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Deep Eutectic Solvents have recently gained significant attention as versatile and inexpensive materials with many desir-
able properties and a wide range of applications. In particular, their similar characteristics to ionic liquids, make them a
promising class of liquid electrolytes for electrochemical applications. In this study, we utilized a local equivariant neural
network interatomic potential model to study a series of deep eutectic electrolytes based on lithium bis(trifluoromethane-
sulfonyl)imide (LiTFSI) by molecular dynamics (MD) simulations. The use of equivariant features combined with the
strict locality result in highly accurate, data-efficient and scalable interatomic potentials enabling large-scale MD simula-
tions of these liquids with first-principles accuracy. Comparing the structure of the liquids to reported results from classical
force field (FF) simulations indicates that ion–ion interactions are not accurately characterized by FFs. Furthermore, close
contacts between lithium ions bridged by oxygen atoms of two amide molecules are observed. The computed cationic
transport numbers (t+) and the estimated ratios of Li+–amide lifetime (τLi–amide) to the amide’s rotational relaxation time
(τR), combined with the ionic conductivity trend, suggest a more structural Li+ transport mechanism in the LiTFSI:urea
mixture through exchange of amide molecules. However, a vehicular transport could have a larger contribution to Li+ ion
transport in the LiTFSI:N-methylacetamide electrolyte. Moreover, comparable diffusivities of Li+ cation and TFSI– anion
and a τLi–amide/τR close to unity, indicate that vehicular and solvent-exchange mechanisms have rather equal contributions
to Li+ ion transport in the LiTFSI:acetamide system.

I. INTRODUCTION

Deep eutectic solvents (DESs) are a class of liquid mixtures
with a melting point considerably lower than that of their in-
dividual components, and commonly even lower than the pre-
dicted ideal eutectic point1–3. DESs share many of the desir-
able properties of ionic liquids (ILs), such as low vapor pressure,
thermal and chemical stability, and tunable properties4,5. More-
over, they possess several advantages over conventional ILs, in-
cluding facile synthesis, lower production costs, generally lower
toxicity, and higher ionic conductivities, which make them a
promising class of materials for electrochemical applications6–8.
Deep eutectic electrolytes (DEEs) refer to those DESs appli-
cable as electrolytes in electrochemical devices such as redox
flow batteries9–11 and lithium-ion batteries (LIBs)12–14. DEEs
are typically binary mixtures consisting of a metal salt, like
lithium bis(trifluoromethanesulfonyl)imide (LiTFSI), and an or-
ganic hydrogen bond donor, such as an amide15–17.
Synthesizing novel DEEs with desirable properties from a

large number of potential components remains a challenging
task, which demands a detailed understanding of the interac-
tions among different components at the molecular scale and
the diffusion behavior of ionic species. Computer simulations
are effective and valuable tools in this regard, providing insights
into the nature of atomic-scale interactions and ion transport
mechanisms in liquid electrolytes. There are several molecular
dynamics (MD) simulation studies of eutectic electrolytes, with
the majority of them based on classical force fields (FFs)13,18–20
and many-body polarizable FF models21–24. The length and
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time-scales accessible by FF simulations make them particularly
suitable for MD simulations of molecular ionic liquids, which
typically have slow dynamics, and require sufficiently large sys-
tem sizes and long simulation times to converge structural and,
especially, dynamical properties25. However, the accuracy of
FF models is limited by the underlying functions describing the
atomic interactions and the quality of their parameterization. It
is well-known that two-body FF models based on fixed atomic
charges significantly underestimate the dynamics and diffusion
properties of molecular ionic liquids, mainly due to the lack of
polarization effects involving the ionic species26–28. While po-
larizable many-body FFs greatly improve the dynamics of these
liquids, showing much better agreement with experiments, they
require careful validation and refinement against costly first-
principles molecular dynamics (FPMD) simulations and exper-
iments, and generally lack transferability23,29,30.

In recent years, machine-learned interatomic potentials
(MLIPs) have enabled computationally efficient MD simula-
tions of complex materials and chemical processes with the ac-
curacy of first-principles methods31–34. In particular, MLIP-
based MD simulations of ILs and DESs have been already
reported in the literature35–40. A range of MLIPs has been
introduced in recent years, including linear and kernel-based
models41–44, Gaussian approximation45,46, and neural network
interatomic potentials (NNIPs)47–54. While NNIPs, commonly
based on invariant descriptors of the local atomic environ-
ment, can successfully scale to extremely large system sizes,
they typically require large training sets of reference elec-
tronic structure calculations to achieve reasonable accuracy38.
More recently, NNIP architectures based on equivariant rep-
resentations, and atom-centered message-passing neural net-
works (MPNNs) have shown remarkable accuracy and data-
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efficiency55–58. However, their iterative information propaga-
tion beyond the local atomic environment leads to large re-
ceptive fields with many effective neighbors for each atom,
which hinders parallel computation and limits the length-scales
accessible by these models59,60. There have been some ef-
forts to reduce the computational complexity of equivariant
MPNN models and enable more efficient implementation and
large-scale simulations, including strictly local representation of
atom environments59 and incorporation of a runtime geome-
try calculation strategy combined with the use of inner product
in place of computationally expensive Clebsch–Gordan tensor
product61.
In this work, we utilized the Allegro model59, a strictly lo-

cal equivariant NNIP architecture, to study a series of LiTFSI-
based DEEs by MD simulations. The use of equivariant rep-
resentations, combined with the strict locality, result in highly
accurate, data-efficient and scalable interatomic potentials en-
abling large-scale MD simulations of these DEEs with the tar-
get density-functional theory (DFT) accuracy. We have trained
a set of NNIPs on datasets constructed using short DFT-based
FPMD simulations and a number of selected structures using
an iterative active learning scheme based on calibrated ensem-
ble uncertainties. The studied systems comprise mixtures of
LiTFSI (Tm = 234 °C) with: (1) urea (Tm = 132.7 °C) in 1:3.5
molar ratio with a reported melting point of −37.6 °C15, which
we refer to as URA; (2) acetamide (Tm = 81.2 °C) in 1:4 molar
ratio with a reported melting point of −67 °C16, which we re-
fer to as ACT; and (3) N-methylacetamide (Tm = 28 °C) in 1:4
molar ratio with a reported melting point of −72 °C17, which
we refer to as NMA. The selected molar ratios are the reported
eutectic compositions for these DEEs. The aim of this study is
to evaluate the ability of equivariant MLIPs to accurately repre-
sent the potential energy surface (PES) of eutectic electrolytes
in a data-efficient manner, and further investigate the role of the
amide in the structuring of the liquid, melting point depression,
ion diffusion, ionic conductivity, and ion transport mechanisms
in LiTFSI-based DEEs.

FIG. 1. Chemical structures of lithium (Li) bis(trifluoromethanesul-
fonyl)imide (TFSI) (top left), urea (U) (top right), acetamide (Ac) (bot-
tom left), and N-methylacetamide (MAc) (bottom right) with the cor-
responding atom labels used throughout this study. Atom color scheme:
white: H, gray: C, blue: N, red: O, cyan: F, yellow: S, purple: Li.

II. METHODS

A. Neural Network Interatomic Potential Model

We utilized Allegro59, an equivariant NNIP, which uses
strictly local many-body equivariant representations to map the
atomic coordinates to the corresponding potential energy and
atomic forces. In the Allegro model, the total energy of a sys-
tem, E, is decomposed into per-atom energies Ei,

E =

N∑
i

σZiEi + µZi (1)

with σZi and µZi as per-species scale and shift parameters. The
per-atom energyEi further decomposed into a sum of pairwise
energies Eij ,

Ei =
∑

j∈N (i)

σZi,Zj
Eij (2)

where j runs over neighbors of the central atom i within a se-
lected cutoff radius, and σZi,Zj is a per-species-pair scaling fac-
tor. It is important to note that the pairwise energies Eij , de-
pend on all neighboring atoms k in the local environment of
atom i, and that they are assigned to ordered pairs of neigh-
boring atoms. The latter means that Eij and Eji contribute to
different per-atom energies Ei and Ej , respectively, and that
Eij 6= Eji. This results in the strict locality of the Allegro
model, as per-atom energies depend only on the environments
of the corresponding central atoms within the selected cutoff
radius.
The Allegro model learns representations associated with or-

dered pairs of neighboring atoms using invariant scalar features,
and equivariant features consisting of higher rank tensors. The
scalar features,Xij,L=0, are initialized by one-hot encoding of
the center and neighbor atom species Zi and Zj , and the pro-
jection of the interatomic distance rij onto a radial basis using
the two-body latent multi-layer perceptron (MLP). The initial
equivariant features, V ij,L=0

n,`,p , are constructed as a linear em-
bedding of the spherical harmonic projection of the unit dis-
placement vector rij = rj − ri:

V ij,L=0
n,`,p = W ij,L=0

n,`,p Y ij
`,p, (3)

where the scalar weights, W ij,L=0
n,`,p , for each center-neighbor

pair ij are output of the embedding MLP acting on the initial
two-body scalar features. The two types of features interact with
each other at each layer of the network, using the latent MLP,
and the final pair energy Eij is the output of an MLP acting on
the final layer’s scalar features. Finally, the force on atom i, F i,
is computed as the negative gradient of the total energy with
respect to the position of atom i, which results in an energy-
conserving force field,

F i = −∇iE. (4)
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The model is trained using a joint mean squared error (MSE)
loss function of per-atom energies and forces:

L = λE

(
Ê − E

N

)2

+
λF

3N

N∑
i

∑
α∈x,y,z

‖F̂i,α − Fi,α‖2 (5)

where N is the number of atoms, E and Fi,α are total energy
and the force component on atom i in direction α, respectively.
λE , λF are weights of the per-atom energy and force terms,
respectively.
As model hyperparameters, we use two interaction layers,

features of even and odd parity and maximal rotation order
`max = 2 in spherical harmonics embedding. Through hyper-
parameter tests, we found these values to be a good trade-off
between computational cost and accuracy. The two-body la-
tent MLP has 4 hidden layers of dimensions [32, 64, 128, 256],
and the latent MLP consist of 3 hidden layers of dimensions
[256, 256, 256], both using SiLU activation functions. The em-
bedding MLP is a single matrix multiplication without a hidden
layer and nonlinearity. The final pair energy MLP has one hid-
den layer of dimension 128 and no nonlinearity. All MLPs were
initialized using a uniform distribution with unit variance. We
used a radial cutoff of 6.0Å and a basis of 8 trainable Bessel
functions for the radial basis encoding with the polynomial en-
velope function using p = 6. The models were trained by min-
imizing the joint loss in Eq. 5 using a weighting of 1 for both
the per-atom energy and the force term. We used the Adam
optimizer62, with default parameters, a learning rate of 0.001
and a batch size of 1. The models were trained for a maxi-
mum of 200 epochs with an average training time of 1 day.
We observed that more training epochs, despite small improve-
ments of validation errors, has a negative impact on generaliza-
tion capabilities of the models and results in less stable simula-
tions. The MLIPs were trained using the Allegro code version
0.2.0, with the NequIP code version 0.6.056, e3nn code version
0.5.163, and PyTorch version 1.11.064. All models were trained
with float32 precision on a single NVIDIA A100 graphics
processing unit (GPU).

B. Reference Datasets and Active Learning

The primary reference datasets are constructed based on a
set of short (20 ps) FPMD trajectories. The FPMD simulations
were performed for mixtures of 8 LiTFSI ion pairs with: 28
urea molecules in the URA system; 32 acetamide molecules in
the ACT system; and 32 N-methylacetamide molecules in the
NMA system using the CP2K package65. Details of the FPMD
simulations are provided in the supporting materials. For each
system, a total number of 4500 structures, from the first 15 ps of
the trajectories, were selected for model training and validation.
The structures are sampled with an increasing time-lag between
successive frames. The remaining 5 ps of the trajectories were
used to construct test sets each containing 500 structures.
Additionally, we employed an active learning (AL) scheme

based on computed uncertainties from an ensemble of the

trained models to extend the primary datasets. As a measure
of uncertainty, we used the standard deviation of the predicted
atomic forces. In contrast to energies, forces determine the dy-
namics of the system and typically show higher variability out-
side the training domain. The uncertainty, u, is defined as the
square root of the mean of component-wise variances of the
predicted forces,

u =

√√√√ 1

3Nc

Nc∑
i

∑
α∈x,y,z

(
F̂i,α − F̄α

)2
, (6)

where Nc is the number of constituent models (we used Nc =
3), F̂i,α denotes the α-component of model i’s predicted force,
and F̄α denotes the mean of the α-component of the predicted
forces of all constituent models. The models of each ensem-
ble are trained with different initialization of NNs weights and
different training/validation splits of the dataset.
Many heuristic uncertainty metrics, such as the ensemble-

based uncertainty quantification (UQ), assume that the model
errors have a Gaussian distribution. The reliance on the assump-
tion of normally distributed errors is a weakness of ensemble-
base uncertainties, since the error types encountered in MLIPs
are generally not normally distributed66,67. As a result, the en-
semble uncertainties are typically not well calibrated and often
underestimate actual errors. Specifically, poor calibration com-
plicates defining an appropriate uncertainty threshold for selec-
tion of high-error structures in AL68,69. To address this issue,
we utilize conformal prediction (CP), a distribution-free UQ
method, which computes a re-scaling factor based on predicted
uncertainties and prediction errors on a calibration set67,70. In
the CP method, the confidence level (1−α) is defined such that
the probability of underestimating the actual error, on configu-
rations drawn from the same distribution as the calibration set,
is at most α. Thus, CP can convert a heuristic notion of uncer-
tainty (u) to a statistically rigorous and calibrated one, and help
align atomic force errors with their corresponding uncertainty
values (Fig. 2).
In our iterative AL scheme, the configurational space of

each system is explored by MLIP-based MD simulations. In
each AL iteration, we performed 10 separate MD simulations,
for each of the systems, starting from different initial struc-
tures. MD simulations were performed in LAMMPS71, with the
pair_allegro extension59, using NVT ensemble (400K) and
a 0.5 fs timestep for 50–100 ps. The atomic configurations were
uniformly sampled at each 100 timesteps, and a small subset of
those configurations, sized Ncalib, selected as a calibration set.
Subsequently, the structures in the calibration set were labeled
with the reference DFT forces and the corresponding predic-
tion errors are computed as ∆F i = 1/3

∑
α‖Fi,α − F̄i,α‖,

where Fi,α and F̄i,α are the true and ensemble-mean predicted
force on atom i in direction α ∈ x, y, z, respectively. We
used the CP method from the AmpTorch package72 to per-
form quantile regression with chosen hyperparameter α = 0.1
(i.e. 90% confidence) on the calibration data to compute the
(1 − α)(Ncalib + 1)/Ncalib-th quantile denoted as q̂. Then
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q̂ value is applied to the remaining of sampled atomic config-
urations to compute their calibrated uncertainties ũ = u · q̂.
Finally, a set of structures with a maximal atomic force uncer-
tainty above a certain threshold (ũ ≥ 3 kcalmol−1 Å−1) are se-
lected to be labeled with the reference DFT energies and atomic
forces to extend the dataset. Additionally, the selected atomic
structures were inspected using the molecule recognition tool
of the TRAVIS package73 to screen out possible unphysical
atomic configurations prior to the DFT calculations. We per-
formed the iterative AL cycles, consisting of model training,
exploration, selection and labeling, until the number of high-
uncertainty structures in the selection step were less than 50.
Interestingly, only two AL cycles were required to fulfill our set
objective and achieve highly-accurate and robust MLIPs. This
result is in sharp contrast to our previous observations forMLIPs
based on invariant features, which required minimum ten AL
iterations to achieve sufficiently-long and stable simulations38.
This, as has been shown before56,58,60, is the direct result of
the inclusion of equivariant features in the representation of the
atomic environments, which enables much more data-efficient
learning compared to invariant models. At the end of our AL
cycles we collected a total number of 880 data points for the
URA system, and 720 data points for each of the ACT and the
NMA systems.

C. Molecular Dynamics Simulations

MD simulations were carried out with LAMMPS71, using the
pair_allegro extension59. We used a canonical (NVT) en-
semble at 353K (80 °C) with an integrator timestep of 0.5 fs,
and atom positions and velocities were collected each 10 fs.
A Nosé–Hoover chain thermostat was used with a relaxation
time of 0.05 ps74. Mixtures of 128 LiTFSI ion pairs with:
448 urea molecules for the URA system (1:3.5 molar ratio);
512 acetamide molecules for the ACT system (1:4 molar ra-
tio); and 512 N-methylacetamide molecules for the NMA sys-
tem (1:4 molar ratio) were simulated in a periodic cubic box
of size 40.3Å, 43.3Å and 46.1Å, respectively. MD simula-
tions are started from well-equilibrated structures taken from
classical MD simulations using the general AMBER FF75–77.
The systems were simulated for 200 ps followed by produc-
tion runs of 3 ns for the URA system and 2 ns for the ACT
and NMA systems. The reported results are computed from
the average of three separate MD simulations for each of the
studied systems starting from different initial configurations.
The energy drifts during the MD simulations were approxi-
mately 0.002 kcalmol−1 atom−1 over the course of 1 ns, indi-
cating that the energies are very well conserved during the sim-
ulations. MD simulation were performed on 8 NVIDIA A30
GPUswith an average performance of 0.65 ns/day. All distribu-
tion functions, mean-square displacements, rotational relaxation
times, and pair lifetimes were computed using the TRAVIS
package73,78.

III. RESULTS AND DISCUSSION

A. Model Accuracy

The accuracy of the trained MLIPs was evaluated on test sets
of 500 atomic configurations. Fig. 3 shows the error distribu-
tions of the predicted values for per-atom energy and atomic
force compared to the reference DFT values. The mean ab-
solute errors (MAEs) of predicted per-atom energies are in
the range of 0.003–0.009 kcalmol−1, indicating that our MLIPs
can predict the energy of the structures with a great accuracy.
More importantly, the root mean squared errors (RMSEs) of
atomic forces from all three models are bellow 1 kcalmol−1 Å−1.
These results demonstrate the remarkable generalization capa-
bilities of MLIPs based on equivariant representations com-
pared to invariant models, which typically require tens of thou-
sands of data points and many AL iterations to achieve com-
parable accuracy38,39. In Fig. S2 of the supplementary mate-
rial, the error distributions of the atomic forces for each of the
chemical species, and the corresponding RMSEs, indicate that
the prediction errors are not uniform among different chem-
ical elements. The lighter hydrogen and lithium atoms have
smaller predicted force errors, while sulfur and carbon atoms
show larger errors than average. It is worth mentioning that
through our model training experiments, we found that inclu-
sion of highly correlated atomic configurations in the training
set is crucial to accurately predict atomic forces on some of the
chemical species. The source of this dependence is not yet clear
to us and remains the subject of future investigations.
To further investigate the fidelity of theMLIPs, we compared

the liquid structures from MLIP-based MD simulations to the
reference FPMD simulations using radial distribution functions.
The MD simulations were performed on systems of the same
size as the DFT-based simulations. The selected radial distri-
bution functions in Fig. 4 show excellent agreement between
MLIP-based and DFT simulations. Additionally, the dynamics
of the systems at short timescales were compared to the refer-
ence FPMD simulations via velocity autocorrelation functions.
The center-of-mass (CoM) velocity autocorrelation functions of
the Li+ cation, TFSI– anion, and amide molecule, as shown in
Fig. S1 of the supplementary material, perfectly match the re-
sults from the FPMD simulations.

B. Structure of the Liquids

The liquid structure of the studied DEEs are investigated by
radial distribution functions (RDFs), gαβ(r), which denote the
ratio of the local number density of species β aroundα to the to-
tal number density of β. Accordingly, the coordination number,
Nαβ(rc), of β species around α can be obtained as

Nαβ(rc) = ρβ

∫ rc

0

4πr2gαβ(r)dr, (7)

https://doi.org/10.26434/chemrxiv-2024-3nmrr ORCID: https://orcid.org/0000-0002-2088-8508 Content not peer-reviewed by ChemRxiv. License: CC BY-NC 4.0

https://doi.org/10.26434/chemrxiv-2024-3nmrr
https://orcid.org/0000-0002-2088-8508
https://creativecommons.org/licenses/by-nc/4.0/


5

FIG. 2. Correlation of atomic force uncertainties with atomic force RMSE for 50 test structures. The left panel shows the heuristic uncertainties
(u), while middle and right panels show calibrated uncertainties (ũ) using CP method with 60% and 90% confidence level, respectively. The
color maps (from purple to yellow) denote density in close proximity using kernel density estimate (KDE) analysis. The brighter colors denote the
more densely populated regions. Calibrating uncertainties with a high confidence level helps align the large actual errors with the corresponding
uncertainty, shifting the points to or above the red diagonal line.

where rc denotes an arbitrarily chosen distance. In Fig. 5,
the strong RDF peaks of Li–OTFSI and Li–Oamide indicate that
lithium cations are strongly coordinated by the oxygen atoms
from both the TFSI– anions and the carbonyl group of the amide
molecules. However, the RDF peaks of oxygen atoms of the
amide molecules around Li+ ion have notably higher intensity
compared to those of the TFSI– oxygen atoms, and the coor-
dination numbers in Table I also show that significantly more
amide oxygen atoms coordinate with the lithium cation. This
preferred interaction can be attributed to the negative partial
charge on oxygen atoms of amides due to their resonance struc-
ture, and the high dipole moment of these molecules, which
favors the oxygen orientation towards lithium ions15. On av-
erage, 3.25 OU atoms can be found around Li+ cations in the
URAmixture, which slightly increases to 3.48 and 3.47 for OAc
and OMAc in the ACT and NMA mixtures, respectively. Please
note, more amide molecules are available per Li+ ion in these
two mixtures. Interestingly, the total number of oxygen atoms
coordinating with a lithium cation is approximately four for all
three DEEs. This aligns with FF simulation results for the URA
system19, but contradicts the reported value (of about 5.6) for
the ACT system18.

The RDF plots of the oxygen atoms (OTFSI and Oamide), as
hydrogen bond acceptors, around hydrogen atoms of the amine
groups in Fig. 6, and the corresponding coordination numbers
in Table I, indicate that hydrogen bonding may also play a role
in the structuring of these liquids. On average, one oxygen atom
can be found in the first coordination shell of the amino hydro-
gen atoms of amide molecules. Furthermore, for the primary
amine groups of urea and acetamide, the RDF plots, in Fig. S3
of the supplementary material, reveal that there is a preferred
interaction between OU/Ac atoms and hydrogen atoms in cis po-
sition of the carbonyl group (HU(C) and HAc(C)), while OTFSI

atoms preferably interact with the hydrogen atoms in trans po-
sition (HU(T) and HAc(T)). This effect is also visible in the spatial
distribution plots of Fig. 10 (d and e), in which a notably larger
density cloud of TFSI– ion could be found close to the hydrogen
atoms in trans position compared to those in cis position, while
the opposite can be observed for the density cloud of amide. A
similar finding has been observed in our simulation studies of
choline chloride–urea DES, which was attributed to the possi-
ble formation of double hydrogen bonds between two urea (or
acetamide) molecules via cis hydrogen atoms38. Additionally,
in our simulations, specific arrangements of urea or acetamide
molecules around a lithium ion could be observed that also en-
able a close contact of an amide’s oxygen to a cis hydrogen atom
of a neighboring amide molecule (see Fig. 8a and c). These re-
sults indicate that the strong interactions between the oxygen
atom of amide molecules and the lithium cation effectively dis-
rupt both the hydrogen-bond network in pure amide, and the
crystal lattice of the LiTFSI salt by replacing the anion in the
first coordination shell of a Li+ cation, while enabling weaker
anion–amide interaction via hydrogen bonding13,15,79. This is
in contrast to most common DESs, such as mixtures of choline
chloride, in which the formation of hydrogen bonds between
the anion and amide molecules is the main driving force for the
deep eutectic behavior80.

To characterize the liquid structures at the molecular level,
the CoM RDFs for the three DEEs are compared in Fig. 7. The
Li–amide RDFs are similar in all three mixtures, with a small
shift of the main peak’s position in the NMA system caused
by the change in center of mass of the N-methylacetamide
molecule compared to urea and acetamide. The first coordi-
nation shells in Li–TFSI RDFs from 2.6 to 5.2Å show a hint of
a double peak structure, which can be assigned to monodentate
and bidentate coordinating TFSI– ions81,82. The first peak re-
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FIG. 3. Error distribution plots with kernel density estimate (KDE) as color maps, showing MLIPs prediction errors on 500 test structures. Top
panel shows hexbin histograms of per-atom energy errors for the URA (a), ACT (b) and NMA (c) system. Bottom panel shows atomic force errors
for the URA (d), ACT (e) and NMA (f) system. The color maps (from purple to yellow) show the points density in close proximity. The brighter
colors denote the more densely populated regions.

TABLE I. Coordination number,Nαβ(rc), of oxygen atoms, of TFSI–
and amide (Oamide: OU, OAc, OMAc), in the first coordination shell of Li+
cation and amine hydrogen atoms of amide (Hamide: HU, HAc, HMAc).
Positions of the first minima of the RDF plots in figures 5 and 6 are
chosen as the rc distance in Eq. 7.

Li–OTFSI Li–Oamide Hamide–OTFSI Hamide–Oamide

URA 0.80 3.25 0.49 0.42
ACT 0.59 3.48 0.47 0.50
NMA 0.51 3.47 0.53 0.44

sults from bidentate coordinating TFSI– molecules in which two
oxygen atoms of one TFSI– ion are bound to a single lithium
ion, and the second one frommonodentate TFSI– with only one
oxygen atom bound to a cation. The notably more pronounced
second peaks indicate that the TFSI– ions prefer monoden-
tate coordination in these liquids. Furthermore, the number of
TFSI– anions in the first coordination shell of a Li+ cation, in
Table S1 of the supplementary material, is equal to the number
of OTFSI atoms, indicating that on average only one of the four
oxygen atoms of each anion coordinates to a Li+ cation. Our re-

sults contradict the previously reported RDFs for the URA and
ACT systems that show clear double peaks with considerably
higher intensity18,19. In fact, the classical FF simulations signif-
icantly overestimate the cation–anion interaction while under-
estimating the cation–amide interaction.

The lithium ion RDFs in Fig. 7d show a distinct peak at a
distance of around 2.9Å. To better understand the nature of
these close contacts between Li+ cations, a series of cluster frag-
ments were cut out from the collected trajectories and screened
for configurations with a close distance of Li+ ions. Fig. 8 shows
selected snapshots of clusters from our simulations in which two
Li+ ions are at a close distance to each other. Investigating the
selected structures reveals that in almost all cases, two of the
surrounding amide molecules coordinate with both of the Li+
ions. Furthermore, combined distribution functions (CDFs) of
Li–Li and Li–Oamide RDFs and the corresponding correlation
plots, in Fig. S4 of the supplementary material, indicate that
the short distance between Li+ cations correlates with the close
contact of Li+ ions with Oamide atoms at 2.0Å. On the other
hand, the CDF plots of Li–Li and Li–OTFSI RDFs, in Fig. S5
of the supplementary material, show that such a correlation is
absent for Li+ interaction with oxygen atoms of the anion. Ad-
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OMAc – Li

OMAc – HMAc

OTFSI – Li

OTFSI – HMAc

OAc – Li

OAc – HAc

OTFSI – Li

OTFSI – HAc

OU – Li

OU – HU

OTFSI – Li

OTFSI – HU

FIG. 4. Selected radial distribution functions, g(r), from FPMD simulations (solid lines) are compared to RDFs from MLIP simulations (dashed
lines) in the URA system (left), ACT system (middle), and NMA system (right). Atom labels are shown in Fig. 1.

ditionally, the close approach of Li+ ions increases the possibil-
ity of hydrogen bond formation between the coordinating amide
molecules. These findings imply that the close distance of Li+
cations in these DEEs is mediated by the surrounding amide
molecules. Previous simulation studies of the URA system us-
ing the OPLS-AA force field by Nandy et al.19 and Lesch et
al.13 have shown that the first peak of the lithium–lithium RDF
appears at a larger distance of about 4.0Å with a significantly
lower intensity compared to our results. Li et al.’s18 results from
MD simulations of the ACT system show no sign of close con-
tact between lithium ions, and only a weak peak at 3.5Å is re-
ported for a lower acetamide to salt ratio. These results can
be attributed to the absence of charge transfer and polarization
effects in FF simulations, which significantly mitigate the elec-
trostatic repulsion between the lithium ions83. We can confirm
that this effect is not an artifact of theMLIP simulations, as sim-
ilar outcomes are observed in our reference FPMD simulations
(see Fig. S6 of the supplementary material).

The molecular conformation of the TFSI– anion in the stud-
ied DEEs was investigated using the CDFs, g(r, φ), in Fig. 9.
The radial axis r denotes the distance between the Li+ cation and
the CoMof TFSI– anion, and the angular axisφ denotes the tor-
sional angle between the two sulfur–carbon bonds of the TFSI–
anion. We assign the ranges 0◦ ≤ φ ≤ 90◦, 90◦ < φ ≤ 120◦,
and 120◦ < φ ≤ 180◦ to the cis, gauche, and trans confor-
mations, respectively. The contour plots in the top panels of
Fig. 9 illustrate that three different conformations of the anion
coexist in these liquids, although the gauche and trans confor-
mations are notably more abundant. It has been shown that the
energy barrier between the trans and cis conformations of TFSI
in room-temperature ionic liquids is only 2–3.5 kJmol−1, which
facilitates rapid conformational dynamics84. The two distinct

high-intensity regions in the CDF plots in the 120◦ to 150◦

range correspond to the two main peaks of Li–TFSI RDFs in
Fig. 7. The corresponding correlation plots in the bottom pan-
els of Fig. 9 depict a more detailed picture of the r and φ re-
lation. At short Li–TFSI distances of 3–4Å, two distinct areas
with positive correlation are visible, which are less pronounced
in the NMA system. The shorter distance of a Li+ cation to the
anion’s CoM up to 3.5Å correlates with the trans conformation
of TFSI in the 135◦ to 180◦ range, while the Li–TFSI distances
of 3.5–4Å correlate with the gauche and partly cis conforma-
tions. These can be assigned to a bidentate coordination of a Li+
cation by the anion in trans and gauche/cis conformations, re-
spectively. The strongest correlation, however, can be seen for
the Li–TFSI distances of 4–5Å and the trans conformation of
the anion with torsional angles between 120◦ and 150◦, which
as discussed earlier can be assigned to a monodentate coordina-
tion of a Li+ cation by the anion.

In Fig. 10, the spatial distributions of CoM of cation, anion,
and amide around a central TFSI– anion and an amide molecule
are shown as isodensity surfaces. In agreement with the RDFs,
the Li+ cations form the closest coordination shell around the
anion in all three DEEs, and the preferred coordination sites for
the Li+ cation on both the TFSI– and the amidemolecule are the
oxygen atoms. The density clouds of amide molecules around
the central TFSI– or amide also correlates with those of the Li+
cation. In panels d to f, the presence of density clouds of the
anion and amide molecules close to the cis and trans hydrogen
atoms of the amine groups, indicates the formation of hydrogen
bonds between these species. Moreover, small density clouds
of Li+ cations are also visible on the sides and below the cen-
tral amide molecules, which correlate with the density clouds of
TFSI– and amide.
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Li – OTFSI

Li – OTFSI

Li – OTFSI

Li – OU

Li – OAc

Li – OMAc

FIG. 5. Radial distribution functions, g(r), of oxygen atoms, of TFSI–
(top) and amide (bottom), around Li+ cation in the URA system (red),
ACT system (blue), and NMA system (green). Atom labels are shown
in Fig. 1.

C. Dynamic and Transport Properties

We begin our analysis of the dynamics of the studied DEEs
by comparing the computed velocity autocorrelation functions
(VACFs),

A(t) =
〈vi(t) · vi(0)〉i,t

〈v2i 〉
, (8)

where vi(t) denotes the velocity of the CoM of particle i at any
specific time, with the mean square velocities, 〈v2i 〉, as normal-
ization factor. The VACFs in Fig. 11 show a similar Li+ ion
dynamics at short times in these DEEs, characterized by fast
oscillations, which can be attributed to the back-and-forth mo-
tion of the cation surrounded by the amide molecules and the
anions30,85. In the case of the TFSI– anion, the VACFs have a
slower decay in the NMA and ACT systems compared to that
of the URA, meaning that the anions maintain their initial mo-
mentum slightly longer in these systems. The same trend is also
visible for the amide molecules, albeit to a lesser extent.

HU – OTFSI

HAc – OTFSI

HMAc – OTFSI

HU – OU

HAc – OAc

HMAc – OMAc

FIG. 6. Radial distribution functions, g(r), of oxygen atoms, of TFSI–
(top) and amide (bottom), around amine hydrogen atoms of amide in
the URA system (red), ACT system (blue), and NMA system (green).
Atom labels are shown in Fig. 1.

The self-diffusion coefficients (D) are estimated from an ex-
ponential fit to the running integral of the VACFs from the fol-
lowing Green–Kubo equation and are presented in Table II,

D =
1

3

∫ ∞

0

〈vi(t) · vi(0)〉i,tdt. (9)

The self-diffusion coefficients are also estimated from themean-
square-displacement (MSD) of the CoM in Fig. 12 using the
following Einstein equation,

D = lim
t→∞

1

6t

〈
|ri(t)− ri(0)|2

〉
i,t

, (10)

where ri(t) is the position of the CoM of particle i at any spe-
cific time. Self-diffusion coefficients are obtained from a linear
fit to the MSD plots, and are presented in Table S2 of the sup-
plementary material.
The three components of studied DEEs have the fastest dif-

fusivity in the NMAmixture, followed by those in the ACT and
URAmixtures, respectively. This results align with the reported
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(f ) Amide – Amide

(c) Li – TFSI

(e) TFSI – TFSI

(b) Amide – TFSI

(d) Li – Li

(a) Li – Amide

FIG. 7. Center-of-mass radial distribution functions, g(r), of Li+ cation, TFSI– anion and amide, in the URA system (red), ACT system (blue),
and NMA system (green).

FIG. 8. Snapshot of cluster fragments in which two Li+ cations are at close distance of one another in the URA system (a, b), ACT system (c, d),
and NMA system (e, f). The two amide molecules that coordinate with both of the Li+ cations are highlighted. The fluorine atoms of the TFSI–
anion and the hydrogen atoms of amide molecules are not shown for better illustration.

viscosity trend in these liquids. The Li+ cations and amide
molecules have similar diffusion coefficients in the URA mix-
ture and larger than that of the TFSI– anions. The Damide/DLi
ratios of ≈ 1.5 and 1.7 for the ACT and NMA mixtures, re-
spectively, indicate that the amide molecules have a faster dif-
fusivity than the Li+ cations in these liquids. Slower diffusion

of Li+ ions relative to amide molecules can be attributed to the
larger hydrodynamic radius of a coordinated Li+ cation com-
pared to a free amide molecule20. These results also align with
the obtained coordination numbers of amide molecules with a
Li+ ion, since on average a larger number of acetamide and N-
methylacetamide molecules coordinate with a Li+ cation, and
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FIG. 9. Combined radial/torsional distribution functions, g(r, φ) (top row), and the corresponding correlation plots (bottom row), for the URA
system (left), ACT system (middle), and NMA system (right). Radial axis r denotes the center-of-mass distance between the Li+ cation and the
TFSI– anion and φ denotes the torsional angle between the two S–C bonds of the TFSI– anion.

the fact that N-methylacetamide has a larger size compared to
urea and acetamide.
The self-diffusion coefficients of cation and anion can also

be employed to calculate the cationic transport number, which
is defined as t+ = D+/(D+ + D−). The cationic transport
number provides an expression for the amount of transported
cations, in the limit of negligible ion correlations, and is an im-
portant quantity in electrolyte solutions for electrochemical ap-
plications such as LIBs86. In Table II, a value of t+ > 0.5
for the URA system indicates that the Li+ cations have a higher
diffusivity compared to the TFSI– anions, which is a character-
istic of effective electrolyte solutions87. The value of t+ ≈ 0.5
for the ACT system implies that the diffusivity of anions and
cations is roughly comparable in this DEE. The obtained value
of cationic transport number of slightly less than 0.5 in theNMA
system shows that anions have a higher diffusivity compared to
the cations, indicating that anions might have a larger contribu-
tion to the ionic conductivity in the NMA electrolyte. Crabb et
al. have shown that for a series of LiTFSI-based electrolytes,
the Li+ transport number t+ correlates with the Li–TFSI coor-
dination number20. Interestingly, the same correlation between
t+ and the TFSI– coordination number with the Li+ cation can
also be observed for the studied DEEs in this work, in which
the DLi/DTFSI ratio becomes increasingly smaller with decreas-

ing Li–TFSI coordination number. Moreover, the descriptor
introduced by Crabb et al.20, defined as the Li–solvent interac-
tion energy divided by the viscosity of the electrolyte, is shown
to strongly correlate with the Li+ transport ratio of Borodin and
Smith22, which itself is an identifier for the Li+ cation transport
mechanism in the studied electrolytes. Their obtained results
support the hypotheses that higher viscosity will decrease the
contributions from a vehicular transport mechanism, whereas
stronger interactions between the solvent and Li+ will increase
the contributions from a vehicular mechanism. Compellingly,
similar conclusions can be drawn regarding the Li+ transport
mechanism in the studied DEEs in this work. The lower vis-
cosity and slower diffusion of Li+ ions compared to the TFSI–
counterions, indicated by the t+ < 0.5, suggest a more vehicu-
lar transport mechanism of Li+ ions in the NMA electrolyte, in
which the Li+ cation diffuses along with its coordination shell.
However, a higher viscosity and faster diffusion of Li+ ions
than anions in the URA system indicate that a solvent-exchange
mechanism might have a larger contribution to Li+ ion trans-
port in this DEE. The slightly higher viscosity of the ACT mix-
ture compared to the NMA, and a comparable diffusivity of
Li+ cations and TFSI– anions imply that a vehicular mecha-
nism might have an equal contribution to lithium ion transport
as a solvent-exchange mechanism in the ACT system21.
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FIG. 10. Spatial distribution of center-of-mass isodensity surfaces around a TFSI– anion, and an amide molecule in the URA system (a, d), the
ACT system (b, e), and the NMA system (c, f). The density clouds of Li, TFSI, and amide are colored purple, green, and blue, respectively. The
relative number densities N , with respect to their average bulk densities, of different species in panels a to c are N (Li)=4, N (TFSI)=2.4, and
N (amide)=4, and those in panels d to f are N (Li)=4, N (TFSI)=2.8, and N (amide)=4.

NMA

ACT

URA

FIG. 11. Center-of-mass velocity autocorrelation functions, A(t), of
Li+ cation (purple), TFSI– anion (red), and amide (green) as a function
of correlation time.

To further clarify the relation between the Li–amide dynam-
ics and Li+ transport, the lithium–amide lifetime, as the av-
erage time that an amide molecule remains coordinated to a
Li+ ion, and the average rotational relaxation time of the amide

molecules were computed. The lifetime (τLi–amide) is estimated
from the integral of a poly-exponential function fitted to the fol-
lowing pair existence autocorrelation function22,

P (t) =
〈hij(t)hij(0)〉ij,t
〈hij(0)2〉ij,t

, (11)

where hij(t) is equal to one if an amide molecule j is present in
the first coordination shell of a Li+ cation i (i.e. Li–O(amide)
distance ≤ 3Å), and is zero otherwise. The rotational re-
laxation time (τR) is estimated from an integral over the au-
tocorrelation function, 〈ui(t) · ui(0)〉i,t, where ui(t) is de-
fined as the vector pointing from the carbon atom to the oxy-
gen atom of the carbonyl group (C→O) in an amide molecule
at any specific time. The pair existence and rotational relax-
ation time autocorrelation function are presented in Fig. S7
of the supplementary material. The τLi–amide/τR ratio can be
considered a factor associated with the Li+ ion transport mech-
anism. If τLi–amide/τR is less than one, solvent exchange oc-
curs before the rotational relaxation of amides, hence Li+ trans-
port would be faster than the rearrangement of the surround-
ing amide molecules. Consequently, the network structure of
surrounding amide molecules would be maintained during Li+
ion transport, indicating a solvent-exchange transport mecha-
nism. However, if τLi–amide/τR is greater than one, the reori-
entation dynamics of amide molecules are faster than solvent
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FIG. 12. The mean-square displacement (MSD) of the center-of-mass
of Li+ cation (purple), TFSI– anion (red), and amide (green) as a func-
tion of time-lag (t). We used 30% of the trajectory length as the maxi-
mum correlation depth. Self-diffusion coefficients are calculated from
a linear fit to the second half of the plots.

exchange. This means the Li+ ion would be transported along
with local structural changes as a solvated Li+ complex in the
electrolyte, which can be interpreted as vehicular transport88.
The computed Li–amide lifetimes, amide rotational relaxation
times, and the corresponding ratios are listed in Table II. The
obtained τLi–amide/τR ratio of 0.4 for the URA system indicates
a solvent-exchange dominated transport of the Li+ ion in this
DEE, while the value of 0.85 in the ACT electrolyte implies a
more balanced contribution from both vehicular and exchange
transport of the Li+ cation. The estimated value of 1.76 in the
NMA system also aligns with the discussed results in the previ-
ous section and suggests a more pronounced vehicular transport
of Li+ ion in this electrolyte.
The ionic conductivity of the studied DEEs was estimated by

integrating the charge current autocorrelation function using the
following Green–Kubo equation85,

σ =
1

3kBTV

∫ ∞

0

〈J(t) · J(0)〉tdt, (12)

where kB is the Boltzmann constant, T is the temperature, and
V is the volume of the simulation box. The charge current J(t)
defined as

J(t) = e

N∑
i=1

vi(t), (13)

where N is the total number of ions, and e and vi(t) repre-
sent the elementary charge and the CoM velocity of the ith ion
at time t, respectively. The ionic conductivity (σ) is computed
from the long-time limit of an exponential decay function, fit-
ted to the running integral of the charge current autocorrela-
tion function of Eq. 12. It should be noted that evaluating the
conductivity through this approach is challenging, as ionic con-
ductivity is a collective dynamical property of the whole sys-
tem and, for this reason, suffers from relatively high statistical
uncertainty89,90. The ionic conductivity can also be estimated
using the Nernst–Einstein expression from the self-diffusion co-
efficients of ionic species,

σNE =
Ne2

kBTV
(D+ +D−), (14)

whereN is the number of ion pairs in the simulation, andD± is
the diffusion coefficients of the cation and anion. The Nernst–
Einstein expression is based on the assumption of uncorrelated
motion of ions, so it is only exact in the infinite dilution limit
and will break down for highly concentrated systems and sys-
tems with a high degree of ion clustering90. Consequently, by
considering the obtained values from the Green–Kubo approach
as true conductivities, their deviation from Nernst–Einstein val-
ues can be interpreted as the degree of ion–ion correlation. The
Green–Kubo andNernst–Einstein conductivities, along with the
corresponding (σ/σNE) ratios, are listed in Table III and com-
pared to the experimentally reported values. The estimated val-
ues of the ionic conductivity (σ) from the MLIP-based simu-
lations are approximately 40% lower than the experimentally
reported values in all three electrolytes, demonstrating the abil-
ity of the MLIPs to accurately capture the conductivity trends
in these DEEs. The NMA system has the highest ionic con-
ductivity among the three DEEs, with a value ≈3 times larger
than that of the URA system, while the ionic conductivity of the
ACT system is close to that of the NMA system. Interestingly,
the ratio of the experimentally reported viscosity values for the
ACT16 and NMA17 systems is very close to the ratio of their
ionic conductivities, further emphasizing the effect of viscosity
on the ion transport mechanism in these DEEs. Furthermore,
the corresponding σ/σNE ratio in Table III shows a value close
to one for the URA system, suggesting uncorrelated motion of
counterions in this electrolyte. For the ACT and NMA elec-
trolytes, a σ/σNE value of less than one points to some degree
of correlated motion between oppositely charged ions, which is
more pronounced in the NMA system. These results also align
with the obtained cation transport numbers, further supporting
the discussed cation transport mechanisms in these DEEs.
The collective dynamics of the electrolyte’s components at

short timescales can be investigated through velocity cross-
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TABLE II. Self-diffusion coefficients, D (10−11 m2 s−1) from the Green–Kubo equation for the three components of the DEEs, and the corre-
sponding cation transport number t+. The Li–amide lifetime, τLi–amide (ns), rotational relaxation time of the amide molecule, τR (ns), and their
corresponding ratio.

DLi DTFSI Damide t+ τLi–amide τR τLi–amide/τR
URA 1.07 0.70 1.11 0.60 0.63 1.53 0.41
ACT 3.19 3.01 4.72 0.51 0.60 0.71 0.85
NMA 4.92 5.67 8.60 0.46 0.88 0.50 1.76

TABLE III. The estimated values of ionic conductivity from MD sim-
ulations by the Green–Kubo approach (σ), the Nernst–Einstein equa-
tion (σNE) (using the Green–Kubo self-diffusion coefficients) and the
reported experimental values (σExp). α denotes the corresponding ratio
(σ/σNE). Ionic conductivities have the unit of Sm−1.

σExp σ σNE α

URA 0.3215a 0.19 0.18 1.03
ACT 0.8316a 0.48 0.51 0.94
NMA 0.9217 0.56 0.72 0.78

a Value is taken from the VTF plot of conductivity.

correlation functions (VCCFs). The time cross-correlation
function between the initial velocity of a particle of type i and
the latter velocities of particles of type j, initially located inside
a spherical shell of radius R around the particle of type i, can
be defined as

C(t) =
〈vj(t) · vi(0)〉r(
〈v2i 〉

〈
v2j
〉)1/2 , (15)

where vi(t) and vj(t) are the velocity of the particles i and j at
any specific time,

〈
v2i
〉
and

〈
v2j
〉
are themean squared velocities

of all particles of type i and j, respectively. 〈vj(t) · vi(0)〉r is
a restricted statistical average defined as

1

N

〈∑
j

vj(t) · vi(0) · u(R− rij(0))

〉
i,t

, (16)

where u(x) is the step function, rij(0) is the initial distance be-
tween the central particle i and a particle j, and N is the mean
number of j particles in the spherical shell of a particle i. The
cutoff radius R for species i and j is set to the position of the
first minimum of the corresponding CoM RDF in Fig. 7. The
computed VCCFs, C(t), are plotted in Fig. 13, alongside the
corresponding VACFs from Fig. 11. The initial rise of the VC-
CFs, with the decay of the corresponding VACFs, indicate the
transfer of the initial momentum of the central particle to the
neighboring particles. The decay of the functions after the first
peak could be associated with the spread of the momentum to
the particles in outer shells91. The VCCFs between particles of
different type, in the top row of Fig. 11, are rather similar in
all three DEEs. One noticeable difference is the slower decay
of the TFSI–Amide function from the URA to ACT and NMA
systems, which reach zero at 0.44 ps, 0.54 ps and 0.64 ps, re-
spectively. The same trend, although to a lesser extent, is also

visible in the Li–TFSI functions. The Li–Amide functions have
the most pronounced first peak and distinct oscillations with a
noticeable phase relation to the oscillations of the Li+ VACF.
The maxima of the Li–Amide function coincide with the min-
ima of the Li+ VACF, and vice versa, indicating a strongly cou-
pled motion of Li+ ions and amide molecules at short timescales
up to ≈1 ps. The back-and-forth motion of the Li+ ion alter-
nately slows down and speeds up the amide molecules in their
direction of movement. A small influence of the cation oscilla-
tions on the motion of anions is also visible in the Li–TFSI func-
tions at short times up to 0.2 ps. The VCCFs of distinct same-
type particles, in the bottom row of Fig. 11, show the strongest
correlation between the distinct amide molecules. The Amide–
Amide functions reach their maximum at the same time that
amide molecules, on average, lose their initial momentum and
the corresponding VACF becomes negative. The correlation
functions between the distinct TFSI– anions reach their max-
imum shortly after the corresponding VACF becomes negative,
suggesting that the heavier anions on average maintain their ini-
tially gained momentum for longer times. Moreover, the TFSI–
TFSI functions show a smaller intensity and a slower rise and
decay from the URA to ACT and NMA systems, indicating a
more restricted transfer of momentum between neighboring an-
ions in the latter. The cross-correlation functions between the
Li+ cations in close vicinity of each other show oscillations that
are rather in phase with the oscillations of the Li+ VACFs, and
are notably more pronounced in the NMA system, followed by
those in the ACT system. This suggests a coupled rocking mo-
tion of the neighboring Li+ ions, which on average move in the
same direction.

IV. SUMMARY AND CONCLUSIONS

The structure and dynamics of a series of DEEs based on
LiTFSI salt and three amide molecules were studied by MD
simulations using equivariant MLIPs. The interatomic poten-
tials were trained on atomic configurations labeled with ener-
gies and atomic forces, initially sampled from short DFT-based
FPMD simulations, using the Allegro59 model, a strictly local
many-body equivariant NNIP.We used an iterative active learn-
ing procedure based on calibrated uncertainties from model
ensemble predictions combined with the conformal prediction
method to identify under-represented parts of the configuration
space in the initial training dataset and select the most infor-
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FIG. 13. Center-of-mass velocity cross-correlation functions, C(t), of the three components of DEE in the URA system (left), ACT system
(middle), and NMA system (right) as a function of correlation time. The dashed lines are the center-of-mass velocity autocorrelation functions,
A(t), of Li+ cation (purple), TFSI– anion (red), and amide (green).

mative configurations to expand the training set. The trained
MLIPs achieve remarkable accuracy in predicting energies and
atomic forces for a set of test structures, and can successfully
reproduce the structure and short-time dynamics of the DEEs
compared to the reference FPMD simulations. The use of
equivariant representations results in models that are more accu-
rate and about an order of magnitude more data-efficient com-
pared to invariant models in our pervious study38, and require
fewer active learning iterations to reach the desired accuracy.
More importantly, they enable significantly more stable simula-
tions, indicating superior generalization capabilities of MLIPs
based on equivariant representations.

Investigating the structure of the liquids indicates that the
strong interaction between the lithium cation and the oxygen
atom of amide molecules effectively disrupt the crystal lattice
of the LiTFSI salt and is the main driving force for the melting
point depression in these DEEs. Furthermore, comparing the
liquid structure fromMD simulations of this work to previously
reported results from FF simulations reveals that ion–ion inter-
actions are not correctly captured by the FFs, as they tend to
overestimate the attraction between counterions and repulsion
between Li+ cations.

The investigated dynamics and transport properties of differ-
ent components of the studied DEEs, more specifically the ob-
tained cationic transport numbers and the estimated τLi–amide/τR
ratios, combined with their viscosity and ionic conductivity

trends, suggest a more structural transport mechanism for the
lithium ion in the URA electrolyte through exchange of amide
molecules. Meanwhile, the vehicular mechanism could have an
increasingly larger contribution to lithium ion transport in the
ACT and specifically NMA electrolytes.

SUPPLEMENTARY MATERIAL

The supporting information include details of the first-
principles molecular dynamics simulations, additional data on
elemental contribution to the error distribution of the predicted
atomic forces, coordination numbers of different species in their
first solvation shell, computed self-diffusion coefficients from
the Einstein equation, and additional velocity autocorrelation,
radial/combined distribution functions.
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