic 

energies of the elementary reactions at the initial stage of 

radical polymerization shown in Figure 1. Polymerization begins 

with the addition of an initiator radical to a monomer, which is 

usually a barrierless process, followed by repeated C–C bond 

formation with another monomer. Therefore, the reaction 

energies for the addition of a model initiator radical (the methyl 

radical) to M1 at the head and tail positions (Ehead and Etail in 

Figure 1, respectively) were calculated. The conformations of 

the methyl radical adduct to M1 were generated using an 

automated reaction-path search method called the 

multicomponent artificial force-induced reaction (MC-AFIR) 

method.31,32 We randomly selected one of the M1 conformers 

and placed a methyl radical at a random position, then 

performed the AFIR calculation with the artificial force between 

M1 and the methyl radical. This process was repeated until three 

successive AFIR searches found the already obtained 

geometries. The most stable geometries of the head- and tail-

adducts were used to calculate Ehead and Etail. Next, the local 

minima (LMs) and transition states (TSs) along the C–C bond 

formation pathway (head-to-tail addition) between the head 

adduct (M1* in Figure 1) and monomer M2 were computed. The 

reaction pathways for the head-to-tail addition, starting from 

20 random initial alignments, were explored using the MC-AFIR 

method. The obtained pathways (AFIR pathways) were usually 

close to the real reaction pathways. Thus, we selected a 

geometry on the AFIR pathway where the reactive C–C bond 

distance was close to 2.28 Å (our empirical distance), used it as 

the initial structure for the relaxation calculation by fixing the 

C–C bond distance, and then carried out the geometry 

optimization without any constraints. 
 

Figure 1. Initial stage of radical polymerization and the 

associated energies used for descriptors. 

 

The most stable TS was selected when multiple TSs were 

obtained. Intrinsic reaction coordinate (IRC) calculations33 were 

performed to confirm the TS and obtain the structures of the 

corresponding precursors and products. All precursors, TSs, and 

products were confirmed by frequency calculations. The 

energies of the precursor and TS relative to the dissociation 

limits of M1* and M2 (Eprecursor and ETS, respectively) and the 

activation barrier Ebarrier (i.e., the energy difference between 

the precursor and TS) were collected. All AFIR calculations and 

geometry optimizations (without constraints) were performed 

at the GFN2-xTB34 and B3LYP-D3/def2SVP35–38 levels, 

respectively. The energies and energy gradients were calculated 

at the GFN2-xTB level using the ORCA program39 and at the 

B3LYP-D3 level using the Gaussian16 program.40 These 

computations supported the AFIR calculations and geometry 

optimizations conducted through the GRRM program.41 The 

activation energies for subsequent polymer elongation were 

not collected, as the reactivity of the propagating radical is 

primarily considered to depend on the identity of the monomer 

unit at the propagating end rather than the chain length and 
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composition. As shown in Table S2, the activation barriers for 

C–C bond formation at the same propagating end (with 

different chains) were similar. 

The electronic parameters include frontier orbital energies and 

energy gaps, calculated for the most stable conformers at the 

B3LYP-D3/def2SVP level.35–38 The singly occupied molecular 

orbital (SOMO) and lowest unoccupied molecular orbital 

(LUMO) energy levels of M1* and the highest occupied 

molecular orbital (HOMO) and LUMO energy levels of M2 were 

measured. The energy gaps between the SOMO of M1* and the 

HOMO of M2, and between the SOMO of M1* and the LUMO of 

M2, were determined. 

The geometrical parameters include the reactive C–C bond 

distance and the dihedral angle at the TS of the head-to-tail 

addition (< C1–C2–C3–C4 in Figure 1), as well as the volumes 

and percent buried volumes (%Vbur)42 of the most stable 

conformers of M1* and M2. The volume and %Vbur represent the 

bulkiness of the molecule itself and around the reactive center, 

respectively. The volume was calculated using the Gaussian16 

program, and %Vbur was determined using our own program. In 

addition, conventional parameters obtained with the 

ChemDraw program were included, such as the sum of the 

molecular masses of M1* and M2, and the partition coefficients 

(logP) for M1* and M2. In summary, CopDDB includes 24 

descriptors: seven reactive parameters, six electronic 

parameters, eight geometrical parameters, and three 

conventional parameters, for 2500 radical–monomer pairs. 
 

Converting to descriptors for monomer pairs 

 To apply the descriptors of radical–monomer pairs for 

constructing ML models of copolymers, appropriate 

preprocessing of these descriptors is necessary. When 

synthesizing copolymers from two monomers, M1 and M2, the 

following four reactions occur: 

M1
∗ +M1

𝑘11
→ M1

∗ 

M1
∗ +M2

𝑘12
→ M2

∗  

M2
∗ +M1

𝑘21
→ M1

∗ 

M2
∗ +M2

𝑘22
→ M2

∗  

where M1* and M2* represent the radicals with propagating 

ends M1 and M2, respectively, and kij is the rate constant for the 

reaction between Mi* and Mj (where i, j = 1, 2) that yields Mj*. 

Therefore, the descriptors for the four types of radical-

monomer pairs (M1*, M1), (M1*, M2), (M2*, M1), and (M2*, M2) 

must be used as the descriptors for the monomer pairs of M1 

and M2. 

In this study, we present three case studies that utilize the ML 

approach with CopDDB parameters as descriptors. The first case 

study focused on the reactivity ratio r1, which represents the 

ratio of the reaction rate constants k11/k12. Thus, the DFT-based 

parameters (seven reactivity, six electronic, and eight 

geometrical parameters) for (M1*, M1) and (M1*, M2) were used 

as descriptors for the M1, M2 monomer pairs, resulting in a total 

of 38 parameter sets. In the second case study, we focused on 

the physical properties of five binary copolymers synthesized by 

combining methyl methacrylate (MMA) with five monomers: 

styrene (St), glycidyl methacrylate (GMA), 4-acetoxystyrene 

(PACS), tetrahydrofurfuryl methacrylate (THFMA), and 

cyclohexyl methacrylate (CHMA). By classifying St, GMA, PACS, 

THFMA, and CHMA as M1 and MMA as M2, the parameter sets for 

(M1*, M1), (M1*, M2), and (M2*, M1) were utilized as descriptors 

for the binary copolymers. The same descriptor preprocessing 

was applied in the third study, which validated the prediction 

accuracy for another M1, 2-hydroxyethyl methacrylate (HEMA), 

using one-shot BO. 

Applications of CopDDB to ML models 

Prediction of reactivity ratio 

In the first case study, the reactivity ratio r1 was featured as an 

objective variable in the ML models. A data set of r1 values was 

manually collected from the Polymer Handbook.43 Although the 

Handbook includes approximately 4600 data points, only 424 r1 

values were available for the 114 radical–monomer pairs 

recorded in the CopDDB. The r1 data from the literature were 

obtained under various experimental conditions, resulting in a 

relatively wide distribution of r1 values for identical radical–

monomer pairs. In addition, some radical–monomer pairs had 

multiple r1 values, while others had only one. The r1 data were 

preprocessed as follows: (1) negative r1 values, which were 

physically unrealistic artifacts, were converted to zero, and (2) 

outliers were deleted manually, as shown in Table S3. The mean 

of the remaining r1 data was used as the objective variable. 

Figure 2a shows the distribution of the mean r1. Few data points 

exhibit large r1 values. Considering the composition distribution 

is crucial, particularly regarding whether r1 approaches 0 or 1, 

as larger r1 values generally indicate substantial inaccuracy.44 

Thus, we extracted r1 values less than 1.5, resulting in 97 data 

points, as depicted in Figure 2b. 

Figure 2. Distribution of mean r1 values: (a) for all 114 data sets 

and (b) for the 97 data sets after preprocessing. 

 

To evaluate the effectiveness of our descriptors, we 

constructed ML models to predict r1 values using two different 

sets of descriptors and compared their prediction accuracies. 

The first set, obtained from CopDDB, combined DFT-based 

descriptors for (M1*, M1) and (M1*, M2). The second set, derived 

from the RDKit package, combined descriptors for M1 and M2. 

Figure 3 shows the distribution of 2500 radical–monomer pair 

data points within the chemical spaces defined by these 
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descriptors. Differences in overall data distribution shapes 

suggest that the chemical spaces spanned by the two descriptor 

sets may vary. Before constructing the ML models, the 

descriptors were preprocessed as follows. descriptors with a 

correlation coefficient above 0.9 were reduced to one. For 

those with a correlation coefficient in the range of 0.8–0.9, we 

manually selected which descriptor to remove based on scatter 

plots. As a result, 22 DFT-based and 24 RDKit descriptors were 

retained. The 97 data points were divided into subsets of 87 

(~90%) for training and 10 (~10%) for testing. Random forest 

(RF) regression models were constructed, with 

hyperparameters optimized through 5-fold cross-validation of 

the training data using the Optuna package.45 Model 

performance was validated using R2 scores. 
 

Figure 3. Visualization of chemical space for 2500 radical–

monomer pair data points, achieved through dimensionality 

reduction of the descriptor space using t-SNE. Panels (a) and (b) 

show the visualizations for RDKit descriptors and DFT-based 

descriptors in the CopDDB, respectively. Data points are color-

coded as follows: 97 data points with r1 < 1.5 are in blue, 17 data 

points with r1 ≥ 1.5 are in red, and 2386 data points without r1 

are in grey. The perplexity parameter in t-SNE was set to 30. 
 
 

Figure 4. y-y plots of the RF models for r1 values constructed 

using different descriptor sets: (a) DFT-based descriptors in the 

CopDDB and (b) RDKit descriptors.  

 

Figure 4 shows the y–y plots of r1 values predicted by RF 

models using the two sets of descriptors. The model using DFT-

based descriptors achieved higher R2 scores for both training 

and test data (0.86 and 0.84, respectively) compared to the 

RDKit descriptors (0.80 and 0.65, respectively). Thus, our 

descriptors demonstrated excellent performance for ML 

models, offering better predictive accuracy. 

 

 

Prediction of monomer conversion, monomer composition ratio, 

and molecular weight 

In the second case study, we examined the properties of 

copolymers synthesized via radical copolymerization of two 

monomers: MMA and M1 that represents one of five other 

monomers—St, GMA, PACS, THFMA, and CHMA. The target 

properties include the conversions of MMA and the other 

monomer (MMA_conv. and M1_conv.), the composition ratio of 

M1 (M1_CR), number-average molecular weight (Mn), and 

weight-average molecular weight (Mw). These properties were 

measured under various process conditions, including 

temperature, flow rate (reaction time), and the ratio of the two 

monomers, initiator, and solvent, as reported in our previous 

study.29 The M1 monomer was also considered a process 

variable. The list of process variables and corresponding 

properties is provided in Table S2 of Reference 29. 

As discussed in our previous study,29 the DFT-based 

descriptors demonstrated higher extrapolation accuracy than 

the RDKit descriptors for predicting MMA_conv., M1_conv., and 

M1_CR. In this study, we extended this approach to predict 

molecular weights with high accuracy by utilizing the updated 

CopDDB descriptors and applying additional feature 

engineering through dimensional compression. We examined 

two types of descriptors for M1. One set comprised 66 

parameters, which were combinations of the CopDDB 

descriptors (M1*, M1), (M1*, MMA), and (MMA*, M1). The other 

consisted of nine parameters, derived from compressing the 

CopDDB descriptors (M1*, M1), (M1*, MMA), and (MMA*, M1) 

into three dimensions each using principal component analysis 

(PCA)46 and variational autoencoder (VAE).47 Details of the 

dimensional compression using the VAE are shown in Figure S2. 

To estimate extrapolation performance, leave-one-monomer 

(M1)-out cross-validation (LOOCV) was conducted, following the 

procedure outlined in Examination 2 of Figure 3 in Ref 29. The 

ML models were built using Gaussian progress regression (GPR) 

with the sum of two Matern kernels, with  values of 0.5 and 

1.5.48  
 
Table 1. R2 scores of the LOOCV for each physical properties of 
the copolymers of MMA and M1 monomers. a) 

Descriptors 
Original 

Parameters 

9 parameters 
compressed 

by PCA 

9 parameters 
compressed 

by VAE 

MMA conv. 0.60 0.67 0.72 

M1 conv. 0.67 0.57 0.80 

M1_CR 0.72 0.87 0.82 

Mn 0.35 0.76 0.67 

Mw 0.33 0.81 0.73 

a) The predicted values are the averages of five values with 
different random numbers in the GPR model. M1 
represents the five monomer species: St, GMA, CHMA, 
PACS, and THFMA. 

 

Table 1 shows the R2 scores of the GPR models built using the 

three types of parameters mentioned above (see Figure S3 for 

the y–y plots). The prediction accuracies for M1_conv., 

MMA_conv., and M1_CR improved when using the compressed 

parameters, except for M1_conv. with parameters compressed 
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by PCA. For the molecular weights Mn and Mw, the prediction 

accuracies were dramatically improved with the compressed 

parameters. This improvement could be attributed to the 

reduced number of descriptors, which suppressed overfitting of 

the training data. Although feature engineering, such as 

dimensional compression, is sometimes necessary, the 

descriptors in CopDDB remain valuable for developing ML 

models of various physical properties of copolymers. 
 

One-shot Bayesian optimization for a novel monomer 

As a third case study demonstrating the effectiveness of 

CopDDB descriptors, we conducted process optimization for the 

copolymerization of MMA and a new M1 monomer, HEMA, 

using the GPR models trained in the previous section (the 

second case study). The initial data set for the GPR model was 

the same as that in the second case study, consisting of 

experimental data29 for the copolymerization of MMA with five 

M1 monomers (M1 = St, GMA, PACS, THFMA, and CHMA), along 

with compressed CopDDB descriptors obtained using VAE. 

Typically, BO requires an initial training set of target molecules, 

which entails significant experimental cost. However, our 

approach overcomes this challenge by using data from 

previously tested molecules that do not contain the target 

molecules for the initial data set.  

We performed the BO with the target value set to a 50:50 

composition ratio (i.e., 50% M1_CR; M1 = HEMA) for the 

synthesized copolymer. The objective variable for the GPR 

model was defined as the squared difference between the 

target M1_CR and the measured M1_CR. (Note that this BO 

procedure followed our previous study,49 in which BO was 

applied for free radical copolymerization using single-molecular 

data sets.) After training with the initial data, four candidate 

points, each consisting of five process variables, such as initiator 

concentration, proportion of HEMA (molar ratio of HEMA to 

HEMA and MMA in the preparation), reaction temperature, 

solvent-to-monomer (SM) ratio, and reaction time, were 

generated within the BO design space shown in Table S4. These 

candidate points are summarized in Figure 5, where the 

predicted objective variable by the GPR model is color-coded in 

the partial dependence plots (PDP),50 which confirms that the 

proposed process variables were sampled within the optimal 

region (shown in purple in Figure 5). Focusing on the proposed 

process variables, three variables such as initiator 

concentration, HEMA proportion, and reaction temperature 

were within a narrow range, indicating that only a specific range 

of these values could achieve the desired HEMA-CR. In 

particular, the proposed HEMA proportion was limited, ranging 

from 45.91 % to 47.45 %, which indicated that the lower 

proportion of HEMA than MMA in the preparation was required 

due to their different reactivities. In contrast, a wide range of 

values was chosen for SM ratio and reaction time. 
To validate the proposed process variables (i.e., candidate 

points), the MMA and HEMA copolymers were synthesized 
under the four proposed process variable sets. The four 
observed HEMA_CR values were 49.21%, 49.91%, 47.81%, and 
49.21%, all of which were quite close to the desired ratio of 50 % 
(see Table S6 for the detailed results). To validate the effect of 

reaction time, for which a wide range of values were proposed, 
we also performed the experiments where only the reaction 
time was changed to 1/2 and 1/3 of the proposed time. Indeed, 
the effect of reaction time on the HEMA-CR was quite small, 
though that on other properties such as the monomer 
conversions and molecular weights were large as shown in 
Table S6. As shown above, we succeeded in proposing process 
variables to achieve the desired property of copolymers of 
MMA with an untested M1 monomer (M1 = HEMA) because we 
were able to transfer the search space of process variables for 
the tested M1 monomers (M1 = St, GMA, PACS, THFMA, and 
CHMA) to that for HEMA via CopDDB descriptors. 

 
Figure 5. Four proposed sets of process variables (shown as 
white stars) on the PDP color maps for each pair of five process 
variables within the ranges defined in Table S4. Color-coded 
numerical values are the predicted means of the GPR, with 
colors closer to purple corresponding to values closer to the 
target HEMA_CR. The detailed process variables are shown in 
Table S5. 
 

Conclusions 

In this study, we developed a comprehensive database of 

copolymer descriptors, termed CopDDB, and made it publicly 

accessible. The database encompasses 24 descriptors across 

four categories: reactivity, electronics, geometry, and other 

conventional parameters. These descriptors were compiled for 

2,500 radical–monomer pairs derived from 50 distinct 

monomers, including acrylate, methacrylate, and St derivatives. 

To apply these radical–monomer pair descriptors to copolymer 

development, a preprocessing step is necessary. Specifically, for 

reactivity ratio analysis, the ratio of kinetic constants for 

homopolymerization (M1* + M1) versus heteropolymerization 

(M1* + M2) is used, with descriptors (M1*, M1) and (M1*, M2) 

being relevant input variables for the ML models. In addition, 
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when synthesizing binary copolymers from a specific monomer 

(e.g., MMA) and other monomers (M1), descriptor sets such as 

(M1*, M1), (M1*, MMA), and (MMA*, M1) were used as input 

variables. Our study demonstrated that these descriptors, 

combined with process variables, successfully predict monomer 

conversion, monomer composition ratio, and molecular weight 

of binary copolymers, and can be effectively applied in one-shot 

Bayesian optimizations. The high accuracy of the ML models 

underscores the versatility and applicability of our descriptors 

for innovative copolymer development. 

 

Data availability 

CopDDB is available on the GitHub, https://github.com/ 

hatanaka-lab/CopDDB. 
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