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ABSTRACT: CH–p interactions between carbohydrates and aromatic amino acids play an 
essential role in biological systems that span all domains of life. Quantifying the strength and 
importance of these CH–p interactions is challenging because these interactions involve several 
atoms and can exist in many distinct orientations. To identify an orientational landscape of CH–p  
interactions, we constructed a dataset of close contacts formed between b-D-galactose residues 
and the aromatic amino acids, tryptophan, tyrosine, and phenylalanine, across crystallographic 
structures deposited in the Protein Data Bank. We carried out quantum mechanical calculations to 
quantify their interaction strengths. The data indicate that tryptophan-containing CH–p 
interactions have more favorable interaction energies than those formed by tyrosine or 
phenylalanine. The energetic differences between these amino acids are caused by the aromatic 
ring system electronics and size. We use individual distance and angle features to train random 
forest models to successfully predict the first-principles computed energetics of CH–p interactions. 
Using insights from our models, we define a tradeoff in CH–p interaction strength arising from 
the proximity of galactose carbons 1 and 2 versus carbons 4 and 6 to the aromatic amino acid. Our 
work demonstrates that a feature of CH–p stacking interactions is that numerous orientations allow 
for highly favorable interaction strengths. 
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1. Introduction 

Glycans coat the surface of all cells on Earth, serving as protection and identification to other 

cells and macromolecules.1-4 Glycan-binding proteins, including lectins, engage specific 

carbohydrate residues on these glycans to activate downstream functions.4-7 The proteins 

distinguish structurally similar monosaccharides within glycans through non-covalent binding 

interactions.8,9 However, saccharides, unlike other small molecule ligands, are largely hydrophilic, 

and as a result, often form weak, micromolar interactions with proteins. Carbohydrate-binding 

proteins rely on binding motifs that involve three key intermolecular interaction types: hydrogen 

bonding, metal-ion bridges, and carbohydrate–aromatic interactions.9-22 While the first two are 

relatively well understood, there is no consensus on the energetic favorability of carbohydrate–

aromatic interactions nor the relationship between their orientation and energetics.23,24 Thus, 

modeling carbohydrate–aromatic interactions is essential to understanding their role in enabling 

selective recognition. Doing so will increase our understanding of protein–glycan interactions in 

biology and assist in the development of glycomimetic therapeutics. 

Many experimental techniques, such as isothermal titration calorimetry (ITC), bi-layer 

interferometry (BLI), and nuclear magnetic resonance (NMR), have been used to provide key 

insights into protein–small molecule binding. NMR, in particular, has been useful in evaluating 

the energetics of carbohydrate aromatic interactions.22,25-33 However, the use of these experimental 

techniques is limited by the time required to produce each candidate system, the low binding 

affinities of the candidate interactions, and the inability to probe and compare specific interaction 

orientations. Alternatively, computational first-principles methods, including density functional 
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theory (DFT) and symmetry-adapted perturbation theory (SAPT) enable rapid energetic 

assessments of numerous instances of intermolecular interactions from many distinct biological 

systems.34-40 While limited by the approximations inherent to the electronic structure methods 

used,  the difficulty of computing entropic differences, and the effects of the full, solvated protein 

environment, these methods are essential tools in the analysis of carbohydrate aromatic 

interactions.   

Carbohydrate aromatic interactions can involve CH–p interactions, favorable contacts formed 

by electron donation from the p-system of an aromatic moiety into the antibonding orbital(s) of a 

carbon–hydrogen (C–H) bond.24 Individual CH–p interactions, like cation-p and p–p interactions, 

are considered weaker than hydrogen bonding interactions and typically thought to involve only 

dispersive forces.36,41-44 They are present in many systems and can facilitate protein folding and 

protein-ligand binding. Notably, they are especially prevalent in protein-carbohydrate 

interactions.25,45-50 Unlike other systems containing CH–p interactions, carbohydrate–aromatic 

interactions are made up of multiple CH–p interactions formed between distinct CH groups on the 

carbohydrate that are stacked upon p system of an aromatic amino acid. The resulting CH–p 

stacking interactions are highly favorable interactions that are believed to be more favorable than 

some hydrogen bonds and play an essential role in protein-carbohydrate recognition.22,23  

Nevertheless, the overall range of interaction strengths of CH–p interactions in comparison to 

more conventional non-covalent interactions, such as hydrogen bonds, remains poorly understood.  

Toward the goal of characterizing CH–p interactions in known glycan-binding proteins, a 

bioinformatic analysis of the Protein Data Bank (PDB), determined that 39% of all protein entries 

with a carbohydrate contained at least one CH–p stacking interaction formed between the protein 
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and carbohydrate.51 However, it is worth noting that this analysis included both covalently and 

non-covalently bound carbohydrates. Because carbohydrates that are covalently bound to the 

protein have a lower propensity for favorable non-covalent stabilization, this analysis may be a 

significant underestimate of the frequency of CH–p stacking interactions in non-covalent protein-

carbohydrate interactions.23 

 Prior computational and experimental analyses have probed the energetic favorability of 

certain carbohydrate–aromatic interactions. Most NMR evaluations observed that the 

carbohydrate–aromatic CH–p stacking interaction free energies range from 1–2 kcal/mol,52-55 

while calorimetry and computational studies of these interactions observe electronic interaction 

energies ranging from 4–8 kcal/mol.35,51,56-61 However, all CH–p stacking interactions are not 

equivalent. The stereochemistry of each carbohydrate informs the orientation of CH bonds and the 

polarization of these bonds by the neighboring hydroxyl groups. For example, electron-poor C-H 

bonds should result in more stabilizing CH-π interactions, and hydroxyl group stereochemistry 

influences the electronics of the glycan C-H bonds. NMR studies have demonstrated that b-D-

galactose forms particularly favorable CH–p stacking interactions with indoles,23 yet detailed 

energetics of these interactions and those formed by other amino acid side chains have not been 

evaluated.  Further study is required to determine the energetic favorability of these interactions 

and the orientational factors that influence their strength. 

Because carbohydrates can have multiple interacting CH groups, a number of CH–p 

stacking orientations can form between a given carbohydrate–amino acid pair. Attempts to 

determine preferred orientations for certain carbohydrates interacting with aromatic systems have 

been explored.51,56-58 Analyses of  protein–carbohydrate interactions in the PDB showed that there 
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is a propensity for glycan CH groups to be positioned at consistent distances and angles relative to 

the center of the interacting aromatic ring.51 However, no complete orientational energetic 

landscape for  CH–p stacking interactions has been determined. Thus, to effectively evaluate 

protein–carbohydrate interactions, it is essential to develop a comprehensive understanding of 

CH–p stacking interaction energetics and the orientational features that lead to their favorability.  

We compiled a dataset of over 500 CH–p stacking interactions formed between β-galactose 

residues and tryptophan, tyrosine, or phenylalanine from the PDB. We conducted first-principles 

calculations using DFT and SAPT0 benchmarked against the domain-localized pair natural orbital 

coupled cluster singles doubles with perturbative triples (DLPNO-CCSD(T)) level of theory. We 

subsequently trained random forest machine learning models to predict interaction energies and 

identified an energetic landscape that defines these CH–p stacking interactions. We found that 

they are energetically favorable and therefore contribute significantly to the energy of protein-

carbohydrate binding, thereby playing a key role in protein–carbohydrate complexation. The 

energetic landscape for these interactions demonstrates that they have high orientational flexibility 

and explains the difference in energetics of CH–p stacking interactions formed by tryptophan, 

tyrosine, and phenylalanine. This information is essential for understanding protein–carbohydrate 

binding interactions and the rational design of new therapeutics that target these binding sites.  

2. Dataset Curation 

 We built a dataset of CH–p interactions formed by b-D-galactose (galactose) and aromatic 

amino acids in protein-carbohydrate binding pockets, to assess their orientational dependence and 

energetics.  We used the advanced search tool in the Protein Data Bank (PDB)62 on 11.19.2021 to 

identify protein structures containing a galactose lacking any covalent bond to the protein. We 
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required that the protein structure determined by X-ray crystallography has an R factor of at least 

20% and an overall resolution of no worse than 2 Å. We first identified close contacts between 

galactose and three aromatic amino acids: tryptophan, tyrosine, and phenylalanine by selecting all 

amino acid–galactose pairs in which the centroids of the two species were within 7 Å of one 

another. Histidine was excluded from this dataset because it is believed to primarily form hydrogen 

bonding interactions, not CH–p interactions.23 We obtained the electron density score for 

individual atoms63 (EDIA) and its combination for molecular fragments (EDIAm) for each relevant 

protein residue and carbohydrate monomer. We retained close contacts for those species that had 

EDIAm scores of at least 0.8, the previously suggested cutoff63, to ensure that all heavy atoms are 

well resolved. Finally, because we included  structures with monomeric galactose or with galactose 

as a component of a larger polysaccharide ligand, the anomeric oxygen substituent (O1) atoms 

often participated in glycosidic linkages and were assigned to another carbohydrate monomer. 

Thus, we omitted any attached O1 atoms when processing the PDB structures and reinserted them 

by adding an oxygen atom bound to C1 by a 1.43 Å sp3 bond along the PyMOL v. 2.5.284-inserted 

equatorial C–H bond vector (Supporting Information Figure S1). In total, this screen identified 

351 tryptophan, 154 tyrosine, and 45 phenylalanine side chains with close contacts to galactose 

(Supporting Information Table S1).  

Due to the structural similarity between tyrosine and phenylalanine and the small size of 

those datasets, we augmented our data set by transforming tyrosine into phenylalanine and vice 

versa to generate additional close contacts. We removed the phenol group moiety from the set of 

tyrosine–galactose pairs to generate new phenylalanine interactions and carried out the reverse 

operation on the phenylalanine interactions, generating a 1.38 Å C–O bond para to the b carbon 

(Supporting Information Figure S2). For all close contacts, hydrogens were added by PyMOL v. 
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2.5.2 and optimized using DFT (see Computational Methods). Two structures that formed residue–

carbohydrate interatomic clashes (i.e., defined as having a distance relative to the sum of van der 

Waals radii of < 0.75 for any pair of atoms) after the addition of the tyrosine phenol group were 

removed from the dataset of newly generated tyrosine–galactose close contacts (Supporting 

Information Figure S2). The resulting dataset contains 351 tryptophan, 197 tyrosine (i.e., 43 non-

native), and 199 phenylalanine (i.e., 154 non-native) close contacts.  

Because some close contacts in this dataset do not contain CH–p interactions, we 

categorized each contact into one of the following three categories: CH–p stacking interactions, 

hydrogen bonding interactions, or all other non-specific contacts (Figure 1). CH–p stacking 

interactions are defined as instances in which the galactose stacks on top of the amino acid and 

three or more CH bonds are localized over the aromatic ring system (Figure 1). CH bonds are 

considered localized over the aromatic ring when the carbon atom is positioned within 4.15 Å of 

the heavy atoms on the aromatic residue (Figure 1). The resulting dataset contained 272 

tryptophan, 69 tyrosine, and 69 phenylalanine CH–p stacking interactions.  Hydrogen bonding 

interactions formed between the galactose and the aromatic side chain were identified after 

hydrogen geometries were optimized with DFT by using the polar contacts function in PyMOL, 

which annotates potential hydrogen bonding interactions that have a maximum acceptor-donor 

distance of 3.6 Å and a minimum acceptor–hydrogen–donor angle of 120° (Figure 1 and 

Supporting Information Figure S3). There were 29 tryptophan and 4 tyrosine sidechains that 

formed hydrogen bonds that met these criteria. In these cases, the N-H and O-H atoms on the 

sidechains primarily acted as hydrogen bond donors to oxygen atoms on the galactose. The 

remaining 50 tryptophan, 124 tyrosine, and 130 phenylalanine side chains formed non-specific 

interactions that did not meet either criterion. Thus, these sidechains had two or fewer C-H bonds 
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localized over the aromatic ring system and no hydrogen bonds (Figure 1). Thus, from 550 native 

close contacts, 62% of the close contacts form a CH–p stacking interaction, 6% form a hydrogen 

bond, and the other 32% are in proximity but form non-specific close contacts (Supporting 

Information Figure S4 and Table S2).  

 
Figure 1. Visualization of one example for each of the three categories of contacts; CH–p stacking 
interactions, hydrogen bonding interactions, and other, non-specific close contacts. Atomic 
contacts are shown in yellow. Atoms are colored as follows: carbon in gray, oxygen in red, 
hydrogen in white, and nitrogen in blue. 
 

 The close contacts in this dataset are initially derived from 499 protein structures that have 

a non-covalently bound β-galactoside. Analysis of the types of protein structures contained in the 

set reveals that 42% were carbohydrate-binding proteins, 20% hydrolases, 16% viral proteins, 7% 

toxins, 7% transferases, and 8% other miscellaneous types. For 169 of these structures, we did not 

observe close contacts between galactose and an aromatic amino acid with good density support 

(i.e., from EDIA scores), whereas we identified 550 well-resolved close contacts for the other 330 

structures (i.e., 1 or more per protein). All unique close contacts were retained, including those 

where multiple amino acids interact with the same carbohydrate (i.e., multiple close contacts), and 
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cases where contacts were found on repeated protein subunits (Supporting Information Figure S5 

and Table S3).  

3. Results and Discussion 

3a. Energetic Evaluation of β-Galactoside–Aromatic Amino Acid Interactions 

We evaluated the interaction strength of the close contacts between galactose and aromatic 

amino acids to assess the contribution of individual side chains to non-covalent protein-

carbohydrate binding. We computed interaction energies using low-cost hybrid DFT (i.e., B3LYP-

D3)64,65 and performed energetic decomposition analysis using symmetry-adapted perturbation 

theory (SAPT0)66,67, and functional group SAPT (F-SAPT)68 for the full dataset of close contacts 

(Supporting Information Figure S6). These methods were selected for computational efficiency. 

Still, B3LYP-D3 has important limitations in evaluating long-range dispersion interactions from 

first-principles and SAPT0 has limitations in energetic accuracy given truncations in the 

perturbative expansion. Some prior analyses of computational method accuracy have been carried 

out for the study of CH–p interactions69-75, yet these generally focused on alkane-containing 

interactions. Thus, further validation of B3LYP-D3 and SAPT0 method accuracy on these 

carbohydrate aromatic interactions was necessary.  

We assessed the validity of B3LYP-D3 and SAPT0 by computing interaction energies 

using solvent-corrected DLPNO-CCSD(T) and SAPT2 on a benchmarking set of 50 CH–

p stacking interactions (see Computational Methods and Supporting Information Figures S6–S11). 

Comparisons between B3LYP-D3 with implicit solvent and solvent-corrected DLPNO-CCSD(T) 

show a good agreement with an R2 of 0.91. We found more favorable B3LYP-D3 interaction 

energies by 1 kcal/mol, on average (Supporting Information Figure S7). Comparing gas-phase 

SAPT0 and SAPT2 gives an R2 of 0.96, while the analogous DLPNO-CCSD(T) energetics gives 
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an R2 of 0.90 (Supporting Information Figures S8 and S9). As expected, comparing SAPT0 

interaction energies to solvated DLPNO-CCSD(T) energies yields a lower R2 of 0.75, and SAPT0 

interaction energies are roughly 1.5 times more favorable than DLPNO-CCSD(T) counterparts 

(Supporting Information Figure S10). These limitations of SAPT0 primarily derive from the lack 

of solvent treatment to mimic the screening effect of the protein environment. Nevertheless, we 

use SAPT0 and F-SAPT for energetic decomposition analysis rather than DFT-based energy 

decomposition analysis (EDA) schemes because they recover dispersive interactions from first-

principles and enable energetic decomposition to understand the contributions of protein functional 

groups (i.e., with F-SAPT, see Sec. 3b). We report total interaction energy comparisons using 

values computed with B3LYP-D3. It was selected for its ability to incorporate solvent and its good 

reproduction of solvent-environment-corrected DLPNO-CCSD(T) interaction energies. 

The B3LYP-D3 DFT interaction energies in the full data set of both native and non-native 

774 close contacts range from -10.1 to -0.6 kcal/mol. Comparing the three general categories, CH–

p stacking interactions, hydrogen bonding interactions, and all other close contacts, we observe 

that the categories have distinct albeit overlapping DFT interaction energy distributions (ANOVA 

p-value=9x10-145, Figure 2). On average, the CH–p stacking interactions have B3LYP-D3 

interaction energies of -6.1 kcal/mol, whereas hydrogen bonding interactions have interaction 

energies of -4.4 kcal/mol and the other close contacts have an average of -3.2 kcal/mol (Figure 2 

and Supporting Information Table S4). Thus, CH–p stacking interactions are the strongest 

interactions formed between galactose and isolated tryptophan, tyrosine, or phenylalanine side 

chains.  

https://doi.org/10.26434/chemrxiv-2024-k3bw2 ORCID: https://orcid.org/0000-0001-9342-0191 Content not peer-reviewed by ChemRxiv. License: CC BY 4.0

https://doi.org/10.26434/chemrxiv-2024-k3bw2
https://orcid.org/0000-0001-9342-0191
https://creativecommons.org/licenses/by/4.0/


11 

 

 
Figure 2. Unnormalized distributions of B3LYP-D3 DFT interaction energies for the three 
categories of galactose–aromatic amino acid close contacts shown as translucent histograms with 
bin width 0.65 kcal/mol: CH–p stacking interactions (blue), hydrogen bonding interactions (red), 
and other, non-specific contacts (gray), of the full dataset. Interaction energies were evaluated 
using the aug-cc-pVDZ basis set and implicit solvent corrections were computed using the 
conductor-like polarizable continuum model (C-PCM) and reported in kcal/mol. Atoms are 
colored as follows: carbon in gray, oxygen in red, hydrogen in white, and nitrogen in blue. 
 

Turning to SAPT0 to quantify interaction energy components (i.e., electrostatic versus 

dispersion) further highlights differences between the categories of close contacts. The non-

specific contacts behave most similarly to the weakest CH–p stacking or hydrogen bonding 

interactions, suggesting that they may include some favorable dispersive and electrostatic contacts 

without forming stacking interactions or hydrogen bonds.  CH–p  stacking interactions have a 

favorable one-to-one relationship between the electrostatic and dispersion energies (Figure 3). 

Thus, although CH–p stacking interactions are predominantly thought to be dispersive, the 

electrostatic contribution is significant. In contrast, hydrogen bonding interactions are stabilized 

more by the electrostatic contribution, which outweighs the dispersion component by a factor of 

two on average (Figure 3). While both interaction types have energetic contributions from 

dispersion and electrostatic energies, we previously noted that CH–p stacking interactions are 
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more favorable overall than the hydrogen bonding interactions we examined. Although both 

interactions have a similar electrostatic contribution, the CH–p stacking interaction has a 

considerably larger favorable dispersion contribution. All other close contacts that form two or 

fewer C-H interactions (i.e., less than our criteria for CH–p stacking) or a non-specific contact 

have an intermediate contribution from dispersion and electrostatic energies.  

 

Figure 3. Comparison of SAPT0 dispersion and electrostatic energies for the three categories of 
interactions: CH–p stacking interactions (blue), hydrogen bonding interactions (red), and non-
specific interactions (gray), of the full dataset. Best fit lines for the CH–p stacking interactions 
(blue), hydrogen bonding interactions (red), and other close contacts (gray) are shown. All energies 
are reported in kcal/mol. SAPT0 energies were evaluated using the aug-cc-pVDZ basis set. 

Next, we compared the interaction strengths of CH–p stacking interactions formed by 

tryptophan, tyrosine, and phenylalanine. While the 410 relevant interactions in our dataset have 

hybrid DFT interaction energies that range from -10.1 to -2.1 kcal/mol, the strongest are those 

formed with tryptophan, the most highly enriched amino acid in protein–carbohydrate binding 
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pockets23 (Figure 4). These CH–p stacking interactions are more energetically favorable on 

average by 3 kcal/mol than those formed with tyrosine and phenylalanine (Figure 4). Tryptophan 

has a larger and more electron-rich aromatic ring system enabling more favorable CH–p contacts 

and stronger dispersion and electrostatic energy contributions (Supporting Information Figure 

S12). 

Figure 4. Box and whisker plot comparisons with all data points shown of B3LYP-D3 DFT 
interaction energies computed with C-PCM implicit solvent corrections of (left) CH–p stacking 
interactions formed with tryptophan (blue), tyrosine (green), and phenylalanine (light orange); and 
(right) CH–p stacking interactions formed with tyrosine with e=10 (green), deprotonated tyrosine 
in its phenoxide form with e=10 (purple), tyrosine with e=80 (light green), and phenoxide with 
e=80 (light purple). Each box is bounded by the upper and lower quartiles of the dataset and split 
by the median; it contains the interquartile range. The whiskers extend up to 1.5 times the 
interquartile range on either side of the box. All points that lie outside that range are defined as 
outliers and shown as filled diamonds on the left plot and filled circles on the right plot. The IEs 
were evaluated using the aug-cc-pVDZ basis set and are reported in kcal/mol.  

 
Both the native and non-native, constructed CH–p stacking interactions formed with 

tyrosine have comparable energetics to those involving phenylalanine, indicating that the effect of 

the neutral alcohol group on the overall interaction energy is minimal when evaluating CH–

p stacking interactions (Figure 4). However, when the phenol group of tyrosine is fully 

https://doi.org/10.26434/chemrxiv-2024-k3bw2 ORCID: https://orcid.org/0000-0001-9342-0191 Content not peer-reviewed by ChemRxiv. License: CC BY 4.0

https://doi.org/10.26434/chemrxiv-2024-k3bw2
https://orcid.org/0000-0001-9342-0191
https://creativecommons.org/licenses/by/4.0/


14 

 

deprotonated (pKa 10.1) or hydrogen bonded to negatively charged amino acids, the increased 

electron density in the aromatic ring  could lead to stronger CH–p interactions. To examine the 

potential impact of increased electron density on CH–p stacking interaction strength, we converted 

the 51 native tyrosine CH–p stacking interactions to phenoxide CH–p stacking interactions by 

deprotonating the acidic hydrogen and coordinating an explicit water molecule to the charged 

oxygen atom for charge stabilization (see Computational Methods and Supporting Information 

Figure S13). The resulting energetics indicate that phenoxide can form more stable CH–p stacking 

interactions than neutral tyrosine by 1.1 kcal/mol. This value was calculated at the low dielectric 

conditions (e=10) representative of a buried binding pocket, and the enhancement is more limited 

effect in the high dielectric conditions (e=80) representative of exposure to aqueous solution 

(Figure 4 and Supporting Information Figure S13). Thus, increasing the electron density in 

aromatic ring systems can stabilize CH–p stacking interactions, demonstrating the importance of 

the electrostatic contribution. These observations provide some rationale for the increased 

propensity of tyrosine, but not phenylalanine, in glycan binding sites23 and may enable rational 

design of more favorable protein-carbohydrate binding interactions in therapeutic efforts.  

3b. Evaluating Individual CH–p Contributions 

 

The identified CH–p stacking interactions involve multiple glycan C-H bonds positioned 

over the aromatic ring. Thus, we used functional group SAPT (i.e., F-SAPT) to decompose the 

interaction energies into the energetic contributions from different regions of galactose. This 

analysis provides a measure of interaction strength between distinct functional groups (i.e., 

portions of a molecule). For galactose residues, we defined each "functional group" as containing 

one galactose heavy atom (either carbon or oxygen) and any bonded hydrogen atom(s) (Figure 5). 
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For the amino acids, we distinguished only the aromatic and aliphatic regions (Figure 5). The CH–

p stacking interactions involve favorable contributions from the aromatic ring(s) and multiple CH 

and OH groups on galactose (Figure 5). They can also include one or more weakly repulsive 

interactions between the aromatic ring system and closely interacting CH groups from the 

galactose in which the repulsive exchange energy outweighs the favorable dispersion energy. As 

a result, optimizing the total energy of a CH–p stacking interaction can require a tradeoff where 

interacting atoms in too close proximity to the aromatic ring have energetics dominated by an 

unfavorable exchange repulsion energy that is offset by favorable dispersion and electrostatic 

energies of other, connected atoms (Figure 5). Notably, the CH–p stacking interactions involve 

favorable contributions from more participating atoms on galactose than hydrogen bonding or 

other non-specific interactions, demonstrating the cohesive nature of the interactions (Figure 5). 

Additionally, CH–p interactions are also favorable at longer distances than hydrogen bonding and 

other electrostatic interactions. 

 

Figure 5. (left) Delineation of selected F-SAPT functional groups. 14 functional groups are shown 
that are differentiated by ovals that each contain one functional group. Oxygen-containing 
functional groups are shown in red ovals, the aromatic ring functional group is shown in a blue 
oval, and all other carbon-containing functional groups are shown with gray ovals. Atoms are 
colored as follows: carbon in gray, oxygen in red, and nitrogen in blue. (right) F-SAPT 
visualizations of interaction energy contributions (in kcal/mol) for representative structures from 
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each of the three categories of tryptophan close contacts with functional groups colored by their 
interaction energy following the inset colorbar and defined corresponding to the groupings on the 
left.  

 

Given the range of contributions of individual CH and OH groups to the stabilization of 

carbohydrate–aromatic CH–p stacking interactions, we aimed to quantify the relationship between 

orientation and energetic contribution for all defined functional groups (Figure 5). We evaluated 

the orientation of each galactose CH group by computing the distance of the galactose carbon atom 

(Cn) to the centroid (Ctr) of the nearest aromatic ring (dCn-Ctr), and the angle between the distance 

vector, dCn-Ctr, and the projection of Cn onto the aromatic ring plane (q Proj-Cn-Ctr), as proposed by 

Houser and coworkers51 (Scheme 1). Using the previous maximum distance cutoff of 4.6 Å, we 

observe that the CH–p interactions in our data set preferentially occupy angles between 5° and 50° 

(Supporting Information Figure S14). The angles and distances are linearly correlated, with shorter 

distances associated with more acute angles (Supporting Information Figure S13).  

Scheme 1. Visualization of carbon distance and angle features used to train random forest models. 
The feature dCn-Ctr (green) is the distance between a carbon atom (n) on galactose and the centroid 
of the nearest aromatic ring. The feature qProj-Cn-Ctr (red) is the angle between the distance vector 
and the vector ProjCn (blue) formed by the projection of Cn onto the plane of the aromatic ring 
system. 
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Using these orientational features, we analyzed the F-SAPT energetics of all 1706 carbon 

atoms capable of forming a CH–p interaction. These include carbon atoms within the distance 

cutoff of 4.6 Å for which the covalently-bound hydrogen atom is closer to the aromatic ring than 

the covalently-bound oxygen atom (i.e., carbon atoms C1, C3, C4, C5, and C6). However, all 

galactose CH–p donors are also polarized by a neighboring oxygen atom. Depending on glycan 

stereochemistry, some of these will engage in hyperconjugative interactions with neighboring 

hydroxyl groups.  Thus, for each potential CH group (Cn), we evaluated the energetic contributions 

from three functional group sets: Cn, containing the carbon atom only; On, containing the bound 

oxygen atom only; and Cn + On, containing the two together (Figure 6).  

 

Figure 6. Scatter plots showing the dependence of F-SAPT energy contributions on the 
orientations of the listed galactose atoms to the aromatic ring centroids in CH–p stacking 
interactions, reported in kcal/mol. Rows are separated by the included carbon atoms: (top row) 
endocyclic galactose carbon atoms in the pyranose ring for which the attached hydrogen is closer 
to the aromatic ring than the attached hydroxyl and (bottom row) exocyclic galactose carbon atom 
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6, which is outside of the pyranose ring. Columns are separated by the F-SAPT "functional groups" 
included in the energy contribution reported: (left) the sum of the contributions from the carbon 
atom’s group and its attached oxygen atom’s group, (center) the carbon atom’s group, and (right) 
the oxygen atom’s group. The F-SAPT contribution is shown according to the color scale at the 
far right. Molecule insets show example functional groups included for each plot, with atoms 
included in the functional group shown  in a sphere representation with saturated coloring. Atoms 
are colored as follows: carbon in gray, oxygen in red, and hydrogen in white. 

 

Comparing the position–energy relationships for each carbon atom, we found notable 

differences in the energetic landscapes of endocyclic carbon atoms (C1, C3, C4, and C5) versus 

exocyclic carbon atoms (C6) (Figure 6). Exocyclic carbon atoms have more favorable energetic 

contributions, with an average contribution of -0.5 kcal/mol, whereas endocyclic carbons have less 

favorable energy contributions, with an average of +0.5 kcal/mol (Figure 6 and Supporting 

Information Table S5). These energetic differences can be attributed to two factors. First, exocyclic 

carbon atoms have two alkyl hydrogen atoms capable of forming favorable contacts, and second, 

the exocyclic CH groups can rotate to form more optimal CH–p interactions, unlike the more 

conformationally restricted endocyclic CH groups (Supporting Information Figures S15 and S16).  

In analyzing all CH–p donors, some C-H groups (Cn) contribute favorable energetic 

contributions, while others  (59%) have unfavorable interaction energies, (Supporting Information 

Table S5).  In contrast, the oxygen groups (On) have nearly exclusively (99%) favorable energetic 

contributions, with an average value of -1.6 kcal/mol, and therefore play a significant role in 

stabilizing CH–p interactions (Supporting Information Table S5). This follows a consistent trend: 

the most favorable On contributions and the least favorable Cn contributions occur at positions 

with the shortest observed distances for each angle (Scheme 1 and Figure 6). This behavior is 

driven for the Cn groups by a repulsive exchange energy contribution and for the On groups by a 

stabilizing electrostatic energy contribution (Supporting Information Figures S17-20). Summing 

https://doi.org/10.26434/chemrxiv-2024-k3bw2 ORCID: https://orcid.org/0000-0001-9342-0191 Content not peer-reviewed by ChemRxiv. License: CC BY 4.0

https://doi.org/10.26434/chemrxiv-2024-k3bw2
https://orcid.org/0000-0001-9342-0191
https://creativecommons.org/licenses/by/4.0/


19 

 

these to get the total Cn+On contribution, we observe a range of favorable local minima, which 

indicates that polarized CH–p interactions found in galactose-aromatic interactions contribute 

favorable energetics in a range of orientations.  

3c. Predicting CH–p Interaction Energies from Orientations. 

 Given the observed dependence of component interaction energies on the orientation of a 

given CH–p interaction, we examined the relationship between orientation and energetics for the 

full set of carbohydrate–aromatic CH–p stacking interactions using random forest regression 

models. We trained random forest models to predict total interaction energies from B3LYP-D3 

and SAPT0 as well as the SAPT0 energetic components (i.e., dispersion, electrostatic, exchange, 

and induction). As inputs to our model, we used features that defined the CH–p stacking 

orientation without requiring any knowledge of hydrogen atom positions. These features include 

the distance (dCn-Ctr) and angle (q Proj-Cn-Ctr) of each carbon (i.e., where n corresponds to 1-6 for C1-

C6) in galactose to the centroid of the interacting aromatic ring (Scheme 1). While these features 

are correlated, they fully define the locations of the galactose atoms relative to the aromatic ring 

centroids, capturing the variability in the observed orientations (Supporting Information Table S6).  

 
The trained random forest models predicted all target energies with a mean absolute error 

(MAE) of less than 1.2 kcal/mol and a mean absolute percentage error (MAPE) of less than 16% 

(Supporting Information Table S7 and Figure S23). Using R2 as a figure of merit, the SAPT0 

component dispersion, electrostatics, and exchange energies were predicted most accurately (R2 

values of 0.83, 0.73, and 0.75, respectively), while B3LYP-D3 and SAPT0 interaction energies 

were predicted less accurately (R2 values of 0.47 and 0.59, respectively, Figure 7). Nevertheless, 

the MAE of 0.51 kcal/mol for B3LYP-D3 and 0.69 kcal/mol for SAPT0 are still lower than the 
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expected error of the underlying methods (Supporting Information Table S7). All models 

underestimate the strongest interactions, likely due to the small dataset size and limited number of 

structures with these interaction strengths (Figure 7 and Supporting Information Figure S21). 

Comparing these results to models trained on interactions containing only tryptophan or only 

tyrosine and phenylalanine, the models trained on all data perform as well as or better than models 

trained on specific data subsets (Supporting Information Tables S8 and S9 and Figures S22 and 

S23).  

Figure 7. Parity plots of test set (left) SAPT0 total energy, (top center) dispersion, (upper right) 
electrostatics, (bottom center) exchange, and (bottom right) induction energy predicted by random 
forest models. All energies reported in kcal/mol. R2 values reported in the bottom right of all plots. 

  

In evaluating the feature importance for each model (see Computational Methods), we 

identified the features most critical for predicting the energetic strength of a given CH–p stacking 

orientation. Despite differences in the most important features for each model, four features, dC2-

Ctr, dC3-Ctr, dC5-Ctr, and dC6-Ctr, consistently rank among the most important (Supporting Information 

Table S10). These features involve carbon atoms that are distributed across the carbohydrate. 
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These descriptors effectively capture the interaction proximity via dC3-Ctr and dC5-Ctr, because C3 

and C5 participate in all galactose CH–p stacking interactions. These descriptors also capture the 

participating CH groups via dC2-Ctr and dC6-Ctr, which quantify which face of the carbohydrate is 

participating in the interaction (Supporting Information Figure S26). Surprisingly, no angle 

features are critical across models, suggesting that the distance features effectively capture the 

interaction orientation.  

3d. Mapping the Relationship between the CH–p Interaction Energy and Orientation  

Motivated by the limited number of features selected by random forest feature importance 

analysis, we aimed to further identify a minimal set of features that define an energy landscape for 

galactose–aromatic CH–p interactions. Because carbon atoms C3 and C5 consistently participate 

in component CH–p interactions, they do not distinguish between the different systems in our set. 

In contrast, carbon atoms C1, C4, and C6 are involved in some but not all CH–p stacking 

interactions (Supporting Information Figure S24). For this reason, we used the distances dC1-Ctr, 

dC4-Ctr, and dC6-Ctr to define which portion of the ring participates in the CH–p stacking interaction. 

This analysis indicated only dC6-Ctr is universally essential in our feature set (see Sec. 3c). Since 

the identity of the aromatic ring system influences the strength of the CH–p stacking interaction, 

we considered features that are sums of multiple distances to capture the number and proximity of 

CH groups interacting with the aromatic ring system and differentiate interactions formed by 

tryptophan from those formed by tyrosine and phenylalanine.  

Finally, we selected two composite features to delineate the CH group proximity, dC1-

Ctr+dC2-Ctr and dC4-Ctr+dC6-Ctr. These features capture an energetic landscape for CH–p stacking 

interactions, effectively differentiating interactions by their energetic favorability (Figure 8). 
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Importantly, these features contain no direct information regarding the face or orientation of the 

aromatic ring system. The relative facial positioning and rotation of the aromatic ring(s) has no 

intrinsic influence on the energetics of the interaction. Conversely, CH group proximity informs 

the interaction strength (Figure 8). That is, the most favorable interactions have the smallest dC1-

Ctr + dC2-Ctr and dC4-Ctr + dC6-Ctr values. However, the conformation of galactose, the size of the 

aromatic ring systems, and the exchange energy prevent the minimization of both features to very 

small values, giving rise to an energetic tradeoff (Figure 8). Exploring this tradeoff, we find that it 

is possible to form CH–p stacking interactions with maximal interaction strength by minimizing 

either or both features, and thus, bringing any subset of 3 or more galactose C-H groups into close 

proximity of the aromatic ring. This demonstrates that CH–p stacking interactions do not have one 

energetic minimum, but rather, multiple relative orientations give rise to highly favorable CH-p 

interactions.  

Figure 8. Scatterplots of the orientations of CH–p stacking interactions formed by (left) all three 
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aromatic amino acids, (center) only tryptophan, or (right) only tyrosine and phenylalanine. Each 
data point is plotted according to dC1-Ctr + dC2-Ctr versus dC4-Ctr + dC6-Ctr and colored by the B3LYP-
D3 DFT interaction energy computed using the aug-cc-pVDZ basis set reported in kcal/mol, 
according to the color scale shown at the far right. Five data points (A–E) are highlighted on the 
plots and the corresponding CH–p stacking interactions are shown. Atoms are colored as follows: 
carbon atoms in gray, oxygen atoms in red, nitrogen atoms in blue, and hydrogen atoms in white. 
Each component CH–p interaction with dCn-Ctr < 4.6 Å and q Proj-Cn-Ctr < 50° is visualized  by a 
dotted yellow line between the interacting carbon atom and the nearest aromatic ring centroid.    

We explore optimal orientations, by examining examples of galactose–tryptophan CH–

p stacking interactions formed by three proteins, Bacteroides thetaiotaomicron glycoside 

hydrolase (BtGH97, PDB ID 5E1Q76), an Escherichia coli heat-labile enterotoxin (PDB ID 

2XRS77), and Marasimus oreades agglutinin (MOA) an M. oreades lectin (PDB ID 3EF278). All 

three CH–p stacking interactions determined from the carbohydrate–amino acid pair from these 

proteins have highly favorable interaction energies. The B3LYP-D3 interaction energy of the CH–

p stacking interaction formed by BtGH97 is -8.3 kcal/mol, that of the enterotoxin is -9.6 kcal/mol, 

and that of the MOA lectin is -9.4 kcal/mol. Each protein-carbohydrate interaction has a distinct 

orientation and value along the dC1-Ctr + dC2-Ctr and dC4-Ctr + dC6-Ctr landscape (Figure 8). BtGH97 

forms CH–p component interactions with carbon atoms C1, C3, and C5, while the enterotoxin and 

MOA lectin form component interactions with carbon atoms C3, C4, C5, and C6, each at a unique 

interaction angle (Figure 8). These differences in the CH–p stacking orientation enable each 

carbohydrate ligand to form optimal hydrogen bonds to neighboring amino acid residues while 

maintaining a favorable carbohydrate–aromatic stabilization (Figure 9 and Supporting Information 

Figures S25–S27).  
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Figure 9. Protein-carbohydrate interactions of (left) Bacteroides thetaiotaomicron glycoside 
hydrolase and (right) Vatairea macrocarpa seed lectin with their carbohydrate ligands. CH–p 
interactions are shown as yellow dashed lines, and calcium coordinating and hydrogen bonding 
interactions are shown as purple dashed lines. The surface of the protein structure is shown in light 
gray. Atoms are colored as follows: carbon in gray, oxygen in red, hydrogen in white, nitrogen in 
blue, and calcium in green. Component CH–p interactions with dCn-Ctr < 4.6 Å and q Proj-Cn-Ctr < 
50° are visualized as dotted yellow lines between the interacting hydrogen atom and nearest 
aromatic ring centroid.   

Next, comparing the CH–p stacking interactions formed by each of the different amino 

acids, we observe that while the lowest-energy stacking interactions formed by tyrosine and 

phenylalanine occupy overlapping regions of the conformational space as those formed by 

tryptophan, the galactose–tryptophan interactions tend to have shorter values for dC1-Ctr + dC2-Ctr 

and dC4-Ctr + dC6-Ctr than tyrosine and phenylalanine interactions, with minima at 7.7 Å and 6.9 Å 

versus 8.1 Å and 7.6 Å, respectively (Figure 8). This indicates that the same minimization of dC1-

Ctr + dC2-Ctr and dC4-Ctr + dC6-Ctr possible for the bicyclic indole on tryptophan is not possible for 

smaller, unicyclic aromatic rings on tyrosine and phenylalanine and confirms that the size of the 

aromatic ring system is the driving factor that enables tryptophan to make stronger interactions. 

Evaluating the distribution of tyrosine and phenylalanine CH–p stacking interactions, we 

note that, although distinct from tryptophan interactions, these do follow the same energetic 

tradeoff with multiple optimal orientations (Figure 8). Two representative proteins, Lactococcus 

https://doi.org/10.26434/chemrxiv-2024-k3bw2 ORCID: https://orcid.org/0000-0001-9342-0191 Content not peer-reviewed by ChemRxiv. License: CC BY 4.0

https://doi.org/10.26434/chemrxiv-2024-k3bw2
https://orcid.org/0000-0001-9342-0191
https://creativecommons.org/licenses/by/4.0/


25 

 

lactis galactose mutarotase (PDB ID 1NSM79) and Vatairea macrocarpa seed lectin (PDB ID 

4WV880), form CH–p stacking interactions with similar energetic favorability. The CH–

p interaction formed by a phenylalanine in galactose mutarotase has an interaction energy of -6.6 

kcal/mol, while the one formed by a non-native tyrosine in the seed lectin is -7.0 kcal/mol (Figure 

8). The galactose mutarotase forms component interactions with carbon atoms C1, C3, C4, and 

C5, while the seed lectin forms component interactions with carbon atoms C3, C4, C5, and C6 

(Figures 8 and 9). Examining the structures of these protein binding pockets reinforces that 

carbohydrate binding is stabilized by hydrogen bonds to nearby amino acids that further influence 

the galactose orientation. Thus, the orientational flexibility of the CH–p stacking interactions 

enables the optimization of all involved interactions (Figure 9 and Supporting Information Figures 

S28 and S29). This analysis provides insight into the role of carbohydrate-aromatic interactions in 

enzyme processivity81-83, demonstrating their ability to stabilize a bound substrate through the 

range of orientations that must occur during processive catalysis.  

4. Conclusion 

Our analysis of non-covalent protein–carbohydrate binding interactions in the PDB reveals 

critical attributes of CH–p interactions between b-D-galactose and tryptophan, tyrosine, and 

phenylalanine residues. We found that the single amino acid–carbohydrate interaction energies are 

energetically favorable by 4 to 8 kcal/mol (i.e., more than hydrogen bonding interactions formed 

by those same pairs), demonstrating the importance of CH–p stacking interactions in protein–

carbohydrate binding. The strongest interactions were formed with tryptophan, while those formed 

with tyrosine and phenylalanine were generally weaker. This effect is predominantly driven by the 

https://doi.org/10.26434/chemrxiv-2024-k3bw2 ORCID: https://orcid.org/0000-0001-9342-0191 Content not peer-reviewed by ChemRxiv. License: CC BY 4.0

https://doi.org/10.26434/chemrxiv-2024-k3bw2
https://orcid.org/0000-0001-9342-0191
https://creativecommons.org/licenses/by/4.0/


26 

 

size and electronics of the aromatic ring system, with larger rings and those with higher electron 

density enabling more favorable CH–p contacts.  

We then trained random forest machine learning models to predict CH–p stacking 

interaction energies based on their orientations and found distances between the galactose carbon 

atoms and the aromatic ring centroids to be the most predictive features. Finally, we identified an 

energetic landscape for β-galactose–aromatic CH–p stacking interactions using only the distances 

between galactose carbon atoms and aromatic amino acid ring centroids. This landscape 

demonstrates that CH–p stacking interactions have high orientational flexibility with a continuous 

minimum energy well that corresponds to many distinct orientations. Optimal CH–p stacking 

interactions can be formed by maximizing favorable contacts between different subsets of 

hydrogen atoms and the aromatic ring(s). 

Many diverse orientations of CH–p stacking interactions contribute significant 

stabilization to protein–carbohydrate interactions. This observation enables further evaluation of 

the role of CH–p stacking interactions in conferring selectivity for protein–carbohydrate binding 

and processivity in enzymatic reactions. In total, our studies reveal the molecular underpinnings 

of protein–carbohydrate binding interactions and the importance of improving molecular 

simulation forcefields and docking energy functions to account fully for this contribution. 

5. Computational Methods 

 A total of 550 close contacts between b-D-galactose and aromatic amino acids, tryptophan, 

tyrosine, and phenylalanine, were identified from a search of the Protein Data Bank (PDB)62. To 

obtain coordinates for electronic structure calculations of each close contact, the heavy atom 
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positions of b-D-galactose and the amino acid sidechain were obtained from each PDB structure. 

Protein backbone atoms (C, Ca, O, and N) were not included to reduce the computational 

complexity. From these structures, hydrogen atoms were added using PyMOL v. 2.5.284. Final 

geometries were obtained by freezing heavy atom coordinates and performing a DFT geometry 

optimization on all hydrogen atoms to preserve the close contact observed in the protein structure. 

These geometry optimizations were performed using the developer version 1.9-2018.11 of 

TeraChem85 with the global hybrid B3LYP64,65 DFT functional and the aug-cc-pVDZ basis set. 

The semiempirical DFT-D386 dispersion correction with default Becke–Johnson damping87 was 

applied. To approximate the contribution of the protein environment, the implicit conductor-like 

polarizable continuum model (C-PCM)88,89, as implemented in TeraChem90, was used with e = 10. 

The L-BFGS algorithm, as implemented in DL-FIND91 was used to perform the optimizations. 

The default thresholds of 4.5x10-4 hartree/bohr for the maximum gradient and 1x10-6 hartree for 

self-consistent field (SCF) convergence were employed. All calculations were closed-shell singlet 

calculations. 

 Tyrosine phenoxide contacts were generated from initial structures by deprotonating the 

acidic phenol hydrogen and placing a water molecule beneath the oxygen atom of the resulting 

phenoxide. The water molecule was optimized in Avogadro to satisfy a constraint of an O-O 

distance of 2.8 Å between water and the phenoxide oxygen using the built in MMFF94 force field. 

Final geometries were again obtained by freezing all heavy atom coordinates and performing a 

B3LYP-D3/aug-cc-pVDZ geometry optimization on hydrogen atoms only using TeraChem. To 

explore the effect of solvent on these interactions, (C-PCM)88 was used with e = 10 and 80. 

 Single-point calculations were carried out to compute DFT-level interaction energies. 

Specifically, B3LYP-D3/aug-cc-pVDZ DFT interaction energies (IE) were calculated as follows: 
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IE = EComplex - Ecarbohydrate - EAmino Acid     (1) 

where Ecomplex is the energy of the non-covalently interacting amino acid and carbohydrate 

monomer pair, and Ecarbohydrate and EAmino Acid are the energies of each separate component. Energy 

decomposition analysis was also performed with SAPT066,67 using Psi4 v. 1.492 and the aug-cc-

pVDZ basis set93. Superposition of atomic densities (SAD) guess orbitals and density fitting for 

the SCF computation with the aug-cc-pVDZ-jkfit auxiliary basis set along with resolution of the 

identity (i.e., aug-cc-pVDZ-ri) were employed for the SAPT calculations.  

We used higher-cost SAPT2 and DLPNO-CCSD(T)94,95 methods to benchmark B3LYP-

D3 DFT and SAPT0 energetics. The SAPT296 calculations were carried out in Psi4 with the aug-

cc-pVDZ and aug-cc-pVTZ basis sets and extrapolated to the augmented complete basis set limit 

using the two-point formula.97,98 Single-point DLPNO-CCSD(T) calculations were carried out 

using ORCA v. 4.2.199 with the TightSCF convergence keyword. Interaction energies were 

computed using eq. (1) and were extrapolated to the augmented complete basis set (CBS) limit 

using the two-point formula and the aug-cc-pVDZ and aug-cc-pVTZ basis sets100. An 

extrapolation to the limit of the complete pair natural orbital space (CPS)101 was performed using 

a two-point formula and calculations with paired natural orbital (PNO) cutoffs of 10-6 and 10-7. 

Because implicit solvent was not implemented for DLPNO-CCSD(T) calculations in 

ORCA v. 4.2.1, a solvent correction was obtained by evaluating the interaction energy of the 

complex via Møller–Plesset second-order perturbation theory (MP2) with and without implicit 

solvent as follows:  

IEDLPNO-CCSD(T) Solvated = IEDLPNO-CCSD(T)  + IEMP2 Solvated - IEMP2  (2) 
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MP2 calculations were performed in ORCA99 using all DLPNO-CCSD(T) parameters except for 

the RI approximation, which was employed with auxiliary basis sets automatically selected with 

the AutoAux102 keyword. The MP2 implicit solvent calculations were carried out with the C-PCM 

model, and e = 10, with COSMO-type epsilon functions.  

 Random forest regression models were trained on 12 orientational features to learn the 

relationship between conformation and binding affinity (Supporting Information Table S6). These 

models were implemented using Scikit-learn103 v. 1.1.3 with 200 estimators. A grid search was 

performed to identify hyperparameters that minimize the R2 of the training set while maximizing 

the R2 of the test set to avoid overfitting. The selected hyperparameters are as follows: a maximum 

depth of 8, a minimum of 4 samples required to split an internal node, a maximum of 20 leaves, 

and a minimum of 6 samples per leaf. All models were evaluated using 5-fold cross-validation and 

an 80:20 train:test split. Feature importance for each model was calculated based on the mean 

decrease in impurity using the sklearn_feature_importances method. 
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population statistics by interaction type; dispersion vs. electrostatic energy by amino acid; 
phenoxide input structure generation visualization; individual C-H distance and angle 
visualization; F-SAPT population statistics by functional group type; Cn distance and angle 
visualization by H distance; dCnH-AA histograms; Cn distance and angle visualization by Cn 
exchange; Cn distance and angle visualization by On electrostatics; dCnH-AA vs Cn Exchange 
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Energy; dCnH-AA vs On Electrostatic Energy; dCn-Ctr and qProj-Cn-Ctr feature correlations; random 
forest model evaluations; random forest model DFT and SAPT0 parity plots; statistics for 
tryptophan random forest model; statistics for tyrosine/phenylalanine random forest model; parity 
plots for tryptophan random forest model; parity plots for tyrosine/phenylalanine random forest 
model; random forest model feature importance; CH-p interaction orientation visualization; 
BtGH97 protein and binding visualization; enterotoxin protein and binding visualization; lectin 
MOA protein and binding visualization; galactose mutarotase protein and binding visualization; 
Vm seed lectin protein and binding visualization (PDF) 

Initial and optimized 3D structures of all native and synthetic close contacts; EDIAm scores, raw 
electronic energies and interaction energies from DFT, and SAPT0 total and component energies 
for the full dataset of close contacts; interaction energies of the interaction in the benchmarking 
dataset, as determined by DLPNO-CCSD(T), MP2, DFT, SAPT0 and SAPT2; random forest 
models trained to predict the DFT interaction energy, SAPT0 interaction energy, dispersion, 
electrostatics, exchange, and induction energies (ZIP) 
 

Supporting Information is available free of charge via the Internet at http://pubs.acs.org. 
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