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Abstract 

Here, we report the first practical synthesis of the bulky phosphanide anion [P(SiiPr3)2]− in synthetically 

useful yields, and its complexation to Group 12 metals. The ligand is obtained as the sodium salt 

NaP(SiiPr3)2 1 in a 42% isolated yield and a single step from red phosphorus and sodium. This is a 

significant improvement on the previously reported synthesis of this ligand, and we have thus applied 

1 to the synthesis of the two-coordinate complexes M[P(SiiPr3)2]2 (M = Zn, Cd, Hg). These Group 12 

complexes are all monomeric and with non-linear P–M–P angles in the solid state, with DFT 

calculations suggesting that this bending is due to the steric demands of the ligand. Multinuclear NMR 

spectroscopy revealed complex 2nd order splitting patterns due to strong PP’ coupling. This work 

demonstrates that the synthesis of 1 is viable and provides a springboard for the synthesis of low-

coordinate d-block complexes featuring this unusual bulky ligand. 

 

Introduction 

The use of sterically demanding ligands to enforce low-coordination geometries upon d- and f-block 

metal centres remains an area of interest for inorganic chemists.1–5 Such complexes are typically highly 

reactive and thus capable of acting as a catalyst or activating small molecules.3,6–15 These complexes 

can also display unusual physical properties, such as single molecule magnet (SMM) behaviour.16–25 

The use of amides as sterically demanding ligands dates to the 1960s, with the use of the [N(SiMe3)2]– 

ligand to isolate two-coordinate d-block complexes.26–28 Since then, a wide array of bulky silylamide 

ligands have been developed and utilized, such as [N(Dipp)(SiMe3)]–.14,29–35 More recently, the 

exceedingly bulky [KN(SiiPr3)2] has been applied to the synthesis of linear f-block species, which display 

large magnetic anisotropy and have the potential for extremely high Ueff values (Ueff = barrier to 

magnetization,36–38 as well as group 2 Lewis acidic cations.39 Most recently, investigations of (tBu3Si)2NH 

showed the amide to be resistant to deprotonation even by nBuLi/KOtBu superbase mixtures. However, 

coordination of (tBu3Si)2N− to Cs was achieved through the reaction with Cs0/THP electride solution 

(THP = tetrahydropyran) and the resulting (tBu3Si)2NCs complex was shown to undergo a metathesis 

reaction when reacted with LiI.40  
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While bulky silylamides are relatively well established, the corresponding phosphorus analogues have 

received considerably less attention. Studies with [P(SiMe3)2]– ligands afforded dimeric, rather than 

monomeric, structures due to the larger size of the P atom.41–43 To the best of our knowledge, the only 

two-coordinate metal bis(silylphosphanido) complexes to date are M[P(SiPh3)2]2 (M = Zn, Cd, Hg), 

prepared by Matchett et al.44 Here, the higher steric demands of the –SiPh3 group offset the larger P 

atom, allowing for isolation of monomeric species. Thus, we propose that the phosphorus analogue of 

the above-discussed [N(SiiPr3)2]– ligand is of considerable interest due to its steric bulk, which should 

allow the isolation of monomeric complexes. While the [P(SiiPr3)2]– ligand is known, it has scarcely 

been studied due to difficulties in its preparation. Westerhausen et al. prepared the Li salt 

[(THF)LiP(SiiPr3)2]2 by first reacting nBuLi with PH3 in the presence of DME (DME = 1,2-

dimethoxyethane) to obtain (DME)LiPH2 in an 82–91% yield.45,46 This was then reacted iPr3SiCl to afford 

P(SiiPr3)3 (64%) and (iPr3Si)2PH (13%).47 Further reaction of the minor product (iPr3Si)2PH with nBuLi in 

THF afforded [(THF)LiP(SiiPr3)2]2 in 83% yield,48 giving an overall yield from PH3 of at most 9.8%. Given 

the difficult and low-yielding synthesis, [(THF)LiP(SiiPr3)2]2 was used to prepare only one complex, 

[(THF)4Li][(iPr3Si)2PW(CO)5].48 As such, the potential of this ligand is largely unexplored. 

Herein, we present a much-improved synthesis of an alkali metal complex of this ligand, the Na+ salt 

NaP(SiiPr3)2 (1), which has been obtained in a 42% isolated yield and in a single step. This has allowed 

us to prepare the family of Group 12 complexes M[P(SiiPr3)2]2 (M = Zn (2), Cd (3), Hg (4)), demonstrating 

the synthetic utility of this ligand precursor in transmetallation reactions.  

 

Results and discussion  

NaP(SiiPr3)2 1 

To obtain a more direct route to the [P(SiiPr3)2]− anion than previously reported,48 we looked to the 

synthesis of P(SiiPr3)3 published by von Hänisch. Here, red phosphorus was reacted with NaK in 

refluxing DME to generate (Na/K)3P, which was subsequently reacted with iPr3SiCl.49 Since P(SiMe3)3 

can be converted to (Me3Si)2PH by hydrolysis or methanolysis,50,51 we postulated that it could be 

possible to obtain (iPr3Si)2PH in a similar manner. However, the use of highly pyrophoric NaK alloy was 

a safety concern. To mitigate this, we instead used Na with 10 mol% naphthalene as an electron 

transfer agent.52 This method has been used previously to generate Na3P in situ,53,54 for the preparation 

of tris(trimethylsilyl)phosphine, P(SiMe3)3.55 

In our initial testing, we found that it was necessary to reflux the Na/naphthalene and red P for 24 

hours in DME, otherwise the resultant product contained significant amounts of unreacted iPr3SiCl and 

(iPr3Si)2. This is believed to occur due to incomplete formation of Na3P and the presence of unreacted 

Na. When monitoring the reaction by 31P{1H} NMR spectroscopy, we found that a mixture of P 

containing species were formed, including (iPr3Si)3P and (iPr3Si)2PH, which were identified by 

comparison with the literature.56 Another significant 31P NMR signal was observed at −378 ppm 

(compound 1). By removing the DME in vacuo, then extracting the resulting residue in hexane or 

toluene, it was possible to precipitate 1 from the reaction mixture as a white pyrophoric solid, while 

P(SiiPr3)3, (iPr3Si)2PH, and other P-containing by-products remained in solution. 1H, 13C{1H}, 31P, and 
31P{1H} NMR spectroscopy of 1 suggested the complex contained an –P(SiiPr3)2 moiety with no minor 

residual solvent peaks (see Supporting Information Figures S2 and S3). While it was not possible to 

obtain crystals of 1 suitable for single crystal X-ray diffraction studies, crystals of [(THF)NaP(SiiPr3)2]2 

(1a) were obtained when a reaction mixture containing 1 was dissolved in C6D6 and THF (Figure 1) and 

left at room temperature for four weeks. Based on this structure and the NMR spectroscopic data, we 
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propose that 1 corresponds to NaP(SiiPr3)2. Due to the very high sensitivity of 1, it was not possible to 

obtain high resolution mass spectrometric data on this compound. 

Given that our aim had been to convert P(SiiPr3)3 to the [P(SiiPr3)2]− anion via a multi-step process, the 

observation of 1 was quite exciting. Here, we were directly forming a phosphanide anion in a single 

step and purifying it by precipitation and filtration. Thus, we focused on optimising the synthesis to 

maximise the yield of 1, rather than P(SiiPr3)3. This led to the development of the methodology shown 

in Scheme 1. Na and 10 mol% naphthalene were refluxed in DME for 24 hours, after which iPr3SiCl was 

added and the reaction heated for a further 24 hours. After filtration to remove insoluble impurities, 

the DME was removed in vacuo and the resulting oil was extracted into toluene. This precipitated 1, 

which was isolated by filtration in 42% yield and sufficient purity for further synthesis. The crude 

reaction mixture showed the formation of 1, (iPr3Si)2PH and P(SiiPr3)3 in an approximate 1:0.28:0.08 

ratio (see Supporting Information Figure S6). As (iPr3Si)2PH has been previously shown to be readily 

converted to [(THF)LiP(SiiPr3)2]2,48 which can also be used in transmetallation reactions, it is suggested 

that isolation of this by-product would further increase the yield of usable phosphanide precursors 

from this reaction. Note that, concurrent with our reported work, the Mills group has developed a 

similar (albeit lower yielding) synthesis of 1.57 

 

Scheme 1. Optimised synthesis of NaP(SiiPr3)2 (1). 

 

 

Figure 1. Single crystal XRD structure of [(THF)NaP(SiiPr3)2]2 1a. Coordinated THF represented as a wireframe, minor disorder 
components and hydrogen atoms omitted for clarity. Thermal ellipsoids are set to 50% probability. Atoms marked with ‘ are 

obtained using the following symmetry operation, 1−x, +y, 
1

2
−z. Selected bond lengths (Å) and angles (°): Na1–P1 2.8039(11), 

Na1–P1’ 2.806(1), Na–O1A 2.200(6), Na–O1B 2.203(6), Na–O1C 2.309(3), Na1∙∙∙Na1’ 3.4586(18), P1–Si1 2.2207(8), P1–Si2 
2.2163(7), P1–Na1–P1’ 103.84(3) Na1–P1–Na1’ 76.15(3). 

 

Group 12 complexes 2–4 

The two-coordinate Group 12 complexes 2–4 were prepared by the metathesis reaction of 1 with the 

appropriate metal halide (ZnCl2, CdI2, HgBr2) in diethyl ether (Scheme 2). The resulting complexes were 
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isolated as white crystalline solids in moderate to good yields (40–57%) after extraction and 

recrystallisation from n-hexane. For the formation of 3, it was necessary to use CdI2, as reactions 

between 1 and CdCl2 in diethyl ether led to the precipitation of Cd(0). Complexes 2–4 are air and 

moisture sensitive and were characterized by single crystal X-ray diffraction and multinuclear NMR 

spectroscopy. Complex 2 was also characterized by HRMS and CHN microanalysis; the high toxicity of 

complexes 3 and 4 precluded their analysis by these methods.  

 

Scheme 2: Synthesis of Group 12 bis(silylphosphanido) complexes 2–4. MX2 = ZnCl2, CdI2, HgBr2. 
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Figure 2:  View of the single crystal X-ray diffraction structures of a) 2, b) 3 and c) 4. Hydrogen atoms and minor disorder 
components of 3 and 4 omitted for clarity. Thermal ellipsoids shown at 50% probability.  
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Table 1. Selected bond lengths (Å) and angles (°) for M[P(SiiPr3)2]2 (M = Zn (2), Cd (3), Hg (4)). Complexes 2, 3, and 4 were 
crystallised from n-hexane. 2a is a polymorph of 2 crystallised from diethyl ether. 

  2 2a 3 4 

M1–P1 2.2291(3) 2.2309(4) 2.4213(7) 2.3946(5) 

M1–P2 2.2234(4) 2.2562(4) 2.4216(7) 2.3930(5) 

P1–Si1 2.2532(4) 2.2629(4) 2.2571(7) 2.2614(7) 

P1–Si2 2.2537(4) 2.2550(5) 2.2487(7) 2.2657(8) 

P2–Si3 2.2456(4) 2.2598(5) 2.2557(8) 2.2644(7) 

P2–Si4 2.2479(4) 2.2527(4) 2.2570(6) 2.2541(8)  

P1–M1–P2 168.747(12) 163.593(18) 169.215(19) 170.086(16) 

∑° around P1 334.141(18) 337.05(13) 330.52(3) 325.73(3) 

∑° around P2 339.755(17) 322.26(13) 324.87(3) 331.16(3) 

 

Crystals of 2–4 suitable for single crystal X-ray diffraction were obtained from storage of saturated n-

hexane solutions at −30 °C (Figure 2). A polymorph structure of 2 (2a) was also obtained by slow 

evaporation from diethyl ether (Figure S1. 2 and 2a crystallise in the same space group (P1̅) but with a 

differing unit cell (Table S1) and with significantly different P1–Zn1–P2 angles [168.747(12)° vs 

163.593(18)°]. All structures show 2–4 to be monomeric and two-coordinate in the solid state. The 

M1–P1 and M1–P2 bond lengths (Table 1) are similar to those seen in the terminal silyl phosphanido 

groups in[M(P(SiMe3)2{µ2-P(SiMe3)2}]2 (Zn–Pt 2.295(1) Å, Cd–Pt 2.459(1) Å and Hg–Pt 2.402(1) Å).42 The 

P–Si bond lengths differ slightly between complexes [2.2479(4)–2.2657(8) Å, Table 1] but are 

consistent with P–Si single bonds, with little evidence of P–Si double bond character [typical P=Si 

distances 2.062(1)-2.158(2) Å].58 The sum of the angles around each phosphorus centre (Σ°, Table 1) is 

also consistent with an sp3 hybridized P atom (i.e. no P=Si bond character). All of the complexes exhibit 

a P–M–P unit, with this angle increasing from Zn > Cd > Hg (Table 1).  

Closed-shell, two-coordinate metal complexes are frequently linear,59–68 although non-linear species 

are known.66,69–71 Given that the only previous Group 12 bis(silylphosphanido) complex to be 

structurally characterized (Cd[P(SiPh3)2]2) was linear,44 DFT calculations were used to probe the reasons 

for the deviation from linearity for 2–4 in the solid state. Geometry optimizations were performed on 

2–4 (PBE0/SARC-ZORA-TZVP for Cd and Hg, PBE0/ZORA-def2-TZVP for all other atoms).72–79 The 

optimized structures were in good agreement with those determined experimentally, and in all cases 

reproduced the non-linear P–M–P (M = Zn, Cd, Hg) bond angles (Table S2). Models of 2–4 were also 

optimized with a 180° P–M–P bond angle restraint, affording linear models (2’, 3’, 4’). These linear 

models were found to be significantly less thermodynamically stable than the bent structures (ΔG = 

13.3 kcal mol–1 for Zn; 10.7 kcal mol−1 for Cd; 8.9 kcal mol−1 for Hg). The linear structures show 

significant distortion about the P atoms, with asymmetry in the M–P–Si angles (Figure S31, Table S2). 

By contrast, the M–P–Si groups in the non-linear optimized structures were more symmetric (Figure 

S32, Table S2). This suggests that the bent P–M–P bond angles are a consequence of the steric 

demands of the [P(SiiPr3)2]– ligands. To fit these ligands around the metal, it is necessary to distort at 

either the metal centre or the P atoms, with the distortion at the metal being more favourable. The 

solid state structure of Cd[P(SiPh3)2]2 shows relatively symmetric Cd–P–Si angles (100.9(2)°, 98.2(1)°) 

and a linear P–Cd–P angle,44 suggesting that a smaller ligand removes the need for distortion. 

Geometry optimization (without restraints) of the less sterically demanding Cd[P(SiMe3)2]2, starting 

from linear and non-linear geometries, afforded both linear (P–Cd–P = 179.9°) and near-linear (P–Cd–

P = 177.5°) molecules. These two geometries showed near-identical energies (ΔG = 0.1 kcal mol−1), 
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suggesting that there is little energetic difference between these two coordination environments for 

the less sterically demanding [P(SiMe3)2]– ligand. 

NMR spectroscopic analysis 

The 13C{1H} NMR spectra of 2–4 (Figure 3) and the 29Si NMR spectrum of 4 (Figure 4) show evidence of 

second order effects due to strong virtual coupling between the 31P nuclei (2JPP’). Similar effects have 

been reported in the literature for analogous phosphorus-carbon ABX and AA’X systems.80–82 Despite 

the different appearances of the 13C{1H} NMR signals, the 2JCP and 3JCP coupling constants are similar 

across the series [2JCP = 10.7 Hz (2), 10.3 Hz (3), 10.2 Hz (4); 3JCP = 3.6 Hz (1) 3.7 Hz (2), 3.5 Hz (4)]. This 

indicates that the differences between 2–4 are likely caused by the changing magnitude of 2JPP’ across 

the series. 

While the 29Si NMR spectra of 2 and 3 show apparent doublets, that of 4 is more complex, consistent 

with an AA’X spin system with virtual coupling. This spectrum was well simulated with parameters of 
1JSiP = 50.6 Hz, 3JSiP’ = 0.0 Hz, 2JPP’ = 19.0 Hz (Figure 4). This 2JPP’ coupling of 19.0 Hz was also used to 

successfully simulate the 13C{1H} NMR signals of 4 (see Supporting Information Figures S25 and S26), 

further supporting this value for 2JPP’. 

Also of note are the 29Si satellites in the 31P{1H} NMR spectra of 2–4. While 2 and 4 show apparent 29Si 

satellites, the measured coupling from these satellite peaks does not match that found in the 29Si NMR 

spectra. This is likely due to the presence of one spin-active 29Si nucleus causing the two 31P nuclei to 

become magnetically inequivalent, such that the satellite signal is not a simple doublet. For 3, the 

measured 2JSiP from the satellites does match the 29Si NMR spectrum, suggesting that the two P atoms 

are (closer to) magnetically equivalent in 3. The 31P{1H} NMR signal for 4 (δP = −209 ppm) occurs 

significantly downfield of the signals for 2 or 3 (δP = −288 and −284 ppm, respectively), which is 

consistent with previously published Group 12 bis(silylphosphanido) complexes.44 The 113Cd and 199Hg 

NMR spectra of 3 and 4 both appear as triplets, with large couplings to phosphorus (1JCdP = 350 Hz, 1JHgP 

= 408 Hz). 
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Figure 3:  13C{1H} NMR spectra of a) 2, b) 3, and c) 4 showing the extent of virtual coupling. 

 

a)  

b)  

c)  
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Figure 4: The experimental (red) and simulated (blue) 29Si NMR spectrum of 4, modelled using the parameters 1JSiP = 50.6 
Hz, 3JSiP’ = 0.0 Hz and 2JPP’ = 19.0 Hz.  

Conclusions 

We present the first one-step synthesis of a source of the phosphanide anion [P(SiiPr3)2]−, in the form 

of NaP(SiiPr3)2 (1). Complex 1 was obtained in 42% isolated yield, far higher than the previously 

reported Li phosphanide [(THF)LiP(SiiPr3)2]2, thereby offering a significantly improved route to the 

practical use of this ligand in synthesis. [(THF)NaP(SiiPr3)2], 1a obtained from the solvation of 1 in THF, 

was characterized by single crystal X-ray diffraction. With this synthetically useful methodology to 1, 

we were able to complex this sterically demanding phosphanide ligand to Zn, Cd, and Hg, affording the 

novel two-coordinate complexes 2−4. Single crystal X-ray diffraction revealed that complexes 2−4 all 

show significant deviations from linearity in the solid state, with DFT calculations suggesting this is due 

to the steric demands of the ligand. 13C{1H} and 29Si{1H} NMR spectroscopy of these ligands revealed 

strong second-order effects, suggesting the presence of virtual coupling between the two 31P nuclei in 

these complexes. These studies show that [P(SiiPr3)2]− is now an accessible bulky, monodentate, 

monoanionic ligand. 
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