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Exchange repulsion, the dominant repulsive contribution to intermolecular interaction energies, is caused by
the Pauli principle, which enforces that electrons with the same spin must not be located at the same place.
Starting from the Heitler-London expression of the exchange-repulsion energy, Exr, we investigate how it can
be partitioned into physically relevant and comprehensible contributions. We demonstrate that a division of
Exr into a positive kinetic and a negative potential part is possible. However, these contributions correlate
only poorly with the actual exchange-repulsion energy. A meaningful partitioning of Exr is derived, where
the kinetic energy contribution belongs to a term that vanishes for exact Hartree-Fock wave functions. The
remaining pure potential energy terms are distinguished into an exchange integral contribution, Exi, as well
as contributions to the repulsion-energy with two, three and four orbital indices (Exr2, Exr3, and Exr4).
Qualitative explanations of these terms and their physical origin are proposed. The forms, relationships and
absolute sizes of the four parts of Exr suggest an intuitive partitioning of the exchange-repulsion energy into
orbital-pair contributions. Insight into the analytic form and quantitative size of the contributions to Exr

is provided by considering the 3Σ+
u (1σg1σu) state of the H2 molecule, the water dimer, as well as an argon

atom interacting with Cl2 and N2. It is demonstrated that Exr is best described as being due to the potential
energy and that its leading contribution, Exr2, provides an intuitive qualitative and quantitative approach
towards the exchange-repulsion energy.

I. INTRODUCTION

The interaction energy, Eint, of neutral atoms and/or
molecules is generally dominated by electrostatic inter-
actions, Eel, London dispersion, Edsp, and a repulsive

contribution which is designated as (Pitzer) strain, steric
hindrance, overlap repulsion, kinetic repulsion, Pauli re-
pulsion, exchange or exchange-repulsion energy, Exr.

1–5

Additionally, induction (polarization), charge-transfer,
hyperconjugation and covalent contributions to the inter-
action energy are frequently considered.6–11 As the dom-
inant repulsive interaction, exchange-repulsion provides
generally a large positive contribution to the interaction
energy. At the minimum structures of molecular dimers,
Exr is generally larger than the (absolute) interaction en-
ergy, Eint.

5,12 In any case the exchange-repulsion energy
is a crucial contribution to Eint as it determines the space
that is required by atoms or molecules in condensed mat-
ter. Exr essentially depends on the overlap of the orbitals
of the interacting systems and decays exponentially with
their distance. In force fields it is commonly approxi-
mated by atom centered potentials as proposed by e.g.
Lennard-Jones13–15 or Born and Mayer.16,17 Even though
significant effort has been spent to improve this descrip-
tion (see e.g.18–20), such force fields often have problems
in correctly predicting molecular crystal and aggregate
structures.21–25 Recent investigations concluded that fea-
tures in the exchange-repulsion energy that can not be
represented by atom centered potentials may be the rea-
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son for this failure.26–34

While molecular interaction energy, Eint, is a physi-
cally well-defined property, the above-mentioned energy
contributions can only be obtained by an energy decom-
position analysis (EDA) which requires an ad hoc def-
inition of energy contributions. A multitude of EDA
methods have been published,11,35–41 but only some of
them provide comparable, reliable, physically meaning-
ful, and chemically plausible contributions to the in-
teraction energy of atoms and molecules.29,42–45 Among
these approaches, Symmetry-Adapted Perturbation The-
ory (SAPT) stands out as a theoretically well-defined
method that can be applied at different levels of ap-
proximation. It has been shown that SAPT provides
physically reasonable results that are in good agreement
with the more elaborate EDA variants.29,43–45 Several
empirical and approximate expressions of the exchange-
repulsion energy have been proposed (see Ref. 46 for an
overview).

Despite the enormous importance of the exchange-
repulsion energy for the appearance of matter, our un-
derstanding of its origin is surprisingly limited. There
is not even agreement in the literature on how the lat-
ter results from the underlying electronic structure. Us-
ing the Hellmann-Feynman47,48 theorem, Salem49 con-
cluded that exchange repulsion is mainly due to poten-
tial energy terms. He argued that the Pauli principle
enforces a reduction of the electron probability density
in regions where electrons from two approaching systems
appear simultaneously, which leads to reduced electron-
nuclear attraction. In contrast, Baerends2 showed that
antisymmetrization of the orbitals of two approaching
systems goes along with an increase of the expectation
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value of the kinetic energy. Other authors supported
this point of view by coining the name ’kinetic energy
pressure’.50–52 Szalewicz and Jeziorski5 argued that the
exchange-repulsion energy is due to a tunneling effect
and that it can be motivated by additional nodes in the
wave functions. As nodes are accompanied by larger
curvatures of the wave functions, this suggests that the
exchange-repulsion energy is associated with an increase
of the kinetic energy. However, in the SAPT approach,
which is reviewed in the work of Szalewicz and Jeziorski,5

the exchange(-repulsion) energy is expressed exclusively
by matrix elements of potential energy operators,53,54

which was already proposed as early as 1936 in the sem-
inal work of Landshoff on the cohesive energy of NaCl.55

Thus, we end up in two mutually exclusive statements
that the exchange-repulsion energy is either due to ki-
netic energy terms or free from kinetic energy and thus
caused by the potential energy. One may think that this
contradiction can be resolved by the virial theorem,56

which links kinetic and potential contributions to the to-
tal energy for stationary structures and indeed applies
to the interaction energy.57 However, the virial theorem
is obviously not valid for energy contributions to Eint as
the electrostatic or the exchange-repulsion energy. The
question why the exchange-repulsion energy can be rep-
resented either with or without kinetic energy contribu-
tions has been explained by making use of stationary con-
ditions of the interacting systems53,57,58 (see also below).
We summarize that the exchange repulsion energy is an
important but elusive quantum mechanical quantity that
is not amenable to a simple interpretation. Furthermore,
there is no reliable, physically motivated, and pictorial
explanation for this quantity which makes it possible to
derive efficient approximations and comprehensible con-
stituents to Exr. This is what we shall try to develop in
the following.

For that purpose, we consider the representation of
the exchange-repulsion energy by SAPT and the re-
lated Heitler-London approach59 for closed-shell atoms or
molecules. The latter has been worked out in the context
of intermolecular interactions by Hayes and Stone,60,61

Tang and Toennies,62,63 and by others.64,65 We show that
an accurate approximation of the exchange-repulsion en-
ergy of two closed-shell systems can be obtained from a
few matrix elements of the occupied orbitals of the in-
teracting systems. This allows to separate Exr in a few
contributions and provides insight into the physical ori-
gin of this interaction. We also formulate the analogous

theory for the exchange-repulsion energy of two hydro-
gen atoms in the open-shell 3Σ+

u (1σg1σu) state. Here
the wave functions of the separated systems and their
energy expectation values are directly accessible, allow-
ing to analyze numerical and analytic properties of the
exchange-repulsion energy. We demonstrate that this al-
lows to interpret contributions to the exchange-repulsion
energy and to estimate their relative size. Similar in-
vestigations are also presented for several aggregates of
closed-shell systems. These results provide an interpre-
tative basis for explaining the physical origin of the re-
pulsive intermolecular forces.

Following this drain of thoughts, this article is orga-
nized as follows: In Sec. II, various representations of
the exchange-repulsion energy between two closed-shell
molecules are presented and the separation of the terms
into contributions is discussed. On that basis, we propose
in Sec. III an analogous partitioning for the exchange-
repulsion energy of the open-shell triplet hydrogen sys-
tem. Analytical and numerical results of the latter are
discussed to aid the interpretation of the contributions,
which is provided in Sec. IV. The implementation for
closed-shell systems is described in Sec. V and results for
the energy contributions to Exr for several water dimer
structures as well as for the interaction of an argon atom
with either a nitrogen or a chlorine molecule are given
in Sec. VI. Finally, Sec. VII concludes and provides an
assessment of the information gained on the exchange-
repulsion energy.

II. THE EXCHANGE-REPULSION ENERGY FOR
CLOSED SHELL SYSTEMS

Hayes and Stone60,61 derived analytical expressions for
the energy contributions of two interacting subsystems
(atoms, molecules, or ions) A and B. In the following, we
make use of these expressions and assume that the wave
functions of these individual systems are represented by
closed shell Slater determinants with Hartree-Fock or-
bitals. The occupied orbitals of system A and B are or-
thonormal and may be chosen to be eigenfunctions of the
respective Fock operator. However, we shall only make
use of this if explicitly stated. Orbitals of system A are
generally non-orthogonal to the orbitals on B. The en-
ergy expectation value of a Slater determinant consisting
of these orbitals is given by60,61

Etot =
∑
ij

2(i|T̂ + V̂A + V̂B |j)S−1
ji +

∑
ijkl

[2(ij|kl) − (il|jk)]S−1
ij S

−1
kl + VAA + VAB + VBB , (1)

where V̂A (V̂B) is the electron nuclear attraction op-

erator comprising all nuclei at molecule A (B), T̂ is

the kinetic energy operator, (ij|kl) a two electron in-
tegral in charge density (Mulliken) notation (ij|kl) =
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3∫∫
ψ∗
i (r⃗1)ψj(r⃗1) 1

r12
ψ∗
k(r⃗2)ψl(r⃗2) dr⃗1 dr⃗2 where the indices

i, j, k, and l run over all occupied spatial orbitals of the
dimer system. VXY represents the nuclear repulsion en-
ergy of all nuclei in the subsystems X and Y . Note, that
the matrix elements of the inverse overlap matrix S−1

ij
are required to evaluate this energy expectation value,
where the overlap matrix is Sij = (i|j).

Exr = Etot − EA − EB − Eel. (2)

Here

EA =
∑
a

2(a|V̂A + T̂ |a) +
∑
a,a′

[2(aa|a′a′) − (aa′|a′a)] + VAA,

(3)

is the Hartree-Fock energy of monomer A and an analo-
gous formula applies to B. We have deliberately chosen
to designate the occupied orbitals on the system A with
the indices a and a′ and those on B with b and b′, as this
makes it much easier to associate orbitals with their sys-
tems. Note, that a or b stand for occupied (rather than
virtual) orbitals and that an index a in a sum is meant
to run over all occupied orbitals of system A. With the
electrostatic interaction energy

Eel =
∑
a

2(a|V̂B |a) +
∑
b

2(b|V̂A|b) +
∑
a,b

4(aa|bb) + VAB ,

(4)

we obtain the exchange-repulsion energy as60,61

Exr =
∑
ij

2(i|T̂ + V̂A + V̂B |j)(S−1
ji − δji)+∑

ijkl

[2(ij|kl) − (il|jk)](S−1
ij S

−1
kl − δjiδkl)

−
∑
ab

2(ab|ba), (5)

which is frequently designated as Heitler-London
theory.59,62,63,65 Its kinetic energy contribution can be
defined as

Txr = 2
∑
ij

Tij(S
−1
ji − δji). (6)

The exchange-repulsion energy includes the strictly
negative exchange-integral contribution

Exi =
∑
ab

−2(ab|ba) (7)

and the repulsion energy

Erep = Exr − Exi. (8)

Su and Li38 designate the result of Eq. (8) as repulsion
energy as in the present work, while they refer to the
sum over the exchange integrals in Eq. (7) as “exchange
energy.” However, the very same name is used in SAPT
theory to designate an energy contribution corresponding
essentially to Exr.

53,54,58,66 Thus, the name “exchange
energy” is used for related but very different properties
which have even opposite signs. In order to avoid ambigu-
ities, we avoid the term “exchange energy” in the present
work and denote Exr, Erep, and Exi in Eqs. (5), (8), and
(7) as exchange-repulsion energy, repulsion energy, and
exchange-integral contribution, respectively. Our defini-
tion of Exr provides essentially the same results as the
simplest variant of the repulsive energy from symmetry
adapted perturbation theory, SAPT0, which is generally

designated as E
(1,0)
exch .53,66–69

The inverse overlap matrix elements in Eq. (5) can
be simplified by recognizing that the diagonal elements
of the overlap matrix (Sii) are equal to one and that
only the non-diagonal matrix elements corresponding to
orbitals on the different systems (Sab and Sba) are non-
zero. We found that the absolute size of these matrix
elements does generally not exceed a value of 0.08 for
thermodynamically accessible structures. If we define P
as a matrix containing the non-diagonal matrix elements
of S which means S = 1 + P, the inverse overlap matrix
can be expanded in a Taylor series as

S−1 = (1 + P)−1 = 1−P + P2 . . . (9)

A reasonable expression for the exchange-repulsion en-
ergy is obtained by truncating this expansion after the

quadratic term which shall be named EP 2

xr in the fol-
lowing. Using the Fock operator of the total system
F̂ = F̂A + F̂B − T̂ ,70 this approximation to the exchange-
repulsion energy can be written as

EP 2

xr =Exi − 2
∑
ab

2(a|F̂ |b)Sba

+ 2
∑
aa′

(a|F̂ |a′)
∑
b

SabSba′ + 2
∑
bb′

(b|F̂ |b′)
∑
a

SbaSab′

+ 2
∑
aba′b′

[
4(ab|a′b′) − (ab′|a′b) − (aa′|b′b)

]
SbaSb′a′ . (10)

While Eq. (10) is typically a good approximation for the exchange-repulsion energy in Eq. (5), it is more common
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to neglect all terms which are higher than second order in the differential overlap of the orbitals. This is generally
designated as S2 approximation53,66,69,71–76 and leads to the exchange-repulsion energy77

ES2

xr =Exi − 2
∑
ab

2(a|F̂ |b)Sba

+ 2
∑
aa′

(a|F̂ + K̂B |a′)
∑
b

SabSba′ + 2
∑
bb′

(b|F̂ + K̂A|b′)
∑
a

SbaSab′

− 2
∑
aba′b′

(aa′|b′b)SbaSb′a′ . (11)

Here, terms higher than second order in differential overlap such as (b|K̂A|b′)SabSba′ or (ab|a′b′)SabSa′b′ are neglected.

In the following we consider EP 2

xr as we shall show that it is more accurate and computationally easier to evaluate.

However, we shall also show that the difference between ES2

xr and EP 2

xr is generally very small, so both are equally
appropriate for the accuracy achievable at this level of theory.

The expression for the exchange-repulsion energy in Eq. (10) can be simplified by substituting the total Fock

operator by the corresponding monomer operators, F̂A and F̂B , of the individual systems

EP 2

xr = Exi + 2
∑
ab

Sba

[
−2(a|F̂A + F̂B − T̂ |b) +

∑
a′

(a|F̂A|a′)Sa′b +
∑
b′

Sab′(b
′|F̂B |b)

]
+ 2

∑
aa′

(a|F̂B − T̂ |a′)
∑
b

SabSba′ + 2
∑
bb′

(b|F̂A − T̂ |b′)
∑
a

SbaSab′

+ 2
∑
aba′b′

[
4(ab|a′b′) − (ab′|a′b) − (aa′|b′b)

]
SbaSb′a′ . (12)

The kinetic energy contribution to the exchange-
repulsion energy defined in Eqs. (10) and (12) is

TP 2

xr = 2
∑
ab

Sab

[
−2Tab +

∑
a′

Taa′Sa′b +
∑
b′

Sab′Tb′b

]
.

(13)

The latter was discussed by Baerends2 who neglected the
generally minor term −2TabSab as the remainder of this
expression is typically a much larger and positive con-
tribution. Baerends concluded that the kinetic energy
contribution can be considered to be decisive for the re-
pulsive character of the exchange-repulsion energy, which
motivates its designation as kinetic repulsion.2

However, we shall show below that the kinetic energy
contribution generally behaves rather differently than the
exchange-repulsion energy. Furthermore, it can be cast
into a contribution to the exchange-repulsion energy that
vanishes in the limit of a complete basis set53,57 or if
the same basis is used for both systems in the sense
of a Boys-Bernardi78 counterpoise correction.58 In these
cases, the orbitals of the subsystems fulfill the stationary

condition of the respective Hartree-Fock equations. Then
for canonical orbitals F̂Aψa = ϵaψa, where ϵa is the or-
bital energy of the orbital a. Thus, (b|F̂A|a) = ϵa (b|a)

and since F̂A is hermitian, (a|F̂A|b) = ϵa Sab and the or-
thonormality of the monomer orbitals causes that∑

a′

(a|F̂A|a′)Sa′b =ϵa Sab. (14)

For non-canonical Hartree-Fock orbitals, e.g. localized
ones, the relation∑

a′

(a|F̂A|a′)Sa′b =(a|F̂A|b), (15)

holds under the conditions mentioned above. Thus, the
exchange-repulsion energy in eq. (12) can be split up into
contributions as follows

EP 2

xr = Exi + Exr2 + Exr3 + Exr4 + Exrb, (16)

with
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Exr2 = − 2
∑
ab

Sba(a|F̂A + F̂B − 2T̂ |b) (17)

Exr3 =2
∑
aa′b

Sba(a|F̂B − T̂ |a′)Sa′b + 2
∑
abb′

Sab(b|F̂A − T̂ |b′)Sb′a (18)

Exr4 =2
∑
aa′bb′

Sab

[
4(ab|a′b′) − (ab′|a′b) − (aa′|bb′)

]
Sb′a′ . (19)

Exrb =2
∑
ab

Sba

[
−(a|F̂A|b) +

∑
a′

(a|F̂A|a′)Sa′b − (b|F̂B |a) +
∑
b′

(b|F̂B |b′)Sb′a

]
(20)

In the following, we shall designate these contributions
as two-index (Exr2), three-index (Exr3), and four-index
(Exr4) terms of the exchange-repulsion energy as well as
its basis-set error (Exrb).

The only contribution to Exr with a nonzero kinetic
energy contribution in Eq. (16) is Exrb. As noted before,
it becomes zero in the limit of a complete basis set53,57 or
if the monomer orbitals are determined in the basis set of
the dimer system.58 The remaining contributions to Exr

(Exi, Exr2, Exr3, and Exr4) are exclusively due to the po-
tential energy. This explains why it is possible to obtain a
correct expression for the exchange-repulsion energy that
does not contain kinetic energy contributions.

All expressions for the exchange-repulsion energy and
its contributions presented above are invariant with re-
spect to unitary transformations of the orbitals on the in-
dividual systems. The terms are of the form

∑
ab FabSba

where the sum over a and b runs over all occupied or-
bitals on the systems A and B, respectively. As the or-
bital spaces of the systems are not changed by unitary
transformations, the sums are also not affected. A more

detailed proof of unitary invariance of EP 2

xr is given in the

supporting information of this article.

As we shall see below, the terms with the largest abso-
lute values are Exr2 and Exi. Both contain only two or-
bital indices which allows defining unambiguous orbital
contributions with one orbital (a) from system A and
another one (b) from B. Exr3 and Exr4 cannot be unam-
biguously assigned to orbital pairs as they contain sums
over further orbitals. However, we shall show below that
Exr3 is rather small for neutral systems, while Exr4 turns
out to be essentially proportional to Exr2. This motivates

the definition of orbital contributions to EP 2

xr which run
over all occupied orbitals of the interacting systems and
sum up to the exchange-repulsion energy as

EP 2

xr =
∑
ab

Exr(a, b). (21)

We designate the Exr(a, b) terms as Molecular-Orbital-
Pair Contributions to the Exchange-repulsion energy
(MOPCE). They can be partitioned in analogy to
Eq. (16) as

Exr(a, b) =Exi(a, b) + Exr2(a, b) + Exr3(a, b) + Exr4(a, b) + Exrb(a, b), (22)

with

Exi(a, b) = − 2(ab|ba), (23)

Exr2(a, b) = − 2Sba(a|F̂A + F̂B − 2T̂ |b), (24)

Exr3(a, b) = + 2Sab

[∑
a′

(a|F̂B − T̂ |a′)Sa′b +
∑
b′

(b|F̂A − T̂ |b′)Sb′a

]
, (25)

Exr4(a, b) = + 2Sab

∑
a′b′

[
4(ab|a′b′) − (ab′|a′b) − (aa′|bb′)

]
Sa′b′ , (26)

Exrb(a, b) = + 2Sab

[
−(a|F̂A|b) +

∑
a′

(a|F̂A|a′)Sa′b − (b|F̂B |a) +
∑
b′

Sab′(b
′|F̂B |b)

]
. (27)

III. EXCHANGE-REPULSION IN THE TRIPLET
HYDROGEN SYSTEM

For the H2 molecule in the 3Σ+
u (1σg1σu) state, the

ground-state wave functions of the monomer systems and

all required integrals are known analytically.59,64,79,80
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Furthermore, a highly accurate potential energy curve
of this state is available from the seminal work of Ko los
and Wolniewicz81 who obtained the binding energy of
1.97 × 10−5 Eh (≈−0.052 kJ mol−1) at the interatomic
distance R = 7.8 au (≈ 4.13 Å).

We consider a Slater determinant with two triplet-
coupled electrons in the symmetrized and orthonormal-
ized orbitals

1σg =
1√

2(1 + S)
(χa + χb), (28)

1σu =
1√

2(1 − S)
(χa − χb), (29)

resulting from the hydrogen 1s orbitals χa and χb. The
corresponding energy expectation value is given by63

E =
haa + hbb − 2Shab + (aa|bb) − (ab|ba)

1 − S2
+

1

R
. (30)

Here S = (χa|χb) is the overlap integral, (ab|ba) =
(χa(1)χb(1)| 1

r12
|χb(2)χa(2)) the exchange integral, and

hab = (χa|ĥ|χb) the one particle integral where ĥ =

T̂ + V̂A+ V̂B . We define the electrostatic energy as before
by

Eel =
1

R
+ (a|V̂B |a) + (b|V̂A|b) + (aa|bb). (31)

The total energy in Eq. (30) furthermore comprises the
energies of the monomers (EA=EB) and the exchange-
repulsion energy. If we neglect all terms with higher than
second order in the overlap, we obtain in analogy to the
considerations above

EP 2

xr =E − EA − EB − Eel.

= − 2habS + [haa + hbb + (aa|bb) − (ab|ba)]S2.
(32)

The contributions of the kinetic and potential energy op-
erators to this exchange-repulsion energy are given by

TP 2

xr = − 2TabS + (Taa + Tbb)S
2, (33)

and

V P 2

xr = − 2VabS+
[
Vaa + Vbb + (aa|bb) − (ab|ba)

]
S2,

(34)

where V̂ = V̂A + V̂B .
In order to rewrite this result in a form that resembles

the orbital contributions to the two-, three-, and four-
index terms of the exchange-repulsion energy, we intro-
duce Fock operators as e.g. F̂A = T̂ + V̂A + ĴA − K̂A.
The monomer orbital χa is an exact eigenfunction of this
operator and the respective eigenvalue is simultaneously
the orbital energy and the total energy of the hydrogen
atom A

F̂Aχa = EAχa. (35)

In analogy to Eqs. (16) to (20) the approximate
exchange-repulsion energy of the triplet-hydrogen system
can be written as

EP 2

xr = Exi + Exr2 + Exr3 + Exr4 + Exrb, (36)

with

Exi = − (ab|ba) (37)

Exr2 = − (a|F̂A + F̂B − 2T̂ |b)S (38)

Exr3 =+S2
[
(b|F̂A − T̂ |b) + (a|F̂B − T̂ |a)

]
(39)

Exr4 = − S2
[
(aa|bb) − (ab|ba)

]
(40)

Exrb =S[−(a|F̂A|b) + (a|F̂A|a)S] − (b|F̂B |a) + (b|F̂B |b)S]]
(41)

The contributions to EP 2

xr for the (open-shell) triplet hy-
drogen system are written here in a form corresponding
to the closed-shell-singlet interactions of Eqs. (7), (17),
(18), and (19). The basis-set error Exrb is zero, as the
wave functions are exact eigenfunctions of the Fock oper-
ators, and therefore neglected. We note, that the kinetic
energy contribution to the exchange-repulsion energy is
completely contained in this term. The two index term
can be rewritten as

Exr2 = − (b|a)(a|V̂B |b) − (a|b)(b|V̂A|a). (42)

As the electron-nuclear attraction operators V̂A and V̂B
are strictly negative, Exr2 is a positive quantity. Simi-
larly, the three index term Exr3 can also be expressed as
a matrix element containing exclusively potential energy
operators

Exr3 =S2
[
(b|V̂A + ĴA − K̂A|b) + (a|V̂B + ĴB − K̂B |a)

]
.

(43)

For the hydrogen 1s ground state atomic orbitals, the
matrix elements discussed in the preceding subsection are
analytically known and collected in the appendix. With
these expressions, the asymptotically leading terms of
the exchange-repulsion energy contributions can be writ-
ten as polynomials of the interatomic distance R times a
power of e−2R as

Exr2 =

(
2 + 4R+

8

3
R2 +

2

3
R3

)
e−2R (44)

Exr3 = −
(
R6

27
+ O(R5)

)
e−4R (45)

Exr4 = −
(

1

R
+ 2 +

5

3
R+

2

3
R2 +

1

9
R3

)
e−2R. (46)

Exr3 is generally negative but small as compared with the
two and four index terms which are positive and negative,
respectively. For large R the ratio Exr4/Exr2 approaches
− 1

6 .
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FIG. 1. Exchange-repulsion energy and its contributions for
the 3Σ+

u (1σg1σu) state of H2 as a function of the interatomic
distance R.

The corresponding expansion of the kinetic energy con-
tribution to the exchange-repulsion energy of Eq. (33) is

TP 2

xr =

(
2

3
R2 +

2

3
R3 +

2

9
R4

)
e−2R. (47)

We see that TP 2

xr decays as R4 e−2R for large R, whereas
the repulsion energy contributions behave as R3 e−2R.
For that reason, we may conclude that the kinetic en-
ergy contribution, Txr, is less appropriate to describe the
repulsive interaction than Exr2 and Exr4.

It is known63,82–84 that the Heitler-London Ansatz59

for the exchange-repulsion energy used here becomes in-
adequate for large distances. Herring and Flicker83 as
well as Smirnov and Chibisov84 derived that the correct
asymptotic behavior of the exchange-repulsion energy of
the H2 triplet state is proportional to R2.5e−2R while the
Heitler-London analog behaves as −R3 ln(R)e−2R due to
a respective term in Exi. However, as pointed out by
Tang et al. in Ref. 80 the present approximation is rea-
sonable for inter-atomic distances where the exchange-
repulsion energy is in the order of the thermal energy at
room temperature.

In Fig. 1 Exr and its contributions are depicted as a
function of the interatomic distance R. The figure un-
derlines that the kinetic and potential energy contribu-
tions are positive and negative, respectively, and their
absolute values are both significantly larger than the
exchange-repulsion energy itself. Exr2 is positive and
larger than Exr, while the other contributions of the
exchange-repulsion energy are consistently negative. As
expected from the asymptotic expansions of the contri-
butions to Exr in Eqs. (44–46), Exr3 is much smaller in
absolute value than the exchange-repulsion energy and
the other contributions to it. The four index term Exr4

is negative and about of the same absolute size as Exr

while Exi is even more negative.
Further insight into the behavior of the contributions

TABLE I. Exr and its contributions as well as the electro-
static energy of the 3Σ+

u state of the H2 molecule. Relative
energies as compared to the exchange-repulsion energies are
also shown to indicate to which extent the energy contribu-
tions are proportional to Exr. Energies are given in kJmol−1.

r (au) 5.2 7.8
r (Å) 2.75 4.13

E E/Exr E E/Exr

Exr 4.30 1 0.057 80 1
Txr 21.91 5.10 0.519 89 8.99
Vxr −17.70 −4.12 −0.462 11 −7.99

EP2

xr 4.22 0.98 0.057 78 1.00b

Exr2 15.07 3.50 0.225 59 3.90
Exr3 −0.11 −0.02 −0.000 04 0.00
Exr4 −3.50 −0.81 −0.047 77 −0.83
Exi −7.24 −1.68 −0.120 01 −2.08
Eint

a 2.43 0.57 −0.051 72 −0.89

a after Ko los and Wolniewicz.81
b with more digits this value is 0.9997.

to the exchange-repulsion energy of the H2 (3Σ+
u ) system

is provided in Table I where the numerical values of these
energies are collected for two structures. At R = 5.2 au
the very accurate Born-Oppenheimer potential energies
of Ko los and Wolniewicz81 correspond to the average
thermal energy at 292 K (i.e. about room temperature),
while the minimum of the respective potential energy
curve is found at the other structure with R = 7.8 au.
At the minimum Exr is approximately the negative of
Eint, indicating that here the attractive contributions to
the interaction energy are about minus two times the

exchange-repulsion energy. EP 2

xr underestimates Exr by
only 0.03 % (1.9 %) for R = 7.8 au (5.2 au). At these dis-
tances, the kinetic energy grossly exceeds Exr by a factor
of 5 (9). The contributions Exr2, Exr3, Exr4, and Exi are
essentially proportional to Exr.

In the following, we want to investigate the exchange-
repulsion energy of a given aggregate system for struc-
tures that can be considered to be chemically relevant.
For decreasing distances between the constituent com-
ponents, Exr increases exponentially, soon becoming so
large that the respective structures can hardly be reached
in a thermal ensemble. We tentatively define the upper
limit for chemically relevant exchange-repulsion energies
as the highest Exr value found for an aggregate struc-
ture which has an intermolecular energy that is 12 kJ/mol
above the minimum structure. According to the Boltz-
mann distribution, this short-distance aggregate struc-
ture is populated at 298 K for about 100 times less likely
than the equilibrium structure. With increasing distance,
the exchange-repulsion energy decreases and soon reaches
such small values that it does not influence the popula-
tion of aggregate structures any more. The definition
of the lower boundary for chemically relevant exchange-
repulsion energies is less clear, as we have to distinguish
whether the aggregate is dissociating due to thermal acti-
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FIG. 2. Exchange-repulsion energy and its contributions for
the 3Σ+

u (1σg1σu) state of the H2 molecule as a function of
Exr.

vation or not. The former case is assumed to be reached
when the dissociation energy of the aggregate is below
10 kJ/mol. In this case, the aggregate is rather weakly
bound and we define the lower bound to be the exchange-
repulsion energy of the equilibrium structure. For higher
aggregate binding energies the lower boundary is set to
the lowest Exr value found for a long-distance aggregate
whose interaction energy is 12 kJ/mol above the equili-
bium energy. According to Tab. I the chemically relevant
Exr values for the H2 (3Σ+

u ) system are thus in the range
between 10 kJ/mol and 0.05 kJ/mol.

Fig. 2 shows the contributions of the exchange-
repulsion energy as a function of Exr in the chemically
relevant region. Exr2, Exr3, Exr4, and Exi can be well rep-
resented with zero point straight lines with slopes of 3.4,
−0.04, −0.8, and −1.7, respectively. Thus, the exchange-
repulsion energy is essentially proportional to Exr2, Exr4,
and Exi and may be obtained from this property.

Further insight is provided from Fig. 2 where the con-
tributions to the exchange-repulsion energy are plotted
as a function of Exr itself. While a simple functional rela-
tion between Txr or Vxr and Exr does not exist, Exr2, Exr4,
and Exi are in reasonable approximation proportional to
Exr. The positive value of the exchange-repulsion energy
is clearly due to Exr2 as Exr3, Exr4 and Exi are (at least
for the present case) strictly negative.

IV. INTERPRETATION OF THE CONTRIBUTIONS TO
THE EXCHANGE-REPULSION ENERGY

In this section, we discuss different forms of the con-
tributions to the exchange-repulsion energy and suggest
how they can be interpreted. As derived above, Exr2 can

be written as

Exr2 = −
∑
a,b

2Sba

[
(ϵa + ϵb)Sab − 2Tab

]
(48)

= −
∑
a,b

[
2Sab(b|V̂A + 2ĴA − K̂A|a)+

2Sba(a|V̂B + 2ĴB − K̂B |b)
]

(49)

= −
∑
a

2

(
a

∣∣∣∣∑
b

|b)(b| V̂A + 2ĴA − K̂A

∣∣∣∣a)
−
∑
b

2

(
b

∣∣∣∣∑
a

|a)(a| V̂B + 2ĴB − K̂B

∣∣∣∣b). (50)

Here, Eq. (48) is particularly interesting for a numerical
implementation as it contains only one-electron matrix
elements which are easily available if the orbitals and the
orbital energies are known.

Eqs.(49) and (50) show that Exr2 can be written as a
pure potential energy contribution. In contrast to Exr3,
Exr4, and Exi, which are generally negative, it is the only
significant positive contribution to Exr. Thus, Exr2 is the
central ingredient of the Pauli repulsion. The latter is a
consequence of the Pauli principle, which enforces that
two electrons with like spin must not occupy the same
spatial region. This can be related to Eq. (50) as follows:
In bound electronic states, the electrons must be more
strongly attracted by the nuclei than repelled by other
electrons. Due to Pauli repulsion, a part of this attraction
is erased as follows: The right-hand part of the first term
in Eq. (50) at the position r⃗, |V̂A+2ĴA−K̂A|ψa(r⃗)), is the
potential energy of an electron in orbital ψa due to the
field of the nuclei and the other electrons in the system
A in the Hartree-Fock approximation. The exchange op-
erator K̂A in that expression erases the interaction of the
electron in orbital ψa with itself as |Ĵa − K̂a|a) = 0. The
left-hand part of the same matrix element, (a|

∑
b |b)(b|,

is the projection of the electron in the spatial orbital ψa

upon the occupied orbitals in system B. The prefactor
−2 results from the fact that the electron density of the
projected orbital is Pauli forbidden and thus not existent
(minus sign) in the orbital ψa which is occupied by two
electrons (factor two). The second term in Eq. (50) rep-
resents the same for the electrons on the system B. In
other words, Exr2 accounts for the reduced attraction of
the electrons within system A due to the fact that these
electrons cannot be at the same place as those from sys-
tem B and vice versa.

This interpretation of Exr2 resembles earlier work by
Salem,49 where the exchange-repulsion energy was de-
rived from Hellmann-Feynman forces. However, while
Salem proposed that only the electron nuclear attraction
is responsible for the repulsive interaction, our results in-
dicate that the repulsion of the electrons also has to be
considered.

We note that Exr2 is reminiscent to the exchange-
repulsion energy contributions discussed by Rackers and
Ponder.85 These authors argued that the Pauli exclu-
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sion principle generates “holes” in the electron density
at places where two orbitals of different molecules over-
lap. These holes can be interpreted as positive charge
densities that are interacting with the electrostatic po-
tential of the two molecules. Indeed, both terms can be
seen as the interaction between the electrostatic potential

of one system with non-existent electronic charge due to
the Pauli-exclusion principle. The three-index term eval-
uates the interaction of the charge density generated by
the overlap of a given orbital of system A with all or-
bitals of B with the potential energy that electrons feel
at A and vice versa.

The three-index term Exr3 can be written as

Exr3 = 2

[∑
b

(
b

∣∣∣∣ ∑
a

|a)(a| V̂B + 2ĴB − K̂B

∑
a′

|a′)(a′|
∣∣∣∣b)+

∑
a

(
a

∣∣∣∣ ∑
b

|b)(b| V̂A + 2ĴA − K̂A

∑
b′

|b′)(b′|
∣∣∣∣a)

]
. (51)

This may be considered to avoid double counting of con-
tributions to the two-index term, which are forbidden by
the Pauli exclusion principle. Exr4 is the result of an
electron-repulsion interaction and can be interpreted as
a very similar correction, which avoids double counting of
contributions to the electron-electron interaction in Exr2.
Exi is a common exchange integral that exists also if all

orbitals are orthogonal, as e.g. in the energy expression
of the monomers in Eq. (3). This term is always neg-
ative and generally of comparable absolute size as the
exchange-repulsion energy. It may be interpreted as a
correction to the electron-electron repulsion for that part
of the electronic density that does not exist due to the
Pauli principle.

V. IMPLEMENTATION

We implemented the P 2 and S2 approximations to
the exchange-repulsion energy and the respective orbital
contributions in our local quantum chemistry package
“wavels”86–90 in two independent forms. One of them
transforms the integrals of the kinetic-energy, electron-
nuclear attraction and the electron-repulsion operators to
the basis sets of the Hartree-Fock orbitals of the consid-
ered systems and evaluates the Heitler-London exchange-

repulsion following Eq. (5), the EP 2

xr and ES2

xr approxi-
mations (according to Eqs. (10) and (11) as well as the

orbital contributions to EP 2

xr [Eqs. (7) and (17-19)].

A more efficient evaluation of EP 2

xr was implemented

as follows. The symmetric density matrices DA and
DB of the monomers are evaluated according to e.g.
DA

µν =
∑

a 2cµacνa, with the MO expansion coefficients
cµa. Fock-type two electron operators

Gλσ(D) =
∑
µν

Dµν [2(µν|λσ) − (λν|µσ)] (52)

are determined for these densities as well as for the sym-

metric overlap density

DS
µν =

∑
ab

Sab (cµacνb + cνacµb) . (53)

Transformation of these operators, the overlap matrix,
the kinetic energy and the electron-nuclear attraction op-
erators to the MO basis provides the orbital contributions
to the exchange-repulsion energy contributions via

Exr2(a, b) =2Sab

[
VA,ab +Gab(D

A) + VB,ab +Gab(D
B)

]
Sab

(54)

Exr3(a, b) =2Sab

{∑
a′

[
VB,aa′ +Gaa′(DB)

]
Sa′b+∑

a′

[
VA,bb′ +Gbb′(D

A)
]
Sab′

}
(55)

Exr4(a, b) =2SabGab(D
S), (56)

where e.g. VA,ab =
∑

µν cµa(µ|V̂A|ν)cνb. While three
Fock-type two electron operators are required for the
two, three, and four index contributions to the exchange-
repulsion energy, the exchange-integral contribution re-
quires evaluating an exchange operator

Exi =
∑
a

Kaa(DB), (57)

or several of them if individual orbital contributions,
Exr(a, b) are desired.

The two implementations provide identical Exr energy
values within numerical accuracy (1 nEh). Furthermore,
the exchange energies evaluated by Söderhjelm et al.46

for the 1401 water-water dimer structures with the cc-
pVDZ basis (and without a ghost-basis) agree with our

ES2

xr values with an average error of about 2 µEh.
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FIG. 3. Contributions to the exchange-repulsion energy and
its P 2 approximation as a function of the exchange-repulsion
energy as evaluated for the 1401 water-water structures from
the collection of Söderhjelm, Karlström and Ryde.46

VI. BEHAVIOR OF EXCHANGE-REPULSION ENERGY
CONTRIBUTIONS FOR CLOSED SHELL SYSTEMS

To gain insight into the relative size, the order of mag-
nitude, and the characteristic behavior of the contribu-
tions to the exchange-repulsion energy for the interaction
of closed shell molecules we consider the water dimer in
the structures collected by Söderhjelm, Karlström and
Ryde46 and from the S22x5 set of Gráfová et al.91 Fur-
thermore we present results for stationary points of the
N2 · · ·Ar92,93 and Cl2 · · ·Ar systems94–96 which are ex-
perimentally and theoretically well established.

Fig. 3 shows the calculated values for EP 2

xr and its con-
tributions as a function of the related Exr-value for the
1401 structures compiled by Söderhjelm et al.46 The data
were obtained with the aug-cc-pVTZ basis set.97,98 The
Boys-Bernardi type ghost basis78 was consistently used
to represent the monomer orbitals. Further increase of
the basis set did not show significant changes of the re-
sults. The figure shows the chemically relevant Exr range
of the water dimer which can be deduced from Tab. II to
be the range between 100 kJ/mol and 1 kJ/mol. Similar

to the triplet H2-system, the contributions to EP 2

xr are
in a good approximation proportional to Exr with pro-
portionality constants of 2.61, −0.07, −0.42, and −1.13
for Exr2, Exr3, Exr4, and Exi, respectively. While the

trend of these relations is very similar to the observa-
tions on the triplet H2-system, the absolute values of the
proportionality constants of the water dimer structures
are smaller with the exception of Exr3. In the water
dimer the latter deviates slightly but clearly from zero,
while it is essentially negligible for the triplet H2 system
with its neutral and non-polar monomers. This identifies
Exr3 as a correction for the double counting of two-index
terms, which are forbidden by the Pauli exclusion prin-
ciple. For all cases considered here, Exr3 is by far the
smallest contribution to the exchange-repulsion energy.
While Exr2, Exr4, and Exi seem to be essentially propor-
tional to Exr, the kinetic- and potential-energy contribu-
tions to the exchange-repulsion energy are much less well
related to this target property.

Contributions to the exchange-repulsion energy for the
T-shaped and linear stationary points of the N2 · · ·Ar
and the Cl2 · · ·Ar systems, as well as the five water dimer
structures from the S22x5 set, are collected in Tab. II.
As discussed above, the exchange-repulsion energies are
of the same order of magnitude or even larger than the
absolute interaction energies for the equilibrium struc-
tures or arrangements with shorter distance. As these
arrangements are of crucial importance for the proper-
ties of aggregates, it is clear that the total interaction
energy, Eint, can be hardly rationalized without under-
standing Exr. The kinetic energy contribution exceeds
Exr by factors between 7 and 18 in a seemingly arbitrary
fashion. While the kinetic energy contribution of Exr is
always positive, the potential energy contribution, Vxr, is

a large negative number. EP 2

xr is an excellent approxima-
tion to Exr, in particular if the distance between the sys-
tems is larger than the equilibrium distance. However,
even for the compressed 0.9 re structure of the water
dimer, the error amounts only to 0.4 kJ mol−1 or 0.7 %

where EP 2

xr is consistently smaller than Exr. While Exr

and Exr2 are always positive, Exr4 and Exi are consis-
tently negative. Exr3 has generally negative values but
as we found for about 2.5 % of the 1401 water dimer
structures of Söderhjelm et al.,46 it can be slightly posi-
tive. The maximum value found was however only about
+0.09 kJ mol−1 while the most negative value is in the
order of −30 kJ mol−1.

Tab. II also shows SAPT exchange energies in the per-

turbation order E
(1,0)
exch and E

(1,2)
exch generally designated as

SAPT0 and SAPT2, respectively. The difference between
these levels is a measure for the error of the exchange-
repulsion energies. It is typically in the order of 10 %

and larger than the deviation of the EP 2

xr or the ES2

xr

approximations from Exr. For that reason, the approxi-
mations inherent in these methods are moderate, and it
can be expected that they reproduce essential features of
the exchange-repulsion energy. Similarly, the two index
term, Exr2, overestimates the exchange-repulsion energy
by about a factor of three. As this is within the accuracy
of Exr, the exchange-repulsion energy may be estimated
from this term. The same is not possible for the three
index term, which is even changing sign, as seen for dif-
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TABLE II. Exchange-repulsion energy and its contributions as well as SAPT data for stationary points on the Cl2 · · ·Ar and
N2 · · ·Ar dimers as well as five points of the water dimer structure. All results were obtained with the aug-cc-pVTZ basis
including a ghost-basis for the monomers. All energies in kJmol−1.

Cl2 · · ·Ar N2 · · ·Ar water dimer
linear T-shape linear T-shape 0.9 re 1.0 re 1.2 re 1.5 re 2.0 re

Eint -2.61a -2.62a -0.97b -1.27b -18.14c -20.89c -16.99c -9.64c -4.04c

Exr 3.73 3.41 1.03 1.67 60.24 29.70 7.12 0.82 0.02
Txr 58.57 57.94 17.85 25.48 442.82 248.85 75.55 11.72 0.46
Vxr -54.84 -54.53 -16.83 -23.81 -382.58 -219.15 -68.43 -10.90 -0.44

ES2

xr 3.72 3.40 1.03 1.67 -103.68 -58.27 -17.66 -2.72 -0.11

EP2

xr 3.73 3.41 1.03 1.67 59.83 29.57 7.11 0.82 0.02
Exr2 11.15 10.80 3.19 5.10 160.79 81.59 20.64 2.55 0.07
Exr3 -0.11 0.01 0.01 -0.01 -4.60 -1.44 -0.15 -0.01 -0.00
Exrb 0.00 0.00 0.00 -0.00 0.00 0.00 0.00 -0.00 -0.00
Exr4 -1.84 -1.89 -0.59 -0.91 -26.34 -13.89 -3.59 -0.44 -0.01
Exi -5.47 -5.50 -1.58 -2.51 -70.02 -36.68 -9.79 -1.29 -0.04
Txr/Exr 15.70 16.99 17.39 15.24 7.35 8.38 10.61 14.29 21.17

EP2

xr /Exr 1.00 1.00 1.00 1.00 0.99 1.00 1.00 1.00 1.00
Exr2/Exr 2.99 3.16 3.10 3.05 2.67 2.75 2.90 3.11 3.47
Exr3/Exr -0.03 0.00 0.01 -0.01 -0.08 -0.05 -0.02 -0.01 -0.00
Exrb/Exr 0.00 0.00 0.00 -0.00 0.00 0.00 0.00 -0.00 -0.00
Exr4/Exr -0.49 -0.55 -0.58 -0.54 -0.44 -0.47 -0.50 -0.53 -0.57
Exi/Exr -1.46 -1.61 -1.54 -1.50 -1.16 -1.23 -1.38 -1.57 -1.89
SAPT
Eel -1.23 -1.31 -0.34 -0.47 -50.79 -34.26 -17.67 -8.48 -3.56

E
(1,2)
exch 3.99 3.78 1.13 1.65 66.38 33.69 8.51 1.05 0.03

E
(1,0)
exch 3.70 3.39 1.02 1.66 58.76 29.13 7.02 0.81 0.02

E
(1,0)
exch (S2) 3.70 3.39 1.02 1.66 57.99 28.92 7.01 0.81 0.02

Eind -0.73 -0.20 -0.06 -0.06 -18.89 -10.15 -3.21 -0.72 -0.11
Edisp -4.79 -4.96 -1.75 -2.43 -13.18 -8.63 -3.85 -1.26 -0.26
Eint(SAPT0) -2.85 -2.85 -1.04 -1.28 -22.49 -23.33 -18.03 -10.16 -4.24
Eint(SAPT2) -2.75 -2.70 -1.01 -1.31 -16.47 -19.35 -16.22 -9.40 -3.90

a According to Nunzi et al. [ 94]
b According to Candori et al. [ 92]
c According to Gráfová et al. [ 91]

ferent arrangements of the Cl2 · · ·Ar and the N2 · · ·Ar
systems. The four index term correlates quite well with
Exr. The ratio between the exchange integral and the
exchange-repulsion energy varies a bit more than those
for the two- and four-index terms. We conclude that Exr2

seems be a reasonable measure of Exr.

We demonstrated that it is possible to split EP 2

xr into
contributions with a physical meaning: On the one hand
the two-, three-, four-index terms as well as the exchange
integral and on the other hand the orbital contributions,
Exr(a, b) were identified. Both options provide valuable
tools for getting a reliable and comprehensible insight
into this important contribution to noncovalent interac-
tion energies.

VII. CONCLUSIONS

A reliable approximation to the exchange-repulsion en-

ergy termed EP 2

xr is derived from the energy expectation
value of interacting systems in their Hartree-Fock repre-
sentations (Heitler-London approach)59 which is essen-
tially equivalent to the symmetry adapted perturbation
theory (SAPT) expression. Kinetic and potential energy
contributions of the former exchange-repulsion energy
are defined in accordance with a proposal of Baerends.2

These contributions happen to be positive and negative,
respectively. While this supports the designation of Exr

as kinetic repulsion, the asymptotic behavior of Txr and
Exr are different and the correlation between these con-
tributions to the interaction energy is poor.

We demonstrate that EP 2

xr is essentially equivalent to
the SAPT0 exchange energy and its S2 approximate
termed SAPT(S2) whose kinetic energy contributions are

exactly zero. We show that EP 2

xr contains a basis set
dependent contribution, Exrb, which includes the com-
plete kinetic energy contribution of Exr but vanishes if
the monomers are represented with correct Hartree-Fock
wave functions or with a Boys-Bernardi type78 “ghost”
basis. This term is neglected in SAPT, which explains
that a reliable representation of the exchange-repulsion
energy does nor require kinetic energy contributions.

Without the basis-set dependent contribution, EP 2

xr is ex-
clusively due to potential energy contributions and can
be partitioned into four contributions (Exr2, Exr3, Exr4,
and Exi). The dominant one, Exr2, is interpreted in anal-
ogy to a former proposal of Salem49 who argued that
the Pauli principle effectively reduces electron density at
places where electrons of both systems occur, causing an
increase of the potential energy. In our model, this po-
tential energy is due to the interaction of the missing
electron density with the nuclei and the other electrons
of the system, while Salem proposed it to be exclusively
due to electron nuclear interactions. Exr3 is much smaller
in absolute value than the other contributions to Exr and
generally negative. It may be interpreted as correcting
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an over-counting of Exr2. Exr4 may be seen as a similar
correction and turns out to be consistently negative. Exi

is even more negative, and represents the ordinary ex-
change integral contribution that also exists for orthogo-
nal orbitals.

An important advantage of EP 2

xr lies in the fact that it
allows to define Molecular Orbital Pair Contributions to
the Exchange-repulsion (MOPCE) energies. While this
partitioning is unique for Exr2 and Exi, it is not unam-
biguous for Exr3 and Exr4. However, as the later contri-
butions are, respectively, either rather small or in a very
good approximation proportional to Exr2, the partition-
ing is reasonable. Orbital contributions to the exchange-
repulsion energy have already been used to explain the
most favorable planar displaced structures of the ben-
zene dimer as well as of the benzene-hexafluorobenzene
system.34

We note that similar orbital considerations are the cor-
nerstone of frontier orbital theory.99–101 Their effect on
intermolecular interactions have been considered in the
Klopman-Salem model,102,103 however, with the focus on
chemical reactivity and in a more qualitative manner. In-
stead, the analysis of the exchange-repulsion energy, Exr,
presented here, gives rise to quantitative energy contri-
butions. Thus, it provides a sound rationalization for the
repulsive intermolecular interactions in terms of a well-
established concept in quantum chemistry. Furthermore,
our interpretation is in line with qualitative arguments on
orbital contributions to repulsive interactions proposed
before.104–106 In the present work, these ideas are raised
to a well-defined quantitative theory.

The contributions to EP 2

xr are investigated for the H2

molecule in the 3Σ+
u (1σg1σu) state. Here, the related

monomer orbitals and integrals are known and provide
analytical representations of the exchange-repulsion en-
ergy as well as its contributions. This indicates that
the kinetic and potential contribution to the exchange-
repulsion energy behave rather differently than Exr itself,

while EP 2

xr and its leading contributions Exr2, Exr4, and
Exi are in good approximation proportional to Exr and
have a similar asymptotic behavior. Similar results are
obtained for the analysis of the exchange-repulsion en-
ergy of several closed shell systems.

We conclude that it bears clear advantages to inter-
pret the exchange-repulsion energy as a contribution of
the potential energy. This is in line with the very suc-
cessful SAPT approach and provides a physical picture
that allows to develop for efficient approximations of the
exchange-repulsion energy as shown above and in pre-
vious works.34,49,85 While a kinetic energy contribution
to the exchange-repulsion energy can be defined2,50–52 it
is less clear how it can be related to the true exchange-
repulsion energy.

We believe that the possibility to gain insight into the
exchange-repulsion energy will have important impact on
further investigations of noncovalent interactions. Aggre-
gate systems that are presently investigated in our lab-
oratory indicate that the partitioning presented in this

work allows obtaining novel insight into the energetics
and properties of aggregates. Preliminary results show
that the technologically important and biologically in-
teresting case of π-aggregates can be modelled and un-
derstood by such an analysis. This may aid to overcome
the persistent challenges1,19,22,23,107,108 in understanding
and representing the exchange-repulsion energy with a
generally applicable, simple and transferable model.
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M. Sekkal-Rahal, and R. F. Fink, “Rationalizing aggregate
structures with orbital contributions to the exchange-repulsion
energy,” ChemPhysChem , e202300097 (2023).

35K. Morokuma, “Molecular orbital studies of hydrogen bonds.
III. C=O· · ·H−O hydrogen bond in H2CO· · ·H2O and

H2CO· · · 2H2O,” J. Chem. Phys. 55, 1236–1244 (1971).
36K. Kitaura and K. Morokuma, “A new energy decomposition

scheme for molecular interactions within the Hartree-Fock ap-
proximation,” Int. J. Quantum Chem. 10, 325–340 (1976).

37P. S. Bagus and F. Illas, “Decomposition of the chemisorption
bond by constrained variations: Order of the variations and con-
struction of the variational spaces,” J. Chem. Phys. 96, 8962–
8970 (1992).

38P. Su and H. Li, “Energy decomposition analysis of covalent
bonds and intermolecular interactions,” J. Chem. Phys. 131,
014102 (2009).

39A. Krishtal, S. F. Vyboishchikov, and C. V. Alsenoy, “A Hirsh-
feld partitioning of the MP2 correlation energy: Method and its
application to the benzene dimers,” J. Chem. Theory Comput.
7, 2049–2058 (2011).

40W. B. Schneider, G. Bistoni, M. Sparta, M. Saitow, C. Riplinger,
A. A. Auer, and F. Neese, “Decomposition of intermolecular
interaction energies within the local pair natural orbital coupled
cluster framework,” J. Chem. Theor. Comput. 12, 4778–4792
(2016).

41Y. Mao, M. Loipersberger, P. R. Horn, A. Das, O. Demerdash,
D. S. Levine, S. P. Veccham, T. Head-Gordon, and M. Head-
Gordon, “From intermolecular interaction energies and observ-
able shifts to component contributions and back again: A tale
of variational energy decomposition analysis,” Annu. Rev. Phys.
Chem. 72, 641–666 (2021).

42S. F. Vyboishchikov, A. Krapp, and G. Frenking, “Two comple-
mentary molecular energy decomposition schemes: The Mayer
and Ziegler–Rauk methods in comparison,” J. Chem. Phys. 129,
144111 (2008).

43J. Langlet, J. Bergès, and P. Reinhardt, “Decomposi-
tion of intermolecular interactions: comparison between
SAPT and density-functional decompositions,” J. Mol. Struct.
THEOCHEM 685, 43–56 (2004).

44J. C. Flick, D. Kosenkov, E. G. Hohenstein, C. D. Sherrill,
and L. V. Slipchenko, “Accurate prediction of noncovalent in-
teraction energies with the effective fragment potential method:
Comparison of energy components to symmetry-adapted pertur-
bation theory for the S22 test set,” J. Chem. Theory Comput.
8, 2835–2843 (2012).

45M. J. S. Phipps, T. Fox, C. S. Tautermann, and C.-K. Skylaris,
“Energy decomposition analysis approaches and their evaluation
on prototypical protein-drug interaction patterns,” Chem. Soc.
Rev. 44, 3177–3211 (2015).
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a Ĵa and K̂A =

∑
a K̂a are common Coulomb

and exchange operators of the system A. They are defined via
the given operators of the orbital a which are (i|Ja|j) = (ij|aa)
and (i|Ka|j) = (ia|aj), respectively.
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