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Abstract32

The development of three-dimensional (3D) molecular generative model based on protein pockets33

has recently attracted a lot of attentions. This type of model aims to achieve the simultaneous34

generation of molecular graph and 3D binding conformation under the constraint of protein35

binding. Various pocket based generative models have been proposed, however, currently there is36
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a lack of systematic and objective evaluation metrics for these models. To address this issue, a37

comprehensive benchmark dataset, named as POKMOL-3D, is proposed to evaluate protein38

pocket based 3D molecular generative models. It includes 32 protein targets together with their39

known active compounds as a test set to evaluate the versatility of generation models to mimick40

the real-world scenario. Additionally, a series of 2D and 3D evaluation metrics was integrated to41

assess the quality of generated molecular structures and their binding conformations. It is expected42

that this work can enhance our comprehension of the effectiveness and weakness of current 3D43

generative models, and stimulate the discussion on challenges and useful guidance for developing44

next wave of molecular generative models.45

46

Introduction47

Application of deep generative model in drug design has gained widespread attention. Over48

the past few years, a large number of molecular generative models based on 1D/2D structures49

have been reported. These models mainly generate molecules by learning the structural features50

embodied in either 1D strings, such as the Simplified Molecular Input Line Entry System51

(SMILES) strings 1 and SELFIE strings2 , or 2D molecular graphs3, 4. Despite substantial progress52

being made in improving the validity of generated molecules and the efficiency of exploring the53

drug-like chemical space, most of these models overlook the rich information contained in the 3D54

conformation of molecules. Indeed, the binding affinity of a drug molecule to the target protein is55

predominantly dependent on the degree of geometrical and electrostatic complementarity between56

their 3D conformations. Therefore, in recent two years, molecular generative models based on 3D57

conformations has become a hot research area.58
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Currently, 3D molecular generative models can be divided into three categories. One class59

aims to generate 3D conformations of a given 2D molecule graph5-10. The second class is to60

generate simultaneously 3D conformations and 2D graph of a molecule, which doesn’t consider its61

binding partner, i.e. the protein pocket11-15. The third class strives to generate 3D conformations62

and 2D graph under the constrain of protein binding pocket, which has attracted most interest in63

the latest two years and is the ultimate goal of the so called structure based de novo molecular64

design. In current study, we solely focus on the third type of 3D generative model.65

The LiGAN model pioneered the field by introducing a conditional variational autoencoder66

of 3D atomic density grids16, in which a protein pocket is encoded by a conditional encoder67

network. The output atomic density grids are transformed to a 3D molecular structure using a68

rule-based atom fitting and bond inference algorithm. The main drawback of this model lies in its69

inability to maintain the equivariance on rotation and translation. In contrast, SBDD17 and70

GraphBP18 leverage a 3D equivariant graph neural network (GNN) to solve this problem. They71

both sequentially place atoms to a given 3D binding site, utilizing protein pocket and ligand atoms72

generated in previous steps as the contextual information. For GraphBP model, an anchor atom73

must be selected to determine position of the next generated atom, while SBDD generates the next74

atom on a given arbitrary position in the pocket. However, they only generate atom types and75

positions and utilize third-party software such as RDKit to construct bond types. Pocket2Mol1976

introduces a geometric vector perceptron (GVP)-based equivariant GNN20, 21 to encode the 3D77

geometric information of protein pocket and existing fragments of the ligand in the pocket.78

Compared to GraphBP, it particularly involves a predictor network to infer the bond type. ResGen,79

which utilizes similar GVP-based architecture, further encodes protein and ligand at residue and80

https://doi.org/10.26434/chemrxiv-2024-2qgpb ORCID: https://orcid.org/0000-0002-1387-4634 Content not peer-reviewed by ChemRxiv. License: CC BY-NC-ND 4.0

https://doi.org/10.26434/chemrxiv-2024-2qgpb
https://orcid.org/0000-0002-1387-4634
https://creativecommons.org/licenses/by-nc-nd/4.0/


atom levels respectively to better capture high-level binding interactions. Different from learning81

the joint distribution of atom type and bond type in Pocket2Mol, ResGen decomposes the82

distribution as a product of multiple conditional distributions for anchor atom, atom position, atom83

type and bond type. PocketFlow22 adds a layer of geometric bottleneck perceptron (GBP) to the84

GVP network to improve model speed and enhance information integration. It is also85

characterized by its AtomFlow and BondFlow modules for predicting atom type and bond type,86

respectively. Especially, chemical knowledge such as bond valence is explicitly integrated to guide87

the bond inference. SurfGen23 represents binding pocket as protein surface and utilizes a special88

framework Geodesic-GNN to learn the distribution of the topological information on the surface.89

All these GNN-based models can be categorized as autoregressive model, varying in the way of90

encoding protein pocket and the decoding or sampling of atoms in the generative process.91

Recently, diffusion model is an emerging deep learning technology utilizing an iterative92

denoising process to map noise to data and have been used for 3D molecule generation.93

DiffSBDD is the first 3D conditional graph diffusion model24, in which protein pocket nodes94

transformed from atomic point clouds are used as conditional constraints and remain unchanged95

throughout the reverse diffusion process. TargetDiff is conceptually similar to DiffSBDD but96

employs a different diffusion formalism for the categorical atom types. Both DiffSBDD and97

TargetDiff map protein and ligand nodes into a joint embedding space for noise prediction, while98

in DiffBP25 these two types of node are separately embedded. In addition, DiffBP introduces a99

new loss term to regulate the intersection between protein and ligand nodes in space. Besides,100

language models have also been reported for 3D structure generation. Feng et al. 26developed101

Lingo3DMol that combines transformer-based language model architecture and deep geometric102
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learning technology for 3D molecular generation. A prior model was pre-trained to generate 3D103

molecular structures given a fragment-based SMILES string, and then fine-tuned based on104

protein-ligand complex data. The protein pocket and ligand embeddings are used as the input for105

encoder and decoder respectively.106

Despite various pocket-based 3D molecular generative models reported, there is still lack of107

unified and comprehensive benchmark metrics to objectively evaluate the quality of generated108

molecules. Early-developed models, such as GraphBP and SBDD, primarily relied on common109

2D/3D molecular evaluation metrics such as molecular validity, molecular docking score,110

druglikeness (QED)27, synthesizability score (SAscore)28, and structural diversity to assess the111

quality of generated 3D molecules. Pocket2Mol additionally performed analysis on ring size of112

molecules as part of quality measurement. Although TargetDiff, DiffSBDD and DiffBP were113

published later than Pocket2Mol, they still adopted 2D molecular evaluation metrics. ResGen and114

SurfGen introduced additional 2D metrics, e.g. the mean similarity between generated molecules115

and known active molecules, to quantify their efficiency of generating active compounds.116

Lingo3DMol analyzed the proportion of targets in which nearest neighbors of known active117

compounds can be generated. In terms of measuring the quality of 3D conformation, the118

Jensen-Shanon29 divergences of bond length, bond angle, and dihedral angle of generated119

molecules, and docking scores of redocked compounds in binding pocket are often used as the120

metrics. While Lingo3DMol used “min-in-place” GlideScore30 to evaluate the poses after121

minimization of the generated conformations within the pocket. In addition, ResGen and SurfGen122

employ extra 3D evaluation metrics such as in situ docking score, similarity of protein-ligand123

interaction fingerprints between the generated conformation and known actives, and 3D similarity124
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index based on the overlay between the generated conformations and ground-truth conformations.125

On the other hand, most of the pocket-based 3D molecular generative models were trained126

and tested on the Crossdock2020 dataset31, which is constructed by molecular docking of active127

ligands on PDB database to its corresponding targets. ResGen, SurfGen, and PocketFlow128

additionally utilized the protein pockets outside the Crossdock dataset to assess the model's129

potential for real-world application. In ResGen, two external pockets were selected for evaluation,130

while in SurfGen the evaluation was extended to 20 therapeutic targets. In PocketFlow, the authors131

synthesized two generated molecules for wet-lab validation, which experimentally validates the132

effectiveness of the 3D generative models in hit finding scenario. Particularly, the resolved crystal133

structures showed that the generated 3D conformations are highly similar to their active binding134

conformations. So far, most of the pocked-based 3D generative models employ Pocket2Mol as the135

baseline model for comparison, and the number of model included in their evaluation is relatively136

small and incomplete. For future model development, it is probably necessary to conduct a137

performance comparison among a larger model set under the same criteria. PoseCheck32 is a138

small-scale benchmark study for this task by comparing five models including LiGAN,139

Pocket2Mol, 3D-SBDD, Pocket2Mol, TargetDiff and DiffSBDD. PoseCheck focused on 3D140

conformation evaluation using the CrossDock dataset as test set, and employed four 3D based141

evaluation metrics, namely steric clashes based on van der Waals distance, protein-ligand142

interaction fingerprints, strain energy of the generated conformations, and conformation similarity143

between generated and docked poses. However, PoseCheck ignored 2D metrics that can also144

imply the general quality of molecular structures. DrugPose is another small-scale benchmark145

study focusing on 3D molecular generative models, but non-specific for the protein pocket based146
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methods33. The binding similarity between pre- and post-docked poses of generated molecules,147

drug-likeness and synthesizability were also analyzed. Zheng et al. recently conducted a148

cross-algorithm benchmark study32 which compared a few protein pocket based 3D molecular149

generative models with 1D SMILES/SELFIES and 2D molecular graph based generative methods.150

Despite 16 models were evaluated in their study, only several commonly used metrics, such as151

docking score, QED, molecular validity, were employed for the evaluation.152

This study provides a comprehensive and systematic evaluation on nine 3D molecular153

generative models in 32 protein pockets, and the compiled benchmark dataset is called154

POKMOL-3D. In terms of evaluation metrics, both 2D and 3D metrics were considered and155

classified according to their characteristics. Given that the essence of pocket-based 3D molecular156

generation model is to generate molecules being able to bind specified targets, and the generated157

conformations should be close to their active conformations, conventional 2D and 3D evaluation158

metrics were expanded to include new parameters characterizing sampling speed, actives recovery159

and conformation quality etc. Furthermore, the widely used SMILES based generative model160

REINVENT 34, 35 was included as the baseline model for comparison on the 2D based metrics,161

providing an interesting perspective on how good current 3D based models comparing with162

classical SMILES based model. In summary, this work could provide a systematic and163

comprehensive benchmark set for evaluating 3D generative model.164

165

Method166

Model selection167

Nine representative models were selected from recently published protein pocket-based 3D168
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molecular generative models spanning 2021 to 2024, which includes four distinct categories:169

graph model, diffusion model, language model, and flow model. To demonstrate the efficiency of170

3D generative model, the SMILES based REINVENT (version 4.0) was utilized as the base line171

model.172

Table 1. List of selected 3D molecular generative models

Model Generative process Model architecture Training Set Year

SBDD Autoregressive Graph Model CrossDock2020 2021

GraphBP Autoregressive Graph model CrossDock2020 2022

Pocket2Mol Autoregressive Graph model CrossDock2020 2022

DiffBP One-shot Diffusion Model CrossDock2020 2022

SurfGen Autoregressive Graph model CrossDock2020 2023

TargeDiff One-shot Diffusion Model CrossDock2020 2023

ResGen Autoregressive Graph model CrossDock2020 2023

Lingo3DMol Autoregressive Language Model PDBbind 36 2024

PocketFlow Autoregressive Flow model CrossDock2020 2024

173

POKMOL-3D dataset174

In order to assess the versatility of selected models, 32 protein targets belonging to diverse175

protein families were selected, in which five classes of target are included: kinases, non-kinase176

enzymes, GPCRs, nuclear receptors, and protein-protein interaction targets. Given that our goal is177

to evaluate model performance on generating molecules conditioned on the 3D information of178

protein pocket, the targets that possess published protein-ligand complex structures were chosen.179
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For each target, one crystal structure from the RCSB PDB database37, whose resolution is less than180

3Å, was retrieved and only the subunit containing ligand was kept for analysis when the structure181

comprises multiple subunits. All protein structures were optimized using the Protein Preparation182

Wizard (PrepWizard) module in Maestro38.183

Moreover, active compounds of these proteins were extracted from the ChEMBL database39184

and served as reference set for evaluation metrics. Active molecules were considered eligible if185

they have a molecular weight less than 500 Da, and the target IC50/EC50 values are less than 10186

nM or Ki/Kd values less than or equal to 100 nM.187

Molecular generation188

In this study, the latest version of the nine models were downloaded from GitHub. During the189

sampling process, we adhered to the default configurations for all models, with the sole exception190

of the sampling scale which was specifically calibrated to yield 2000 molecules per run. Each191

model was tasked with generating a minimum of 2000 molecules per target. In scenarios where192

sampling 2000 molecules in a single run was unfeasible for certain targets, maximal three193

sampling runs were done to expand the generation set. For molecular generation employing the194

REINVENT model, 1000 epochs of RL, steered by the molecular docking score (GlideScore),195

were conducted to mimic the scenario of molecular generation within protein pocket. All196

molecules generated during the RL process were subsequently utilized for further analysis.197

Evaluation metrics198

In current study, five categories of metrics were proposed to evaluate the performance of 3D199

molecular generative models conditioned on protein pocket. As shown in Figure 1, it encompass200

model quality, general molecular quality, structural properties, recovery of active molecules, and201

https://doi.org/10.26434/chemrxiv-2024-2qgpb ORCID: https://orcid.org/0000-0002-1387-4634 Content not peer-reviewed by ChemRxiv. License: CC BY-NC-ND 4.0

https://doi.org/10.26434/chemrxiv-2024-2qgpb
https://orcid.org/0000-0002-1387-4634
https://creativecommons.org/licenses/by-nc-nd/4.0/


target binding related scores. Specifically, the model quality class evaluates the sampling speed202

and the target versatility of the model. The following two classes primarily focus on the quality of203

molecular structure, providing insights into the overall molecular properties, 2D topological and204

3D related properties of the generated molecules. The last two classes of metrics evaluate the205

effectiveness of generating target binding compounds, at some extent reflecting the probability of206

being able to bind the target protein. Through this pool of metrics, we hope to provide a thorough207

benchmarking on current state-of-the-art 3D pocket-based molecular generative models, more208

importantly providing guidance for developing new algorithms in future.209

210

211

Figure 1. Five types of evaluation metrics for compared generative models.212

Model quality213
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To evaluate the model quality, three metrics, i.e. target failure rate, sampling success rate and214

sampling speed, were proposed. As shown in equation 1, target failure rate refers to the proportion215

of targets for which no molecules can be generated by the model within three sampling runs.216

target failure rate =
targets wihout molecules generated

��� �������
1

As shown in equation 2, sampling success rate refers to the proportion of targets for which the217

model can generate more than 2000 molecules within three runs.218

sampling success rate =
������� ���ℎ ���� �ℎ�� 2000 ��������� ���������

����� ������ �� �������
2

In addition, the sampling speed was defined as the average time (in seconds) required for219

generating one molecule. Here, the sampling time was counted for generating 100 molecules for220

each target under the same computational resource. For calculating the sampling speed, the221

employed computation resource was a linux workstation of 16-core 24GB RAM Intel Xeon222

Platinum 8358 2.60GHz CPU and a NVIDIA GeForce 3090 GPU.223

224

General molecular quality225

The general molecular quality set includes molecular validity, uniqueness, usability,226

drug-likeness, synthetic score and target based diversity. These are properties reflecting overall227

generation set. The calculation of properties was carried out using RDKit package40. Molecular228

validity, as defined in equation 3, refers to the proportion of valid molecules within the generated229

set. Molecules that can successfully go through the standardization process are considered valid.230

validity =
����� ���������

��������� ���������
3

As shown in equation 4, uniqueness refers to the proportion of unique molecules obtained231

after removing duplicates among the valid molecules.232
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uniqueness =
������ ���������
����� ���������

4

As shown in equation 5, usability refers to the proportion of molecules containing common233

elements C, N, O, P, S, F, Cl, Br, I, and H. Molecules containing other elements are considered234

unusable, for example those containing metal elements.235

��������� =
������ ���������
������ ���������

5

Furthermore, the drug-likeness score (QED) and synthetic accessibility score (SAscore) were236

calculated for each generated molecule using RDKit. These scores assess the drug-likeness and237

synthetic feasibility of the generation set, respectively.238

Target based molecular diversity (TDiv) is computed utilizing equation 6 to represent the239

mean value of target specific diversity of generation sets:240

TDiv =
1

Ntarget �=1

�������
1 − �=1

��
�=2
�� ���� �, ���

��
2 ,� i < j 6

where i and j refer to the indexes of two molecules in the generated molecule set for target t. The241

Tanimoto similarity (Tsim) of the Morgan fingerprints41 is calculated based on all the pairs of242

molecules for the same target. This similarity is normalized on the total number of molecules in243

the generation set of the target. Target specific diversity score is derived from this normalized244

similarity. The final TDiv score is defined as the average diversity score across all targets. A245

higher TDiv value indicates greater diversity.246

247

Structural properties248

The structural property group includes a set of 2D topological descriptors comprising the249

number of heavy atom, chiral atom, ring, aromatic ring and rotatable bond, and the fraction of sp3250

hybridized carbon atom (Fsp3), and their distribution was also compared. Additionally, a set of 3D251
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based geometrical properties containing the Jensen-Shanon divergency (JSD)29 of bond length,252

bond angle and dihedral angle was calculated. Detailed information for selected types of bond,253

bond angle and dihedral angle can be found in Supporting Material Figure S1. The geometry254

comparison was made between the conformations generated by the model and the low-energy255

conformations optimized using the LigPrep module of Schrodinger package (version 2020). As256

proposed in previous works22, JSD measures the distance of two probability distributions and is257

defined as in Equations 7-8.258

� =
� + �

2
7

���(�, �) =
1
2

(���(�| � + ���(�||�)) (8)

where P denotes the probability distribution of a 3D property of the conformations generated by259

the model, whereas Q corresponds to the conformations after energy optimization. M represents260

the average distribution of P and Q. The Kullback-Leibler (KL) divergence42, denoted as Dkl, is261

calculated separately to quantify the difference of either P or Q from M. The JSD value was then262

obtained by averaging the KL divergences. A JSD value of 0 indicates that the distributions P and263

Q are identical and a value of 1 represents completely dissimilar distributions.264

265

Recovery of active molecules266

Recovery of actives refers the ratio of generated compounds which are similar to the actives267

in the reference set for a specific target. Tanimoto similarity between generation set and actives in268

the reference set of the target protein is calculated. Here, Morgan fingerprint based on two bond269

distance was used to calculate Tanimoto similarity. For an active molecule of target t (At), it is270

recovered if its similarity of any compound in generation set is larger than 0.6. Then, the recovery271
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rate of active molecules for target t (Rt) is calculated as Formula 9:272

Rt =
number of recovered active molecules

����� ������ �� ������ ���������
9

This metric, at certain extent, can be regarded as the probability of reproducing active compound273

by the generative model. The ratios at molecular structure and molecular Murcko scaffold43 level274

were examined respectively.275

Target binding assessment276

To evaluate how good the generated set can bind in its target pocket, two scoring strategies277

were used here. One is the in situ scoring strategy, which scores the generated conformations at278

the binding site without going through further pose optimization. The other one is the redocking279

strategy, which scores after redocking of generated molecules into the binding set via external280

docking software. The Glide docking module of Schrodinger software was used for in situ scoring281

and redocking, and the GlideScore was used as the score value44. In redocking, the generated282

conformations were first gone through the LigPrep protocol of Schrodinger software for283

preparation and then docked, and only one docking pose was saved for each molecule. Besides,284

the Root-Mean-Square-Deviation (RMSD) value between the generated conformations and the285

redocked conformations were also calculated without performing any conformation superposition.286

The RMSD value quantifies the fitness between the protein pocket and the generated ligand, as287

any Van der Wars clash or unmatched electrostatic interaction between ligand and protein would288

penalize the ligand conformation, and in this case the docking pose was used as surrogate of289

ground truth. In summary, the in situ score, redocking score and RMSD value between the290

generated and redocked conformations were included in the target binding assessment set of291

metrics.292
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Results and Discussion293

Benchmark dataset composition294

Protein pocket based 3D molecular generative model involves the encoding of 3D geometric295

information of protein pocket, which are extracted from experimentally determined crystal296

structures of various proteins. To investigate the generalizability of the investigated models to297

unknown targets, our benchmark dataset encompasses 32 protein pockets, among which 17 targets298

and 25 PDB IDs are not included in the CrossDock2020 dataset that usually used for training the299

pocket based 3D generative models (Figure 2, detailed structure IDs can be seen in Table S1). In300

addition, these targets belong to various druggable protein families, such as kinase, G301

protein-coupled receptor (GPCR), nuclear receptor etc., and have reported ligands as marketed or302

clinical drug.303

304

305

Figure 2. Target overlap between the POKMOL-3D and CrossDock2020 datasets in terms of (A) protein target306

name and (B) crystal structure.307

Model quality308

309

Table 2. Metrics for model quality evaluation

Model
Target

failure rate
Sampling success

rate
Sampling speeda

REINVENT 0 1 2.002
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GraphBP 0 1 0.428
Pocket2Mol 0.094 0.656 7.131
PocketFlow 0 1 1.462
Lingo3DMol 0.063 0.313 2.381
DiffBP 0 1 16.338
TargetDiff 0 0.969 78.167
ResGen 0.063 0.125 29.613
SurfGen 0 0.094 28.150
SBDD 0 0.406 12.348
Note: a) estimated in second per compound310

In this study, three structural unrelated metrics, i.e. target failure rate, sampling success rate311

and sampling speed, were proposed to evaluate model quality. As shown in Table 2, most models312

are able to generate compounds for all pockets so that their target failure rate is 0, while313

Pocket2Mol, Lingo3DMol and ResGen fail to generate molecules for a few target proteins. In314

detail, Pocket2Mol failed on Beta2AR, FXR and LXRB, ResGen failed on ERK2, NAMPT315

proteins, and Lingo3DMol failed on CDK9 and DPP4 proteins. These results suggested that these316

three models are not generalized good enough to deal with all targets. Additionally, the sampling317

success rate, defined as the fraction of targets that a model can generate over 2,000 molecules at318

most three runs, was employed as an additional indicator of generalizability to assess the models'319

capacity to generate sufficient molecules given a specified sampling size. The results indicated320

that models GraphBP, PocketFlow, DiffBP and the SMILES based baseline model REINVENT are321

able to sample over 2,000 molecules for all targets within three sampling runs, and TargetDiff also322

exhibits a high sampling success rate. Thus, the diffusion based and flow based models are able to323

generate sufficient molecules from a model-type perspective. However, the remaining models, i.e.324

Pocket2Mol, Lingo3DMol, ResGen, SurfGen, and SBDD, showed much lower success rate.325

Notably, SBDD exhibited a significantly lower sampling success rate than GraphBP that share the326

similar GNN architecture. This discrepancy might be attributed to the distinct approaches used by327
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these models to predict new atoms in the autoregressive generation process. A similar328

phenomenon was observed when comparing ResGen with Pocket2Mol. SurfGen, which represents329

protein pocket as protein surface, exhibited the lowest rate in sampling enough compounds in the330

pockets. Although detailed reason is not unclear, one probable reason may be that the flaws331

existed in generated 3D conformations make them failed in passing the internal structural validity332

check.333

Furthermore, comparison of the sampling speed was conducted. The results showed that334

GraphBP exhibits fastest sampling speed, in which a molecule can be generated within one second.335

In contrast, SBDD was much slower than GraphBP although they share similar generative336

methodology. Pocket2Mol, PocketFlow, and Lingo3DMol exhibited relatively rapid sampling rate,337

in which a compound can be sampled in less than 10 seconds. TargetDiff showed the slowest338

speed, in which a compound is generated in more than one minute. Interestingly, DiffBP exhibited339

much faster sampling speed than diffusion based TargetDiff and graph based models ResGen and340

SurfGen. Furthermore, all protein pocket-based 3D molecular generative models, except GraphBP341

and PocketFlow, exhibited slower sampling speed than REINVENT.342

General molecular quality343

344

Table 3. Comparison of general molecular quality

Model Validity ↑
Uniqueness

↑
Usability

↑
QED
↑

SAscore
↓

Molecule
Tdiv ↑

Scaffold
Tdiv ↑

Actives 1 1 0.996 0.553 3.059 0.882 0.864

REINVENT 1 0.999 1 0.603 2.763 0.944 0.933

GraphBP 0.997 0.998 0.893 0.498 5.241 0.955 0.954
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Pocket2Mol 0.906 0.903 1 0.420 4.074 0.926 0.925

PocketFlow 1 0.907 1 0.471 3.084 0.938 0.917

Lingo3DMol 1 0.742 1 0.484 3.17 0.913 0.871

DiffBP 0.992 0.998 1 0.508 3.553 0.942 0.935

TargetDiff 0.998 0.58 1 0.356 5.303 0.944 0.95

ResGen 1 0.992 1 0.345 4.169 0.927 0.922

SurfGen 1 0.987 1 0.369 4.408 0.927 0.923

SBDD 0.641 0.996 1 0.357 5.937 0.915 0.914

345

To assess the quality of 2D structures of generated molecules, six metrics were utilized:346

molecular validity, uniqueness, usability, drug-likeness, synthesis accessibility, and diversity (as347

shown in Table 3, the distribution plots can be seen in supporting material). Molecular validity and348

uniqueness are fundamental metrics for evaluating generative models. The results indicated that349

the molecular validity of all protein pocket-based 3D models except SBDD were either equal or350

close to 1.0. In terms of molecular uniqueness, all models exhibited much higher performance351

than Lingo3DMol and TargetDiff. Especially, a new metric named molecular usability was352

introduced to quantify the likelihood of these models generating uncommon elements in structure.353

The results indicated that all models exhibit good performance on this metric, and only GraphBP354

generates about 10% molecules with uncommon atoms such as silicon atom.355

In the assessment of drug-likeness, the QED score was averaged among the molecules356

generated by each model (Figure S2A). Notably, the QED scores for most 3D models were below357

0.5, lower than the average value observed for known active molecules (QED score = 0.553). In358
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contrast, the QED score of REINVENT is superior to the average value of active molecules and359

higher than all 3D models. Additionally, the SAscore metric was utilized to evaluate the synthetic360

accessbility of generated molecules (Figure S2B). The SAscore of SBDD was significantly higher361

than other models, suggesting that SBDD tended to generate molecules with poorer synthesis362

accessbility. In contrast, PocketFlow and Lingo3DMol exhibited higher SAscore than other 3D363

models but still worse than the baseline REINVENT.364

In evaluating molecular diversity of generation set, a pairwise similarity calculation was365

performed between molecules belonging to a specific target and the average molecular diversity366

across all targets. The results listed in Table 3 revealed that both REINVENT and 3D generative367

models exhibit high diversities. In summary, although 3D models exhibited similar performance368

on validity, uniqueness, usability and diversity with baseline model REINVENT, REINVENT369

model significantly showed better performance on QED and SAscore.370

371

Structural properties372

In addition to general molecular quality, it is imperative to consider fine-grained topology373

related structural properties for evaluation. We analyzed the distribution of several crucial 2D374

topological features, including the number of heavy atom, chiral centre, ring, aromatic ring, and375

rotatable bond, and the Fsp3 (Figure 3A-F).376
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377

Figure 3. The violin plots for structural properties of 3D generative models including number of (A) heavy atom,378

(B) chiral centre, (C) ring, (D) aromatic ring, (E) rotatable bond, and (F) Fsp3.379

The distribution of heavy atom number was shown in Figure 3A, REINVENT clearly380

exhibited most similar distribution as the active set, while most of 3D models tended to generate381

larger molecules than the active set, except GraphBP which generated significant portion of382

molecules with fewer than 20 heavy atoms. Particularly, SBDD generated molecules with a wide383

range from 20 to 60 heavy atoms. For Pocket2Mol, ResGen and SurfGen, the generated molecules384

had heavy atom between 40 and 60.385

In terms of number of chiral centre, most of the 3D generative models tended to generate386

more chiral centre than the active set. Especially for GraphBP, SBDD and TargetDiff, the number387

of chiral centre in the generated compounds was obviously much larger than other models,388
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resulting in decrease of the synthetic accessbility. Whereas, REINVENT exhibited most similar389

distribution to the active set and the generated molecules clearly had less chiral centre than the 3D390

generative models. The ring count in a molecule serves as an indicator of its structural complexity,391

given that most drug molecules possess at least one ring structure45. The ring count distribution of392

active set fell in the range of 3-5 rings. The REINVENT model showed most similar distribution393

to the active set, whereas the 3D models mostly exhibited much broader distribution. Especially394

for Pocket2Mol, ResGen, SurfGen and SBDD, a substantial proportion of molecules had more395

than five rings, resulting the increases of structural complexity and decreases of drug-likeness. In396

contrast, PocketFlow, Lingo3DMol, DiffBP and TargetDiff exhibited distributions more close to397

the active set than other 3D models. Interestingly, GraphBP tended to generate compounds with398

less rings than the active set, consistent with the observation on distribution of heavy atom count.399

Given the prevalence of aromatic rings in drug molecules46, the number of aromatic ring is400

also an important metric. Figure 3D showed that the distribution of aromatic ring in REINVENT401

was quite similar to that of the active set, in which most compounds have 2-4 aromatic rings,402

while the distribution of 3D models was deviate from the active set. Interestingly, GraphBP,403

TargetDiff and SBDD tended to generate compounds with less number of aromatic rings404

comparing to the active set. Pocket2Mol, ResGen and SurfGen generated a substantial fraction of405

compounds with more than four aromatic rings, while PocketFlow, Lingo3DMol, and DiffBP406

generated compounds with primarily one to three aromatic rings.407

The analysis on the number of rotatable bond (Figure 3E) revealed that REINVENT exhibits408

most similar distribution to the active set, although it still had a minor fraction of molecules409

exceeding ten rotatable bonds. Among the 3D generative models, Pocket2Mol and GraphBP were410
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similar to the active set, while others models generated larger fraction of compounds with more411

than ten rotatable bonds, and SurfGen generated molecules with less than two rotatable bonds.412

The fraction of sp³ hybridized carbon atoms is a metric that partially reflects a molecule's413

flatness, i.e. the larger fraction of aromatic ring in a molecule the smaller Fsp3 value is, and it is414

related to the success of drug in clinical trials47. Typically, small-molecule oral drugs harbor415

approximately 40% of their carbon atoms in the sp³ hybridization state48. Our findings (Figure 3F)416

indicated that the proportion of sp³-hybridized carbon atoms in active molecules primarily fell417

within the range of 20% to 40%. The molecules generated by REINVENT model exhibited a418

distribution closely resembling that of the active set. The 3D models Pocket2Mol, PocketFlow,419

Lingo3DMol, DiffBP, and ResGen exhibited comparable distributions to the active set (as shown420

in Figure 3F). SurGen had a tendency of favoring molecules containing less than 20% sp³421

hybridized carbon atoms, indicating larger number of aromatic ring. Whereas, GraphBP,422

TargetDiff and SBDD showed a large fraction of compounds with high Fsp3 value, indicating423

most of the carbon atoms in the structure are saturated carbons with few aromatic rings. The424

analysis on the structural properties revealed that REINVENT has most close distribution to that425

of the active set, while all the 3D generative models showed larger deviation to the active set,426

highlighting the necessity of further improvement for current 3D generative model algorithms to427

increase the compound quality.428

Besides the evaluation of 2D related metrics, the quality assessing of 3D conformation is also429

important as these 3D based models generate 3D conformation and 2D graph simultaneously. We430

investigated the differences of distributions of bond length, bond angle, and dihedral angle431

between the generated 3D conformations and the OPLS3 force field 49minimized conformations,432
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and the JSD index was utilized to quantify the deviation of these two distributions. For most 3D433

models except GraphBP, the average JSD on bond length over all types of bonds is larger than 0.5434

(Table 4), indicating significant difference in bond length distribution between the generated and435

minimized conformations. Moreover, the JSD values for bond angles and dihedral angles surpass436

0.1 for all models, indicating a great deviation to the force field minimized distributions, although437

some 3D models are based on atomic point clouds leveraging third-party software such as438

OpenBabel to construct the final structures. The distributions of C≡C bond length, OC=O bond439

angle and cccc dihedral angle were shown in Figure 4 (more detailed analysis in Figure S3-5), the440

divergence could be attributed to the broader distribution on parameters in generated441

conformations. Only a few bond angles and dihedral angles exhibited similar distribution442

indicated by their small JSD metrics (Table S2-4). These results suggested that learning of bond443

length, bond angle and dihedral angle in the generative models may need further improvement.444

445

Table 4. JSD divergence of bond length, bond angle and dihedral angle

Model Bond-Length↓ Bond Angle↓ Dihedral Angle↓

GraphBP 0.431 0.348 0.133

Pocket2Mol 0.586 0.404 0.145

PocketFlow 0.672 0.303 0.266

Lingo3Dmol 0.588 0.311 0.193

DiffBP 0.586 0.378 0.159

TargetDiff 0.610 0.367 0.180

ResGen 0.647 0.341 0.143

https://doi.org/10.26434/chemrxiv-2024-2qgpb ORCID: https://orcid.org/0000-0002-1387-4634 Content not peer-reviewed by ChemRxiv. License: CC BY-NC-ND 4.0

https://doi.org/10.26434/chemrxiv-2024-2qgpb
https://orcid.org/0000-0002-1387-4634
https://creativecommons.org/licenses/by-nc-nd/4.0/


SurfGen 0.605 0.350 0.146

SBDD 0.653 0.348 0.238

446

Figure 4. Distribution of the bond length of C≡C, the bond angle of OC=O and the dihedral angle of cccc. The447

left panel presents the distribution in generated conformations, while the right panel presents the minimized448

distribution.449

Recovery of active molecules450

One direct way of evaluating 3D generative models conditioned on protein pockets is to451

examine the model’s capability of generating potentially bioactive molecules. For this purpose, we452

employed the recovery rate of active molecules, i.e. the percentage of successfully recovered453
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active molecules for a given target. One active molecule was regarded as being successfully454

recovered if a similar compound in the generation set could be identified given the pair similarity455

was larger than the user defined cut-off. This is a stricter criterion compared to the similar metric456

utilized in Lingo3DMol26, which is the percentage of targets with at least one generated molecule457

exhibiting similarity to the actives.458

459

Figure 5. Statistics for recovery of active molecule. A-B) Histograms to display the average recovery rate460

over all targets. C-D) Radar charts to display recovery rate among the target set for all models.461

In current study, the Tanimoto similarity threshold was set to 0.6. The average recovery rates462

at both molecule and scaffold level for these targets were shown in Figure 5A. It was obvious that463
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REINVENT showed the best recovery rate compared to all 3D molecular generative models at464

both levels, but there were still 15 targets in which REINVENT failed to recover any active465

molecule (Figure 5C). Specifically, GraphBP, Pocket2Mol, Lingo3DMol, TargetDiff and SBDD466

were unable to recover any active molecule for these 32 proteins (Table S5), while other 3D467

models can recovery a few actives on a few targets. The successfully recovered examples were468

shown in Figure 6. Compared to REINVENT, the 3D generative models tended to recover the469

active molecules with simple structure and relatively low similarity.470

471

Figure 6. Examples of successfully recovered active molecules for some models.472

473

At Murcko scaffold level, a similar trend was observed among compared models (Figure 5B).474

As anticipated, REINVENT exhibited superior performance (average recovery rate is around 17 %)475
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than the 3D models. PocketFlow, DiffBP, and SurfGen achieved relatively better performance than476

other 3D models, but all 3D models exhibited avarage recovery rate lower than 10%. Furthermore,477

significant variability was noted among the targets for each model. In terms of target coverage,478

REINVENT clearly performed better on most targets (Figure 5D), while 3D models showed better479

performance on a limited number of targets. For example, SurfGen performed better than480

REINVENT on PDE4, HER2 and BCL2 proteins, Pocket2Mol on BTK and DiffBP on IDO1 etc.481

Our results on active recovery rate demonstrated the limitation of current pocket based 3D482

models as their performance was in general inferior than baseline REINVENT. Notably, even a483

less stringent similarity threshold of 0.4 was applied, a similar trend was observed (Table S6),484

indicating the weakness of these models in learning chemical structures conditioned on the protein485

pocket.486

Target binding assessment487

The ultimate goal of generative model is to generate potential active compound to the target,488

therefore we introduced several protein-ligand interaction based metrics to assess the target489

binding capability of generated 3D conformations. Firstly, in situ docking score was chosen as a490

surrogate to quantify the binding affinity of the 3D conformations generated from those 3D491

models. Here, Glidescore was calculated for comparing binding affinity of conformations, and the492

value of 0.0 kcal/mol was set as a criterion to judge if it is favorable for the ligand to bind in a493

protein. A conformation is deemed to be a positive conformation (PC) if its Glidescore is less than494

0.0 kcal/mol and the fraction of PC was calculated.495
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496
Figure 7. Histogram to display the mean fraction of PC over all targets.497

498

Figure8. Radar charts to display the proportion of PC of each target across the models. The circles represent five499

proportional levels, which are 100%, 80%, 60%, 40% and 20% from the outer layer to the centre of the chart.500
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The mean fraction of PC for each generation set could be seen in Figure 7 and the breakdown501

of the fraction values across all 32 targets was shown in Figure 8. Among the 32 targets, GraphBP,502

Lingo3DMol, DiffBP, and ResGen generated worst conformations and exhibited quite low503

fraction values, while SBDD generated highest fraction of PC. A physically advantageous position504

within the pocket was decided in SBDD model through a sampling process to estimate the505

likelihood of atom occurrence and reduce the misplacement of ligand atoms in the pocket. SBDD506

has on average only 40% conformations regarded as PC and only in very few targets the507

proportion could surpass 80%. These results suggested that a lot of conformations have substantial508

clash with protein atoms and current 3D models should strive to improve the learning of509

protein-ligand interaction.510

The distribution of in situ Glidescores for the top 10 conformations of 3D models, along with511

that of crystal ligand conformations, was shown in Figure 9A. It can be seen from Figure 9A that512

crystal ligands obviously exhibit best in situ docking scores, models SBDD, TargetDiff and513

Pocket2Mol showed top three performances on in situ scores. Whereas, for Lingo3DMol, DiffBP514

and ResGen with worst performances, the average in situ scores for some targets are even higher515

than 0.0 kcal/mol. These results indicated that the learning of protein/ligand interaction is still far516

from optimal for 3D generative models.517

On the other hand, redocking analysis was also conducted to reproduce binding518

conformations for the generated compounds via Glide docking in SP mode. The redocking519

approach reflects the fitness between ligand and protein in 2D perspective as the binding520

conformation and docking score is derived by external docking software. The distribution of521

average redocking score for top 10 conformations was shown in Figure 9B, and scores of active522
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set and REINVENT were also included. The average redocking scores of all sets were between -8523

and -12 kcal/mol, and differences of redocking scores among all models were small. In addition,524

the average score of a few 3D models such as SBDD and Pocket2Mol were lower than the active525

set, raising a question on whether the redocking score is really a relevant metric to evaluate526

generative model.527

528

Figure 9. Distribution of protein-ligand interaction based metrics across the targets calculated based on the top 10529

molecules: A: in-situ score; B: redocking score; C: the RMSD between generated and redocked conformations.530

It is obvious from Figure S6A-B that the redocking score is generally lower than the531

corresponding in situ score, indicating that the generated conformation may be different from532

active conformation. A comparative analysis was then conducted to measure the root mean square533

deviation (RMSD) between the generated and redocked conformations (Figure S6C). As redocked534

conformations were generated by force field based docking software, the RMSD value can535

provide insights about geometrical difference between the generated 3D binding poses and poses536

simulated by physics principles. The average RMSD of top 10 conformations was illustrated in537

Figure 9C, which indicated that the RMSD values for the 32 targets fell in the range of [0, 10] Å.538

ResGen, Lingo3DMol and GraphBP exhibited quite large RMSDs to the docked conformations,539
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while other models such as Pocket2Mol and PocketFlow showed average RMSD less than 2Å,540

suggesting the generated conformations of these models are close to their docked conformations.541

In Figure 10, several examples were presented to display overlapping between generated and542

docked conformations for the molecule with smallest RMSD for a specific target. As shown in543

Figure 10, Pocket2Mol and PocketFlow exhibited much better performance on all selected targets544

than Lingo3DMol and ResGen. The RMSD values of Pocket2Mol and PocketFlow were smaller545

than 1.0 Å, suggesting high similarity between the generated and docked poses. In contrast, the546

poses generated by Lingo3DMol and ResGen were quite dissimilar to the redocked poses in most547

cases.548

549

Figure 10. Examples of overlapping between generated and redocked poses for Pocket2Mol, PocketFlow,550
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Lingo3Dmol, and ResGen. Five targets belonging to different families were selected for the comparison.551

Conclusion552

In current study, a novel benchmark dataset, named POKMOL-3D, was compiled553

specifically for evaluating pocket based 3D molecular generative models, including a set of554

comprehensive metrics for measuring model quality from various perspectives. Nine recently555

published 3D generative models were selected for carrying out this benchmark study on 32 protein556

pockets, along with the SMILES based REINVENT model as the baseline. Although some557

promising results of pocket based 3D generative models have been reported, our benchmark study558

revealed some weak points existed among the selected 3D models, such as slow sampling speed,559

poor druggability and synthesizability of generated molecules, and failure to generate rational 3D560

conformations for target binding. Overall, the performance of 3D generative models on large scale561

of pockets is still far from satisfactory, and polishing of network architecture is needed to improve562

the learning of ligand-protein interaction and generalizability of current 3D generative models to563

enable their application on wide range of protein pockets. Through this study, we hope that the564

proposed evaluation framework can be useful in facilitating the future advancement of pocket565

based 3D molecular generative model.566
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