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ABSTRACT: The construction, management and analysis of large in silico molecular libraries is 
critical in many areas of modern chemistry. Herein, we introduce the MOLecular LIibrary toolkit, 
“molli”, which is a Python 3 cheminformatics module that provides a streamlined interface for 
manipulating large in silico libraries. Three-dimensional, combinatorial molecule libraries can be 
expanded directly from two-dimensional chemical structure fragments stored in CDXML files with 
high stereochemical fidelity. Geometry optimization, property calculation, and conformer generation 
are executed by interfacing with widely used computational chemistry programs such as OpenBabel, 
RDKit, ORCA, NWChem, and xTB/CREST. Conformer-dependent grid-based feature calculators 
provide numerical representation, and interface to robust three-dimensional visualization tools that 
provide comprehensive images to enhance human understanding of libraries with thousands of 
members. The package includes a command-line interface in addition to Python classes to streamline 
frequently used workflows. Parallel performance is benchmarked on various hardware platforms, 
and common workflows are demonstrated for different tasks ranging from optimized grid-based 
descriptor calculation on catalyst libraries to an NMR chemical shift prediction workflow from 
CDXML files.  
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1 INTRODUCTION 

Modern synthetic chemistry increasingly incorporates theoretical and empirical data-oriented 

approaches for designing functional small molecules, understanding reaction pathways, and 

predicting and optimizing reaction outcomes.1–5 In recent years, medium- to high-throughput 

experimentation techniques have provided access to large data sets suitable for subsequent 

statistical analysis and predictive modeling.6–10 Critically, encoding molecules in a machine-

readable format is essential before any computational analysis of the physical molecular entities 

can commence.11,12 Although a variety of different software tools for the enumeration and 

encoding of in silico libraries exists,13 we have found a lack of suitably general, open-source tools 
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to support accurate generation of libraries containing complex stereochemical information directly 

from the two-dimensional depictions familiar to all chemists. 

Representations of molecules with calculated features range from computationally simple to 

highly complex. In general, feature extraction from a molecule can be accomplished by 

considering, in order of increasing computational complexity: (1) only the atoms and bonds 

encoded in the molecular graph, (2) the three-dimensional (3D) shape, and (3) the full electronic 

structure of the molecule.14 Molecular graph-based feature extraction methods, such as topological 

fingerprinting,15 are fast to calculate but lack 3D information that is critical for certain optimization 

problems. Indeed, the low-energy conformers of a molecule play an essential role in determining 

its chemical properties. Consequentially, 3D fingerprinting methods have been developed16,17 and 

recent interest in incorporating 3D information into molecular graph objects has led to a variety of 

feature extraction methods employing graph neural networks.18–20  More challenges in 

representation arise when considering conformational flexibility, solvation, non-covalent 

interaction, and other molecular features that can only be described by explicit 3D molecular 

encoding.  

Our interest in molecular representation stems from our attempts at modelling quantitative 

structure-(enantio)selectivity relationships (QSSR) in enantioselective chemical reactions using 

chiral, small molecule catalysts.21 Our group and others have designed a variety of alignment-

dependent, molecular interaction and indicator field (MIF) descriptors intending to capture the 

relevant features of a chiral catalyst that lead to high enantioselectivity.22–24 A particular catalyst 

scaffold typically offers numerous options for analogue synthesis at well-defined positions on the 

structure, and each analogue then has potentially many possible conformers. Therefore, our 

workflow required the ability to write custom code to manipulate large collections of 3D molecular 

structures and perform high-throughput computations on combinatorially constructed libraries of 

compounds. In 2019, this laboratory released the ccheminfolib toolkit,22 an early iteration of a 

software package designed to handle combinatorial construction of large in silico libraries. One of 

the main motivations for the creation of a new software package was to establish a modern, 

convenient and extensible interface that would allow rapid prototyping of chemical library-

oriented workflows. Since the release of ccheminfolib, we sought to address the following 

problems: 

1. Generation of molecule and conformer libraries directly from ChemDraw™ .CDXML files 

with stereochemical fidelity. 

https://doi.org/10.26434/chemrxiv-2024-1cl1f-v2 ORCID: https://orcid.org/0000-0001-5979-179X Content not peer-reviewed by ChemRxiv. License: CC BY 4.0

https://doi.org/10.26434/chemrxiv-2024-1cl1f-v2
https://orcid.org/0000-0001-5979-179X
https://creativecommons.org/licenses/by/4.0/


Shved, Denmark et al. Page 3 of 18 

2. Parallelization mechanisms capable of processing chemical libraries with external 

computational software. 

3. Rapid input/output of molecular entities from the disk-based storage  

4. Optimized calculations of the grid-based descriptors  

As a result, we began the project to create the MOLecular LIbrary toolkit Python 3 package we 

have dubbed “molli”.  

2 COMBINATORIAL LIBRARY GENERATION PIPELINE 

2.1 CDXML File Parsing  

Most computational workflows start with either 1D representations (SMILES) or 3D 

representations (.xyz or .mol files). We frequently faced challenges associated with the 1D 

representations. Axial and planar chirality cannot be encoded in SMILES strings and the 

stereochemical information is therefore lost upon the library generation. Although extensions to 

SMILES and other string-based representation methods have been developed to address these 

issues,25–28 3D structures are naturally devoid of such limitations in encoding chirality. We believe 

that one of the most desirable ways to generate large libraries of 3D structures is by correctly 

interpreting their 2D chemical depictions.  

Our contribution to the process of 2D to 3D structure conversion was in the realization of 

algorithmically deterministic z-coordinate (out-of-plane) displacement, guided by the 2D 

stereobonds. This process mimics the thought process that chemists use to interpret the 2D-

structures.  For all acyclic stereobonds29 leading from an atom, the connected fragment 

(determined by the breadth-first graph traversal) was rotated out of plane depending on the number 

of adjacent atoms out of the plane of drawing (Figure 1A). We chose ±60° for when the substituent 

was attached to an atom with two adjacent atoms, and ±90° for three adjacent atoms (Figure 1B) 

(see Figure 1A, B, E). Since no deterministic rotation of endocyclic bonds could be devised, the 

atoms in respective bonds are subjected to simple out-of-plane displacement of the participating 

atoms (Figure 1C). The endpoints of a wedged bond are shifted out of plane only if the wedge 

points towards them, whereas both atoms are displaced in bold/hash style bonds.  The z-coordinate 

adjustments by rotations or translations allowed the displacement of the coordinates in the correct 

direction toward the desired minimum after a geometry optimization (Figure 1E). This practically 

eliminated the cases of unanticipated configurational inversion upon a forcefield minimization 

(See the Supporting Information 3.2). It proved useful in the context of axial and planar chirality 
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interpretation into 3D representation wherein no simple designators can typically be assigned and 

enforced by ChemDraw™ or related packages (Figure 1F). We purposefully avoided the use of 

any stereochemical designators (e.g. R/S), so that all stereogenic elements can be encoded in the 

same way, regardless of designator availability. 

The present parser has only two hard rules enforced in the CDXML file parsing: (1) the label used 

for dictionary-like lookup of structures must be bold-faced, not chemically interpreted, and placed 

below the structure and (2) the parsing is deterministic with respect to the drawing, however 

different ways of depicting the same configuration may result in different parsing results; It is the 

responsibility of the user to verify that the minimization after parsing yields expected results.  For 

example, changing the directionality of stereobonds may produce results that are not identical (see 

Figure 1E). 

In addition to the enhanced coordinate perception, the parser recognizes most other elements, 

which are available from the structures (Figure 1D). Labeling the atoms proves useful for 

subsequent direct referencing of atoms in the code (see Section 3). Specifying attachment points 

provides a convenient handle for 3D combinatorial expansion. Abbreviated functional groups are 

allowed, so long as ChemDraw™ can expand them into valid structures. Isotopic notations and 

multi-center attachments are interpreted by the parser. Although some of this additional 

functionality is available in other codes, the convenience of a Python backend used by molli not 

only enhances the transparency of the workflow, but also ensures easy customizations by the users. 

Parsing CDXML files to Molecule objects can be executed directly from the command line with 

the molli parse command, or by using the molli.load interface (Figure 1F). 
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Figure 1. Molli CDXML parsing workflow. (A) Out-of-plane rotation of substituent results in a structure 
with defined stereochemistry after hydrogen addition. (B) Illustration of +90° rotation in the trisubstituted 
case (C) Out-of-plane displacement of endocyclic atoms (D) Additional elements recognized by molli (E) 
Stereochemical depiction ambiguity (F) Molli preserves stereochemical information in cases of point, axial 
and planar chirogenic elements.  

2.2 Combinatorial Library Expansion from CDXML Files 

Combinatorial library expansion can be performed programmatically in Python or directly 

from the command line with the molli combine command. Because CDXML parsing stores the 

atom labels and native CDXML attachment point markup (see Section 2.1), these can be accessed 

directly to specify the rules of combinatorial expansion. The user parses MoleculeLibrary 

objects containing cores, with labelled attachment points, and substituents with attachment points. 
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The molli combine command then takes in both core and substituent library objects and joins 

the substituents to the user-specified attachment points on the cores (see the Supporting 

Information, Figure S9A). Substituent sets are selected based on the number of user-specified 

attachment points and a selection rule, which can be the same substituents attached at all core 

attachment points, permutations of the substituents, combinations of the substituents, or 

combinations with replacement. The result of this command then produces the enumerated 

combinatorial library as a MoleculeLibrary object (Figure S9B). We have previously reported 

the generation of a bis(oxazoline) (BOX) combinatorial library (Figure S9C) comprising a total of 

96,120 members, with 267 options for 4,4’-oxazoline substitution, nine options for 5,5’-oxazoline 

substitution including stereochemical analogues relative to the 4,4’-positions, and 40 options for 

substitution at the methylene group bridging the two oxazoline rings.30 With the streamlined 

workflow described in Figure S9, we successfully obviated manual creation of the full expanded 

.CDXML file shown in Figure S9C. 

2.3 Molecular Object Collections 

Modern cheminformatics tools offer a multitude of ways of storing chemical information for 

single molecules or small collections. We identified a need to access molecules or conformer 

ensembles from large collections without the necessity to create a full-fledged database. A binary 

molecule and conformer serialization strategy was implemented through a disk-based dictionary-

like structure of MessagePack-serialized data that we refer to as uKV file (see the Supporting 

Information for details). This form of storage offers the flexibility of storing molli objects in large 

random-access files, with optimized read/write performance. 

To demonstrate the broader applicability of the proposed molecular storage toward medicinally 

relevant datasets, we provide examples imported from the literature. The data from the 

MoleculeNet31 subset of the GEOM32 dataset was reimported as a molli .uKV file (see the 

Supporting Information, Section 1.2.3). The same operation was performed on the drugs_crude 

subset (Supporting Information, Section 1.2.4), providing the largest collection, containing 

292,028 discrete molecules and 31,223,451 conformers.   

3 PARALLEL CALCULATION PIPELINE 

In a typical workflow, tasks such as geometry optimizations, conformer generations, and 

property calculations are done in parallel. Typically, these calculations are carried out with external 
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software33 by a unified process in which: (1) a set of input files is prepared, (2) a worker process 

receives said input files and shell commands to execute, (3) the commands are run, and the output 

is captured, and (4) the necessary files are subsequently transferred to permanent storage and are 

analyzed. Molli implements a parallel job pipeline that allows computation of molecular properties 

with external software such as RDKit,34,35 XTB,36 CREST,37 NWChem38 and ORCA,39 and it can 

be easily extended to any other package (see Supporting Information Section 7.1 and 7.2 for more 

details). The two workflows shown below demonstrate the flexibility that a molli library can offer. 

3.1 KRAS inhibitor rotational barrier estimation. 

Hindered rotation around single bonds resulting in axial chirality is an important structural 

motif in catalysts and pharmaceuticals.40,41 The barrier height may not always be straightforward 

to estimate experimentally and doing so computationally in a high throughput sense with minimal 

human involvement may significantly facilitate pre-screening of synthetic candidates before their 

experimental evaluation. The workflow started with the CDXML file containing the necessary 

molecular fragments which was deliberately constructed to mimic the original figure42 as closely 

as possible (Figure 2). Parsing the CDXML files with the help of molli results in the 

MoleculeCollection file that was subsequently subjected to the computational pipeline. 

Coarse structure minimization with MMFF94,43 as implemented in OpenBabel,44 yielded the 

initial guess structures. An XTB36 relaxed surface scan was then used to explore the potential 

energy surface with respect to rotation around the C–N bond by constraining the appropriate 

dihedral atoms. Parsing and serialization of atom labels allowed quick identification of specific 

atoms for the dihedral angle constraints within the scripts. When XTB relaxed surface scan 

maxima and minima were used as guess structures, we were unable to locate transition states 23, 

27, and 29. The inability to converge to transition states may be challenging to rectify manually 

for large libraries. Molli molecular building capability allows the construction of better transition 

state guesses by joining the distorted core from a successfully located transition state with an 

optimized aryl substituent. These structures converged smoothly to the corresponding transition 

states. The computed barriers were generally close to the experimentally observed ones (Table 1), 

except for 25 and 27. Despite structural similarities between 24 and 25, the latter was overpredicted 

by 25 kJ mol–1 compared to experimental measurement. The barrier for 27, on the other hand, was 

underpredicted by 16 kJ mol–1. We cannot offer a supportable explanation for these outliers. We 

cautiously speculate that the barrier could potentially exhibit a significant dependence on explicit 

solvation and/or proton transfer effects.  
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Figure 2. KRAS inhibitor rotational barrier estimation workflow. (A) The fragment of the CDXML file 
that was used for parsing and library assembly. For a full list of structures see the Supporting Information 
Section 6.3. (B) Representative equilibrium geometries of R-isomers and transition states. Of note is the 
remarkable distortion of the 2-pyrimidinone ring away from planarity in the transition states owing to severe 
strain (Figures S36–S44), consistent with the previous report.45 

 

Table 1. Summary of Predicted vs. Observed Rotational Barriers at B97-3c Level of Theory (in 
kJ mol–1). For a Full List of Structures see the Supporting Information, Section 6.3. 

Compound* Exp.  Pred. 
18 108.8 108.3 
22 104.6 103.2 
23 >125.5 141.0 
24 >125.5 150.0 
25 121.3 146.1 
26 98.3 92.6 
27 90.0 73.7 
28 73.2 69.9 
29 107.9 101.3 

3.2 GIAO-DFT NMR prediction workflow. 

Prediction of NMR spectra, particularly 13C NMR spectra is a common task encountered in 

structural elucidation and revision.46,47 Although modern computational tools allow fast GIAO-

DFT NMR prediction, a complete cycle workflow that automates the task to start with a 

ChemDraw™ file and orchestrates the required computations, is not generally available using 

open-source tools. A major advance toward this goal is the CENSO program, which enables direct 

processing of CREST conformer ensembles and plotting of Boltzmann-weighted spectra.48  

 
* The compound labels throughout the manuscript were chosen to be non-standard on purpose. This decision is to 
demonstrate that the source CDXML files can be constructed with the compounds labeled arbitrarily. We chose to 
label ours the way they were labeled in the original publications. 
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The workflow starts with parsing the 3D structures from the .CDXML file to yield a 

MoleculeCollection (Figure 3A). Basic minimization with the MMFF9443 force field as 

implemented in OpenBabel followed by conformer generation with the CREST v4 workflow49 

created the desired conformer ensembles. These ensembles were subjected to geometry evaluation 

with the B97-3c method as implemented in ORCA. Upon conformer generation, the NMR 

isotropic shieldings were calculated with RIJCOSX-PBE0 / pcSseg-250 + CPCM(chloroform).51,52 

Molli features simple syntax that is used to compute the NMR shieldings (Figure 3B). Molli 

implements a parser of output files, which was used to scrape thermochemical and magnetic 

properties and stores them within the molecule objects. Boltzmann weights were computed, and 

the resulting weighted average NMR chemical shifts were subsequently compared to the 

experimental data showing close correspondence (Tables S6-S13). The average errors in the range 

[1.2, 2.0] ppm with maximum errors in the range [3.1, 4.0] ppm are consistent with the general 

expectations of DFT prediction methods.46 

Figure 3. (A) CDXML parsing and conformer generation workflow results for cladosporin. (B) Minimal 
code example for GIAO-DFT NMR chemical shielding calculations. 

4 GRID-BASED DESCRIPTORS 

4.1 Efficiency Optimization 

Grid-based, conformer-averaged (GBCA) indicator field descriptors, such as the average steric 

occupancy descriptor (ASO) and the average electronic indicator field (AEIF), were useful in the 

enantioselectivity prediction workflow developed in this laboratory. A naïve implementation of 

the GBCA descriptors suffers from significant, unfavorable scaling dependencies with respect to 

the grid size. This step was very computationally expensive to carry out on libraries of tens of 

thousands of molecules, requiring high performance computational hardware. To eliminate the 

slow process of descriptor computation, we performed an optimization. Molli employs two levels 

of optimization of the computing process. The optimization of the GBCA descriptors began by 

outsourcing numerically intensive arrayed calculations to a more efficient C implementation of the 
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numpy package (Table 2). A 25-40-fold acceleration was observed; however, the processing time 

was still high for libraries of >1M conformers. Thus, an auxiliary C++ sublibrary (called 

molli_xt) was created through the use of pybind11.53 Two functions were implemented that 

reproduced the behavior of SciPy’s54 cdist function that computes the distance matrix (and an 

analogous function was made that would compute a higher dimensional analog of the distance 

tensor). This process provided a considerable speed enhancement owing to elimination of slower 

Python code overhead. In 64-bit floats, molli achieved 1.96±0.05 acceleration by elimination of 

the extra for-loop in the distance matrix computation. A further 1.34±0.04 fold increase in 

performance was gained by computing the distance matrix in 32-bit floats, giving a total 

acceleration of 2.62±0.08. Relative errors in squared Euclidean distance did not exceed 2×10–7, 

and the resulting ASO mean absolute errors were less than 2×10–9 for 99% of the data (see the 

Supporting Information for details). For a selected small number of samples, this error was larger 

because of cases wherein grid points were located close to the van der Waals boundary. To further 

reduce the size of the problem, the grid was pruned to eliminate the points that lie far away from 

any atoms for which the values could be assigned as zeros (see Table 2 grid sparsity). To enable 

this process, we employed the SciPy implementation of the k-d tree55,56 data structure. Pruning the 

grid for ASO computations reduced the grid size by 80 to 90%, therefore providing an average of 

5-fold acceleration. Overall, combining these optimizations achieved a 1,700× acceleration of the 

process compared to a naïve python implementation, and a 50× acceleration as compared to naïve 

numpy approach.  

Table 2: Benchmarking Results of GBCA Descriptor Calculation.a  

Grid point spacing, Å 1.5  1.0 0.7 
Number of grid points 3510 11362 32832 
Descriptor vector sparsity (mean ± stdev) 92.0±4.4% 91.6±4.6% 91.5±4.7% 
Pruned grid sparsity (mean ± stdev) 86.7±6.5% 86.0±6.7% 85.9±6.8% 
Naïve python ASO, s 175.4 580.8 1686.5 
Naïve numpy ASO, s 5.0 14.3 67.1 
Scipy cdist optimized ASO, s 0.8 2.6 7.3 
molli cdist ASO, s 0.5 1.8 4.9 
KDTree & molli cdist optimized ASO, s 0.1 0.5 1.2 

a Timings are reported on the BPA catalyst 65_vi (88 atoms, 215 conformers). Benchmarks reported on 
system 3 (see the Supporting Information, sections 1.2.1 and 1.1, respectively). 

With the optimized GBCA calculation protocol in hand, the benchmark calculations were 

performed on the binol phosphoric acid (BPA) dataset23 consisting of 806 entries and a total of 

99,680 conformers, as well as on a subset of BOX dataset (Supporting Information, Section 

1.2.2)30 consisting of 72,542 entries and 4,662,551 conformers. The calculations on the BPA 
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dataset could be performed on a laptop computer (system 3) within two minutes. Computing the 

BOX dataset under identical conditions took ca 1.5 h, which could be sped up considerably by 

employing more parallel processes on a workstation. Employing 64 processes in parallel, ASO 

computation for the BOX dataset was complete in under five minutes. This result represents a 

marked enhancement in speed and enables the calculation of descriptors with chemical resolution 

(0.75 Å spacing or below). 

4.2 Molecule, Ensemble and Descriptor Visualization 

By virtue of being a pure Python library, molli can be easily interfaced with a few different 

visualization libraries. Molli uses two different engines for visualization purposes, the first is 

3DMol.js,57 which  is used for simpler molecular renderings inside Jupyter notebooks. This 

implementation allows a very simple, in-place visualization that helps the end user understand the 

contents of their molecular or conformer libraries much better without the need to transfer the data 

to a third-party program for rendering.  

The second is the pyvista package which is a convenient set of wrapping functions over the 

VTK (Visualization ToolKit).58,59 This engine can be employed for molecular rendering and it 

performs particularly well for visualizing high-dimensional, grid-based descriptors in context of 

conformer ensembles (Figure 4). Highly dimensional grid-based descriptors are particularly hard 

to interpret by a chemist without relying on the visual representation. Figure 4 illustrates the 

directions of the maximal variance in the ASO and average electronic indicator field (AEIF) 

descriptors, corresponding to the locations of largest steric and charge distribution diversity in the 

BPA catalyst library (see also Figures S14–S28). 
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Figure 4. Normalized PCA1 loadings of ASO (left) and AEIF (right) descriptors of the BPA dataset 
overlayed with the conformer ensemble visualization. A 1.0 Å spacing grid was chosen for the visualization.  

5 CONCLUSIONS 

Molli comprises a powerful chemoinformatics toolkit that specializes in the creation of large 

combinatorial libraries of small molecules and parallel computations. A pure Python interface 

enables a seamless transition between a plain chemical drawing to a large in silico molecular 

dataset with preservation of stereochemical integrity. Combinatorial library creation can be 

performed with ease through both the command line interface as well as by writing custom scripts. 

Optimized GBCA descriptor calculations can now easily reproduce the existing ASO and AEIF 

calculations as well as visualize their corresponding results. Lastly, one can employ the 

parallelized computational pipeline to compute the properties of isolated molecules and their 

conformer ensembles with external software; examples of workflows for XTB, CREST, ORCA 

and NWChem are provided.  

6 ASSOCIATED CONTENT 

6.1 Data Availability Statement 

Source code for the project can be found at https://github.com/SEDenmarkLab/molli. The 

project is available for quick installation Python package index and conda channels. Up-to-date 

documentation detailing the installation procedure and package usage examples can be found on 

the documentation portal, https://molli.readthedocs.io. Datasets and the code for workflows 
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discussed in the present manuscript can be downloaded from the Zenodo repository 

(https://zenodo.org/records/10719791, doi 10.5281/zenodo.10719790).  

6.2 Supporting Information 

Description of the hardware, additional information about implementation details, results from 

the computational pipeline workflows (including atomic coordinates), and plots of PCA 

components can be found in the attached pdf file. 
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