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1. Abstract 

The Protein Data Bank contains more than 223,000 three-dimensional biostructures and is growing 

at a rate of nearly 10% per year. The lack of a tool that facilitates the classification between apo and 

holo structures and differentiates between covalent and non-covalent ligand-protein complexes, 

makes it difficult to manage a large number of structures. To address this issue, we present PDB-

CAT, a user-friendly tool that facilitates the categorization and extraction of key information from 

PDBx/mmCIF files. PDB-CAT is a program that classifies a group of protein structures based on their 

ligands into three categories: apo, covalently, and non-covalently bonded. Besides this 

classification, the program can verify if there are any mutations in the protein sequence by 

comparing it to a reference sequence. PDB-CAT is designed to be user-friendly, with its output 

clearly defining every entity present in each entry to facilitate decision-making. PDB-CAT is now 

available on GitHub (https://github.com/URV-cheminformatics/PDB-CAT). 

 

Graphical Abstract 

 

2. Scientific Contribution 

Based on our understanding, there is currently no open-source automated tool developed for 

classifying Protein Data Bank structures into apo and holo forms, and further categorizing them 

based on the type of bond between the ligand and protein, which can be covalent or non-covalent. 

The straightforward and user-friendly PDB-CAT tool provides a quick and efficient way to address 

this issue. 
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4. Introduction 

The use of computational tools, specifically high-throughput virtual screening (HTVS), has emerged 

as an efficient strategy for Drug Discovery (Gimeno et al. 2019). HTVS includes approaches such as 

molecular docking, and pharmacophore modelling, which have successfully been employed in the 

discovery of novel hits for various therapeutic targets (Kumalo et al. 2015). Computational-aided 

drug discovery approaches can be divided into two modalities: structure-based, centering on the 

biological target, or ligand-based, focusing on the structural and physicochemical ligand properties 

(Vázquez et al. 2020). To begin working with structure-based computational tools, the first step is to 

search for crystallized structures of the therapeutic target. One of the most popular databases is the 

Protein Data Bank (PDB) (Burley et al. 2023). According to the RCSB PDB data, the PDB contains 

more than 223,000 structures and it is expanding rapidly, with 14,472 new structures released just 

in 2023 (Fig. 1). In addition, the PDB also contains more than one million computed structure models 

from artificial intelligence, such as AlphaFold models (Jumper 2021). 
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Figure 1. The PDB statistics: exponential growth of deposited structure in the PDB. In blue, the total 

number of entries available; in orange, the number of structures released each year (The RCSB PDB 

2024). 

In certain virtual screening (VS) studies, multiple structures of the same protein target may be 

available. This is the case of the SARS-CoV-2 Main Protease (M-pro). The global collaboration 

triggered by the SARS-CoV-2 pandemic has led to an unprecedented accumulation of data 

(Adamson et al. 2021). As a result, more than 1,400 crystal structures of SARS-CoV-2 M-pro have 

been deposited in the PDB. This abundance also underscores the importance of validating a specific 

set of structures before selecting one or several of them and beginning the VS process  (Macip et al. 

2022). Furthermore, not all structures may be appropriate for a certain purpose. Drug Discovery 

protocols change depending on whether the ligands are covalently or non-covalently bound with the 

protein. Therefore, it is important to distinguish between PDB structures with ligands that are 

covalently or non-covalently bound. In the case of SARS-CoV-2 M-pro, both types of ligands are 

present. In cases where a crystallized protein-ligand complex is available, it is recommended to 

avoid apo forms (Schaefer and Cheng 2023). In this context, we refer to the protein without ligands 

as the apo form, as this term is widely used in the drug discovery scientific community and enhances 

clarity (Khachatryan et al. 2024). Crystallized protein-ligand complexes provide detailed information 

on how the ligand binds to the protein and induces specific conformational changes in the active 

site. Such data are crucial for understanding binding affinity and designing effective inhibitors. Apo 

forms lack this context, as they do not reveal possible ligand-induced structural adjustments and 

interactions.  

The PDB lacks an option in its advanced filter to distinguish between apo-form and holo-form, as 

well as to differentiate between ligand-protein complexes that are non-covalently or covalently 

bound. Moreover, no other tool has been found that performs this classification automatically 

without the need for manual searching. For that reason, we have developed PDB-CAT, a tool to 

automate the classification of PDBx/mmCIF structures depending on whether they are in their apo-

form or if their ligands are bound covalently or non-covalently. The PDBx/mmCIF format is the 

standard PDB archive distribution format and it overcomes the limitations of the older PDB file 

format. As the PDBx/mmCIF format continues to evolve, PDB format files will become outdated (The 

RCSB PDB 2024b).  Besides the classification based on the ligand, PDB-CAT extracts information 

about all entities presents in a PDB entry and can verify if there are any mutations in the protein 
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sequence by comparing it to a reference sequence. In the case of SARS-CoV-2 M-pro, this option is 

very useful, as there are several mutated sequences derived from different variants of the SARS-CoV-

2 virus (Saldivar-Espinoza et al. 2023) . 

 

5. Design 

To parse PDBx/mmCIF files, PDB-CAT follows the entity hierarchy, which is central to the mmCIF 

format. This format defines a molecular entity as a chemically distinct component within an entry. 

PDB-CAT categorizes each entity into three classifications: polymer, non-polymer, and branched. 

Protein and ligand identification 

Figure 2 summarizes the different steps PDB-CAT follows to identify and classify the ligands. 

Alternatively, if an mmCIF file contains no identified ligands, it is classified as an apo form and 

labelled as APO. To identify the main protein or proteins from a PDB file, they are always defined as 

a polypeptide polymer, either isolated from a natural source or isolated from a genetically 

manipulated source and conformed by several residues (Fig. 2). All this information is located in the 

entity and entity_poly categories of the PDBx/mmCIF format. 

The PDB categorizes small molecules such as ions, cofactors, inhibitors, and drugs as ligands. 

However, it is not straightforward to identify polymeric entities like peptide or saccharide ligands, as 

the PDB typically classifies them as separate entities rather than ligands. PDB-CAT addresses this 

issue by facilitating the identification of ligands and solvents, thus helping drug discovery scientists. 

After identifying the protein, any other polypeptide polymer entities present in the structure complex 

are classified as peptide ligands, using a threshold length variable, which is set to 15 residues by 

default but can be modified by the user (Fig. 2). If the entity’s length is higher than the threshold, then 

it will be classified as another chain or subunit. Unlike the protein, a peptide ligand can also be a 

synthetic polymer. The Biologically Interesting Molecule Reference Dictionary (BIRD) dictionary 

(https://www.wwpdb.org/data/bird), contains information of peptide-like inhibitors and common 

oligosaccharides. Some of the mmCIF files contain these BIRD IDs, hence PDB-CAT checks for BIRD 

IDs to retrieve more information about the ligands.  

The next entity type is non-polymer, typically referring to small molecules. The initial step to consider 

a non-polymer entity as a ligand involves checking whether the small molecule is listed in a blacklist 
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(Fig. 2). The blacklist consists of solvents, ions, and co-factors and can be modified by the user, 

depending on the target analyzed. For example, a co-factor bound to a viral protease might be 

discarded by some computational chemists, while in other enzymes, it could be important to 

consider. If a match is found with any element in the blacklist, the small molecule is then added to 

the list of discarded ligands (Fig. 2). PDB-CAT also verifies the Chemical Component Dictionary 

(CCD) ID (https://www.wwpdb.org/data/ccd), which details small molecule components, to gather 

additional information about the ligands, similarly to how it uses the BIRD ID. 

The last entity type in the PDBx/mmCIF format is the branched type, where oligosaccharides are 

commonly categorized. In this case, the presence of a covalent bond with the protein is straightly 

considered. If an oligosaccharide forms a covalent bond with the protein, it is classified as a 

glycosylation. Otherwise, it is classified as a saccharide ligand, and look for BIRD IDs to retrieve more 

information about the saccharide (Fig. 2). 

Covalently or non-covalently bonded ligands 

The categorization between covalently and non-covalently bonded ligands is determined by the 

presence of a covalent bond between the ligand and the protein.  If a covalent bond between a ligand 

and any of the protein subunits is found, the ligand is classified as a covalently bonded ligand, and 

information on the specific amino acid to which it is attached is provided. If no covalent bond is 

found, the ligand is classified as non-covalently bonded ligand (Fig. 2). 
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Figure 2. Flowchart illustrating the steps taken by PDB-CAT to identify and classify ligands. The process 

includes ligand detection, and further categorization based on the presence or absence of a covalent 

bond. 

 

Mutation Analysis 

The PDB-CAT algorithm can be performed in two ways: by first identifying mutations and then 

classifying the dataset, or by classifying the complete dataset directly. This can be defined in the 

Boolean variable: mutation. The mutation analysis compares the sequence of the protein entities to 

a reference sequence. This reference sequence should be defined before running the program and 

it is supposed to be a PDB structure known by the users, ensuring it is free of mutations and 

containing all the residues. Only one reference sequence can be defined, hence this option is only 

useful when analyzing structures of the same protein. 

The program utilizes the Pairwise Alignment module of the biopython library (PMID-19304878) to 

extract information about mutations, residue locations, percentage of identity, and gaps between 

the sequences mentioned earlier. This information is available in the CSV output. 
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Output 

The PDB-CAT program generates two CSV files: one protein-centered and the other ligand-centered. 

In the first CSV file, each line corresponds to a PDB ID and provides a comprehensive set of 

information about the entry. This section includes details related to the protein, such as the title of 

the PDB file, protein description, number of subunits, and subunit IDs (referred to as chains), along 

with the number of residues for each subunit. It also indicates whether the protein is part of a 

complex. Following this, the CSV includes information about discarded ligands, elements from a 

blacklist that are bonded to the protein, and branched molecules. For each branched molecule, 

details such as name, type, function, and the presence of a covalent bond are provided. Next, the 

CSV presents information about ligands, including their name, type, function, and whether they form 

a covalent bond with the protein. The final columns cover mutation information, specifying the 

number of mutations, their locations, identity percentages, and any gaps present in the sequence. 

In the second CSV file, each line corresponds to an entity bonded to a protein. The format is 

straightforward, detailing the ID of the protein and the bonded molecule including its name, type, 

function, and whether it forms a covalent bond. If a covalent bond is present, the specific residue 

with which it binds is specified. Additionally, if the bonded molecule is a glycosylation, this 

information is also provided. 

Finally, the program creates separate folders to categorize apo structures, covalent complexes, and 

non-covalent complexes. When the mutation filter is applied, this classification occurs within the 

non-mutated folder. Additionally, a mutated folder is created alongside the non-mutated one (Fig. 

3).  

https://doi.org/10.26434/chemrxiv-2024-54073 ORCID: https://orcid.org/0009-0006-9785-3852 Content not peer-reviewed by ChemRxiv. License: CC BY-NC-ND 4.0

https://doi.org/10.26434/chemrxiv-2024-54073
https://orcid.org/0009-0006-9785-3852
https://creativecommons.org/licenses/by-nc-nd/4.0/


 

Figure 3. Workflow Diagram of the PDB-CAT: Within the workspace, you will find a Jupyter Notebook file, 

a Python module containing some functions, the blacklist file, and the directory containing the input files 

in mmCIF format. To execute the mutation mode, the reference file should be part of the dataset. The 

program generates two CSV files containing all relevant information, as well as several folders. 

 

6. Implementation 

Availability 

The source code is readily available as a Jupyter Notebook on GitHub (https://github.com/URV-

cheminformatics/PDB-CAT). It can be cloned following the instructions written in the readme file, or 

it can be opened directly in Google Colab for those who are less familiar with coding. 
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How to use 

Before running this Notebook, the initial step is to establish the dataset of structures. This involves 

downloading the structure files locally from the PDB. Given the ongoing transition of PDB to the 

PDBx/mmCIF format, it is essential that the input files are in this format. The mmCIF files should be 

save in the cif folder. 

The blacklist can be found in the GitHub repository and as mentioned, it is an editable list of solvent, 

co-factor, and ion IDs — a collection of small molecules that are not considered ligands. This 

blacklist should be customized to reflect the unique properties of each protein of interest. To remove 

an element in the blacklist just comment the line by writing the “#” symbol at the beginning of the 

line.  

The PDB-CAT notebook includes a dedicated cell for code customization, ensuring clear and concise 

interaction with the code. There are eight variables in the main code that can be modified; each is 

detailed to help the user understand how to customize them. Note that the notebook can also be run 

by default to classify the structures available in the cif folder, without using the mutation filter. 

Requeriments 

This program uses Python 3 and requires the following packages: biopython, pdbecif, pandas, re, os, 

and shutil. Additionally, the pdbcat module, which is in the repository, should be imported. The 

GitHub repository includes a requirements.txt file to simplify the installation process, which is 

automatically handled in Google Colab environments. 

 

7. Results 

Validation 

To validate PDB-CAT, a dataset of protein–ligand complexes was extracted from the refined set of 

PDBbind (Wang et al. 2004). The PDBbind database (http://www.pdbbind.org.cn/) is the largest 

collection of protein–ligand complexes, providing information on both binding affinities and known 

3D crystal structures (Wang et al. 2015). Updated annually, the 2020 version comprises 19,443 

protein–ligand complexes featuring experimentally measured binding affinity data. 
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PDB-CAT efficiently analyzed this dataset of 19,443 protein-ligand complexes in under 20 minutes. 

Of the 19,443 entries, 2.83% (550 entries) were apo forms. Specifically, 470 cases were linked to a 

blacklist component, identified as a ligand in the PDBBind dataset. Additionally, 70 entries had a 

peptide ligand with 15 or more residues. The remaining 10 cases were complexes with nucleic acids, 

categorized here as apo forms, but the PDB-CAT still provides information about the bonding with 

nucleic acids in an Other Entities column. Note that the mutation filter was not used in this validation 

because of the diversity of proteins found in the dataset. 

We also used the PDBBind dataset to validate the classification of covalent and non-covalent 

ligands. From the 19,443 protein-ligand complexes, PDBBind identifies 315 as covalent complexes. 

PDB-CAT classified 40 of these 315 complexes as non-covalent. This discrepancy arises because, 

while the proximity of atoms suggests the presence of a covalent bond, the PDB files do not explicitly 

specify its presence. This is a limitation of the PDB-CAT program, as it exclusively relies on the 

information available in the PDB files. Additionally, PDB-CAT identified 1,285 covalent complexes 

within the PDBBind 2020 dataset. We reviewed a portion of these complexes to verify the presence 

of a covalent bond between the ligand and the protein, showing that the PDBBind dataset does not 

provide a complete classification of covalently bound ligands, highlighting the utility of our program.  

SARS-CoV-2 Main Protease (M-pro) 

As an example of the use of the PDB-CAT program, 1,436 PDB structures containing the SARS-CoV-

2 M-pro were analyzed. The PDBx/mmCIF files underwent a thorough analysis and mutation 

categorization. Out of the 1,436 M-pro structures downloaded from the PDB, 1,205 were identified 

as non-mutated. These structures were further classified into 104 apo structures, 431 covalent 

complexes, and 670 non-covalent complexes. Additionally, among the covalent complexes, 27 were 

specifically identified as peptide ligands. A CSV file was also created to compile all the crucial 

information. For each ligand code, information related to the specific chain letter identifier and 

residue number was collected. As mentioned previously, details about the type of bond and the 

peptide nature were described for each case. 

Furthermore, as the mutation option was executed, 231 mutations were analyzed. Information about 

the exact mutated residue, identity percentage, and gaps in the sequence compared to the reference 

sequence was extracted. 
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8. Conclusions 

PDB-CAT is a unique tool for classifying PDB structures into ligand-free forms, covalent complexes, 

and non-covalent complexes and for detecting mutations and gaps between structures of the same 

protein. Additionally, it serves as a valuable resource for researchers managing the vast amount of 

data from the Protein Data Bank, especially for computational chemists that have to deal with 

multiple structures of the same protein. This program also contributes to the format transition from 

PDB to PDBx/mmCIF. 

 

9. Availability of data and materials 

The software and dataset are open-source and available for public use under the GNU Affero General 

Public License v3.0. Project name: PDB-CAT; Project Homepage: https://github.com/URV-

cheminformatics/PDB-CAT; Installation Instructions: can be found at: https://github.com/URV-

cheminformatics/PDB-CAT/README.md or https://ariadnallopps-organization.gitbook.io/pdb-cat/ 

Operating Systems: Platform independent; Programming Language: Python; Other Requirements: 

dependencies are listed with installation instructions; License: GNU Affero General Public License 

v 3.0; Data: Included with package on download or can be found online in the source repository: 

https://github.com/URV-cheminformatics/PDB-CAT /example 
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