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Abstract

The mutation of remote positions on enzyme scaffolds and how these residue changes

can affect enzyme catalysis is still far from being fully understood. One paradigmatic

example is the group of lysosomal storage disorders, where the enzyme activity of a

lysosomal enzyme is abolished or severity reduced. In this work, we analyze molec-

ular dynamics simulation conformational ensembles to unveil the molecular features

controlling the deleterious effects of the 43 reported missense mutations in the human

lysosomal α-mannosidase. Using residue descriptors for protein dynamics, their cou-

pling with the active site, and their impact on protein stability, we have assigned the

contribution of each of the missense mutations into these three categories. We demon-

strate here that the use of conformational ensembles is a powerful approach not only

to better understand missense mutations at the molecular level, but to revisit the mis-

sense mutations reported in lysosomal storage disorders in order to aid the treatment

of these diseases.

Introduction

Lysosomal storage disorders (LSDs)1–3 are a paradigm of how single-point mutations in an

enzyme can disrupt or abolish its activity and cause a pathology.1–4 Looking at the loca-

tion of these mutations in LSDs-related enzymes, the reported clinical mutational landscape

includes not only positions close to the active site, but also remote ones more than 10 Å

away from it. Computationally, the effect of the orthosteric mutations can in many cases

be assessed using the ’chemical sense’ or by calculating properties of the active site in the

presence of the mutation. In contrast, the understanding of how remote mutations allosteri-

cally affect the enzyme activity5 in LSD is still far to be understood.6 The remote mutation

of the side chain of a protein residue in an LSD-related enzyme can impact its network of

amino-acid interactions in different ways.7,8 On the one hand, some of these mutations can

prevent the correct folding of the enzyme in the endoplasmic reticulum and/or its transport
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to the lysosome.9,10 The computation of the change of the free energy of the protein scaffold

upon mutation as ∆∆GX→Y has been shown useful to assess the impact of such pathogenic

mutation on the integrity of the enzyme.11,12 On the other hand, other mutations may not

affect the enzyme folding, but reduce significantly its enzyme activity.13 Whereas the former

group of mutations affect the folding process of the enzyme, the latter group may introduce

changes on the local interactions and/or the dynamics and flexibility of the protein scaf-

fold, causing ’frustrated networks in proteins’.14 Recently, the possibility to access a protein

structure from its sequence via deep-learning algorithms has allowed the exploration of these

amino-acid networks from a structural perspective.15–17 As an example, there are available

computational tools to detect the network of interactions between remote mutations and

the active site when the structure is available.18–20 The protein structure can also be used

as input file to study the role of enzyme conformational dynamics, an important factor in

catalysis.21–23 Indeed, via classical molecular dynamics (MD) simulations, conformational en-

sembles of the enzyme with explicit solvation can be obtained.24,25 Importantly, by analysis of

those conformational ensembles it can be detected the role of remote residue on catalysis.26–28

Human lysosomal α-mannosidase (hLAMAN, EC 3.2.1.24) is part of the GH38 family of

Zn-dependent aspartic glycosidase hydrolases.29–32 It catalyzes the cleavage of α-mannosidic

linkages α(1 → 2) , α(1 → 3) , and α(1 → 6) from oligosaccharides. Lack of hLAMAN activ-

ity causes the autosomal recessive disease termed α-mannosidosis (MANSA).33–36 MANSA is

a LSD associated with more than 130 pathogenic variants.37,38 The effect of the 43 reported

missense mutations in MANSA has been classified depending on their effect on the protein

activity or stability (Table 1): 17 of them reduce or abolish the enzyme activity, 23 yield

an incorrect enzyme folding or incomplete trafficking to the lysosome, and 3 of them has

not been totally classified yet. As examples, D74E, H200L, or H200N,39,40 which lead to

alterations in the coordination of metal ions at the active site,41 belong to the first group

of mutations, whereas R750W, which occurs in over 25% MANSA patients, disrupts the
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proper folding of the enzyme.36 Although the macroscopic effects of these mutations are

known, and the malignancy of missense mutations can be predicted by tools like ClinVal,42

the specific molecular mechanisms behind these defective mutations are not yet well under-

stood. Amongst other causes, the lack of an experimental structural model of hLAMAN.

hLAMAN is closely related to bovine lysosomal α-mannosidase (bLAMAN, EC 3.2.1.24)

with an 80% of similarity, for which one crystallographic structure is available (PDB id.

1O7D).30 bLAMAN is a homodimer, where each of the monomer is formed by five peptides

(labelled as A-E). Analogously, it is known that hLAMAN is cleaved into three peptides:

one of 70 kDa, one of 42 kDa (referred to as D), and one of 13/15 kDa (referred to as E).43

The 70 kDa peptide is subsequently cleaved into three additional peptides (A, B, and C).

These A, B, and C peptides are connected by disulfide bonds and exhibit a high degree of

glycosylation. Interestingly, although the closest human Golgi α-mannosidase II (hAMan II,

EC: 3.2.1.114) displays similar kinetic properties, a 81% amino-acid similarity or a similar

inhibitor sensitivity/substrate specificity,43–45 this cytoplasmic enzyme appears as a single

monomer.46

In this work, we have analyzed all-atom conformational ensembles of hLAMAN generated

via classical MD simulations in explicit aqueous solvent to unveil the key residues at the

hLAMAN dimer interface and the molecular mechanism behind the reported missense mu-

tations across the protein structure (Figure 1). This way, we have been able to compute the

degree of coupling of these mutations with the active site of the enzyme over its protein net-

work, the impact of these mutations on the stability of the enzyme, and the role of enzyme

dynamics. As outcome, we have quantified each of the former factors for each of the reported

mutations in hLAMAN. We show that by studying both the structure and the dynamic of

enzymes in LSDs, new insights can be gained into the disease mechanism for future targeted

therapies.47 Although the correlation between the type of missense mutation and the clinical

manifestations is not evident in many LSDs, we believe our approach may help to shed light
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in this regard.

Figure 1: Analysis of hLAMAN MD ensemble to unveil the role of malign missense mutations.

Results and discussion

Quaternary structure of hLAMAN

We built-up a model for the quaternary structure of hLAMAN as a polypeptide homodimer

(A-E)2 based on experimental evidences (Figure 2A). The expression of the enzyme in Ko-

magataella phaffii shows a band at ca. 230 KDa in both SDS-PAGE gels and Western-Blot

under native conditions, which corresponds to the hLAMAN homodimer of the polypep-

tide A-E (Figure 2B). These results are in line with others,43 and previous size exclusion

chromatography data.48 Noteworthy, we had difficulties to observe this band in the secreted

protein fraction (supernatant fraction). This fact may indicate the need of the intracellu-

lar processing to complete the maturation of the protein. It is reported that each of the

polypeptides of hLAMAN consist of five chains (named A-E). hLAMAN is biosynthesized

as a polypeptide of ca. 120 KDa in the endoplasmatic reticulum (ER) and transported

then to the lysosome.49 Along this journey, the maturation of the hLAMAN polypeptide
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yields three fragments of ca. 70 (chains A, B, C cross-linked via four disulfide bonds), 40

(chain D), and 15 (chain E) KDa, respectively. Additionally, the recombinant hLAMAN

expressed in different eukaryotic heterologous systems (e.g., Chinese hamster ovary (CHO)

cells,48 COS-1 cells,49 or K. phaffii 43) may be secreted as the whole precursor polypeptide

(120 kDa). Interestingly, this recombinant precursor evolves when concentrating the protein

crude by cleavage between chains C and D, with the appearance of bands at ca. 70 and 55

KDa in SDS-PAGE gel.48 Looking at the crystallographic symmetry in bLAMAN, the most

plausible interaction between polypeptides in the homodimer of bLAMAN and hLAMAN

((A-E)2) is via chains A and A’ (Figure 2A). hLAMAN structure consist of 23 α-helices and

50 β-sheets (Figure S1). The analysis of the molecular interfaces of our hLAMAN structure

and the analog structure of bLAMAN (PDB id. 1O7D)30 with the PISA server50 points

out that the most probable assembly would be the one corresponding to the quaternary

structure of a single A-E assembly (chains A-E, Figure 2A). The active site of hLAMAN is

located at the interface between chains A, C and E within each A-E unit. It is composed

of a Zn2+ atom coordinated by three residues of chain A (H72, D74, and D319) and one

residue of chain C (H446). D74 and D319 on chain A act in catalysis as nucleophile and

general acid, respectively (Figure 2C).51 Interestingly, all these residues are located on loops

between α-helices (Figure S1).
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Figure 2: (A) hLAMAN quaternary structure. Peptides of the second polypeptide are labeled
as A’-E’. (B) Western-Blot of hLAMAN expressed in K. phaffii under native conditions at
different incubation times. (C) Detail of the active site of hLAMAN in the presence of
the substrate BMAM (β-D-mannopyranosyl-(1,6)-α-D-mannopyranose). Relevant residues
at the active site are shown in stick. The two catalytic acid residues are underlined.

We studied the interactions between subunits in hLAMAN. To do this, we embedded

hLAMAN into a box of water molecules and ran µs-scale molecular dynamics (MD) simula-

tions of the systems. We studied the energetic contributions between interfaces (see Methods

for further details). In Figure 3A are shown the binding energy distributions between pep-

tides A-E in the hLAMAN monomer computed along the MD simulation trajectories. The

interaction between peptides A and B has the larger energetic contribution to the stability of

the protein complex, whereas the other cross-interactions between chains (e.g., B-C, D-E or

C-D) contribute to a smaller extend. There are still some differences between them: whereas

chain B has a strong interaction with chain C, the interaction between D and E, although

favorable, has a much smaller contribution. In all these cases, their mean values for the

interactions between A and C, B and E or D and E are below 10 kcal mol−1.
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Figure 3: (A) Computed binding energy (kcal mol−1, ± SD) between peptide chains in
hLAMAN along the MD simulations. (B) Relevant residues at the A-A’ interface and energy
contribution per residue (kcal mol−1). (C) Detail of the interactions of E286, D102 and Y99
at the homodimer interface of hLAMAN.

We also explored the interactions of the polypeptide interface (A-A’ interface). The

hLAMAN homodimer interacts mainly via the two A-A’ chains through helices H3 and H11.

Indeed, it is observed a favorable interaction between A and A’ is observed along the MD

trajectories (Figure 3B). Looking in detail at the individual energy contribution of the inter-

facial residues, it is found that E286, Y99, I88, Y86, D102, P277, M327 and Q276, amongst

others, as the relevant ones for the stability of the homodimer (Figure 3B). The side chain of

E286 establishes a salt-bridge with K89 and a hydrogen bond with Q83. A hydrogen bond

is also observed with an α-D-mannosepyranose from the other subunit A’. Importantly, the

carboxylic acid of the side chain of D102 (located on H3) establishes a hydrogen bond with

the indole nitrogen of W127 (chain A), the amide nitrogen of the side chain of N326, and

ammonium group of K330. The latter two residues are located on the other chain A’ (Fig-

ure 3C). Two residues important for the energetics of the interface have been reported as
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missense mutations in patients. The mutation D102N causes a drop of the enzyme activity

up to 85 % of the wild-type counterpart activity. The hydrogen-bond-acceptor character of

both oxygen atoms of D102 side chain are essential to keep these three interactions between

A and A’. As a consequence, the introduction of an amide function would not make such in-

teraction network possible. The change Y99H also reduces significantly the enzyme activity.

The phenol ring in Y99 interacts with the side chain of M327. A hydrogen bond between

the phenol oxygen of Y99 and the backbone of Y86 orientates the phenol ring. Thus, the

introduction of an imidazol in such position may imbalance the polarity of this section of the

interface. Altogether, E386, Y99 and D102 are in close proximity on helices H3 and H11.

This regions is critical for the integrity of the hLAMAN homodimer.

Reported missense mutations and hLAMAN structure

43 deleterious missense mutations in hLAMAN has been reported in MANSA so far (Table

1).38 A first group of 23 mutations has been shown to prevent the protein folding of the

enzyme in the ER; 17 of them to reduce the activity of hLAMAN, but do not to affect its

folding, and 3 of them has not been classified yet. Looking at the location of the reported

mutations affecting the activity on the structure of hLAMAN, it can be seen that most of

them are at a distance above 10 Å from the active site. Very few of the mutations (e.g.,

H72L, D74E or P197R) are located in the proximity of the active site. This highlights the

challenging nature of explaining the loss or reduction of enzyme activity by simple visual

inspection of the protein structure.
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Table 1: Reported deleterious missense mutations in hLAMAN.38

Mutant Chain Rel. activity (%)∗ Distance (Å)∗∗ Sec. structure Contact∗∗∗

(a) Protein folding
C55F A 9 27.3 SS-bond B
A95P A 10 13.0 loop -
P197R A 12 7.0 loop C
R202P A 24 20.0 α-helix 8 C,D
L352P A 11 26.0 β-sheet 9 -
T355P B 9 19.4 alpha-helix 13 -
P356R B 6 17.9 α-helix 13 -
G390C B 7 17.1 β-turn D
H445Y C 6 8.2 loop A
S453Y C 19 10.2 loop A
S453F C 19 10.2 loop A
L565P C 22 45.1 β-sheet 20 D
W714R D 5 32.1 β-sheet 31 -
R750W D 8 24.7 β-sheet 34 A,E
G800W D 5 20.8 β-sheet 38 B
G800R D 8 20.8 β-sheet 38 B
L809P D 4 31.7 β-sheet 39 -
G891R E 5 40.7 loop B,C
L892P E 11 41.8 loop B
R916C E 16 29.8 β-sheet 39 A
R916H E 13 29.8 β-sheet 39 A
L956R E 8 24.8 β-turn A
F1000S E 11 32.4 β-sheet 47 -
(b) Activity defective
H72L A 17 6.5 active site -
D74E A 11 5.0 active site -
Y99H A 9 18.5 α-helix 3 -
D102N A 15 21.0 α-helix 3 -
G153V A 19 14.9 loop -
D159N A 10 9.7 loop B,C
H200L A 25 13.9 loop -
H200N A 53 13.9 loop -
R229W A 30 23.7 α-helix 8 C,D
P263L A 9 15.4 loop -
S318L A 32 9.3 loop -
P379L B 19 18.1 loop D
G420V B 15 37.6 loop E
G451C C 30 12.9 loop B,D
V457E C 33 14.0 α-helix 17 A
T745R D 18 25.5 β-sheet 33 -
R950P E 16 41.2 β-sheet 47 -
(c) Not classified
L518P C N.D. 34.5 β-sheet 15 D
G801D D N.D. 24.3 β-sheet 38 B
R916S E N.D. 29.8 β-sheet 45 A

∗Relative activity (%) vs wild-type counterpart.38 N.D.: no data; ∗∗Distance of the mutated residue to the
catalytic Zn2+ atom; ∗∗∗ (-): no contact with another chain.
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Impact of the missense mutations in hLAMAN stability

Almost half of the reported missense mutations affecting the folding of the protein (13 out

of 23) are located in ordered regions, while most of the mutations causing decrease of the

enzyme activity (10 out of 17) are located in loops or disordered regions. This observation

can be linked to the fact that changes in α-helices or β-sheets (ordered regions) can deeply

alter the folding outcome in hLAMAN. In order to support this hypothesis, we measured

the impact of each of the 23 missense mutations affecting the folding in hLAMAN on the

global stability of the enzyme (Figure 4 and Table S1). We calculated the change of the

global free energy of the enzyme variant by replacing residue X by the deleterious muta-

tion Y (as ∆∆GX→Y , see Materials and Methods). In most of the folding mutations, the

system increases its free energy significantly (median of 5.0 kcal mol−1, with 48 % of them

over ∆∆GX→Y > 10.0 kcal mol−1). This highlights the impact of these mutations on the

secondary structure of hLAMAN. As an example, the changes on Pro and Gly residues has

the larger impact on ∆∆GX→Y (e.g., G800 in chain D). In contrast to the former folding

mutations, the values for the ones affecting the enzyme activity, but not the folding exhibit

smaller ∆∆GX→Y ’s (median of 6.00 kcal mol−1) and only a 39 % of them are above 10

kcal mol−1. Only G153V T745R or G451C within this group do decrease the stability of

the protein scaffold. This may indicate that in the former group of mutations, the lack of

the activity is not due to a loss of the structure of the protein, but rather to a change of

the dynamics and the network of interactions within hLAMAN. Those mutations located at

the active site (H72L or D74E) have residual impact on the global stability of the protein

scaffolds, with ∆∆GX→Y close to zero or even negative. Regarding the mutations that have

not been classified, only G801D shows a value close to 10 kcal mol−1.

11

https://doi.org/10.26434/chemrxiv-2024-n085z-v2 ORCID: https://orcid.org/0000-0001-8415-870X Content not peer-reviewed by ChemRxiv. License: CC BY-NC-ND 4.0

https://doi.org/10.26434/chemrxiv-2024-n085z-v2
https://orcid.org/0000-0001-8415-870X
https://creativecommons.org/licenses/by-nc-nd/4.0/


Figure 4: ∆∆GX→Y (kcal mol−1, ± SD) for the missense mutations affecting the enzyme
folding (blue bars), the enzyme activity (orange bars) or of unknown effect (grey bars)
computed using MD ensembles and FoldX5.52 Mutations affecting residue H200 present
values above 200 kcal mol−1 and have been excluded.

Impact of the missense mutations on the dynamics of hLAMAN

We further analyzed the dynamics of hLAMAN in MD simulations. The core globular

domain of hLAMAN shows low dynamical fluctuations along the trajectories, as can be seen

in the root-mean square fluctuation (RMSF) values per residue (mean RMSF of 0.83 Å,

Figure 5A). In contrast, the β/γ-loops exposed to the solvent (e.g., residues 539-543, 551-

562, 583-593, 759-768, and 983-985) and the spliced regions between peptide chains (A-B:

K345-G346; C-D, S600-W601; D-E, G882-A883) have a noticeable mobility. The computed

RMSF values on MD trajectories show that positions R229 and P263 moves significantly

along the MD trajectory (Figure 5B and Table S2). Whereas P263 is located in a loop, R229

is placed in the α-helix H9. However, since we analyzed the wild-type hLAMAN scaffold,

the impact of the reported mutations on the dynamics of the protein cannot be anticipated.

In addition to that, most of the loci for the described mutations have an RMSF value below

the mean value (Figure 5B). Therefore, we decided to look for alternative descriptors that
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allowed us to evaluate the impact of the dynamical effect of the mutations. Since we are

using conformational ensembles of hLAMAN, it is possible to quantify the impact of the

residue substitution coupled with the dynamics of the protein, independently of the mean

value. The differential width of the former ∆∆GX→Y energy distribution for each of the

explored mutations is related to the dynamics of the local environment (Table S1). As an

example, the change G891R on β42-β43 loop of subunit E shows a broad ∆∆GX→Y (standard

deviation of 4.38 kcal mol−1), whereas the change of L352P in the β-sheet 9 of subunit B

has a much smaller bandwidth (standard deviation of 1.24 kcal mol−1, Figure 5B). Indeed,

for some residues (e.g., C55F removing the disulfide on chain A), more than one maximum

in ∆∆GX→Y is found, which illustrates different conformational states of hLAMAN in MD

simulations. Compared to the RMSF values, the standard deviation in ∆∆GX→Y can be

used as a measure of the impact of the missense mutation in the dynamics of the local

environment using MD ensembles of the wild-type enzyme.

Figure 5: (A) Root-mean-square fluctuation (RMSF, Å) in MD simulations and dynamical
regions on wild-type hLAMAN. Peptides A-E are shown. (B) RMSF values for the reported
missense mutation positions. The grey dotted-line highlights the RMSF mean value in
hLAMAN. (C) ∆∆GX→Y (kcal mol−1) distribution of G891R, L352P, and C55F in MD
simulation.
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Coupling of the remote missense mutations with the active site

As we commented before, most of the reported mutations are not in the proximity of the

active site of the enzyme. But how do they affect the enzyme activity if they are located

remotely? In order to answer this questions, we interrogated our MD trajectory data to

quantify the degree of ’cross-talk’ between residues in the protein. We computed the mutual

information (MI) between each of reported positions containing a mutation and ten residues

at the active site28 (Figure 6 and Table S2). Those mutations that are located at positions at

the active site (H72 and D74) are not included in the analysis. MI refers to the dependency

between two variables or elements, like residues in this case. We use as metrics the total

pairwise MI between the ϕ and ψ dihedral angles of ten residues from the active site and

these two dihedral angles from the rest of the residues of the protein scaffold. The larger

the MI, the stronger the communication between residues. In general, we observe a strong

coupling of the reported positions with three residues at the active site: D74, R220, and to

a lesser extend, W77. In contrast, there is a weak coupling with Y660. Within the group

of mutations affecting the activity of the enzyme, 54 % of them have a total dihedral MI

value above the mean value (1.09). D159 is the one with the highest total dihedral MI value

with the residues of the active site (mainly via D74 and R220). V457 and R229 are the

following residues with the larger dihedral MI values within this group of mutations. In the

case of mutations affecting the folding of the enzyme, only 13 % of the mutations show a

total dihedral MI value above 1.0 (mean MI value per residue 0.66), with positions S453 and

H445 as the ones with larger coupling to the active site. Very weak coupling is observed for

residues P379, P263, R950, and G420 in the group of enzyme defective enzymes and P356,

L352, T355, G800, C55, and F1000 in the missense mutations affecting the folding.
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Figure 6: (A) Coupling of missense mutations and ten residues at the active site. No data
are shown for H72 and D74 since they are included into the ten residues of the active site.
(B) WISP trajectories obtained from the source (red spheres) D159 and R229 to the active
site (blue spheres, sink). The connecting nodes are also as spheres of different size.

Further, we studied the pathways between the missense mutations and the residues at

the active site using the weighted implementation of suboptimal path (WISP) analysis27 (see

Material and Methods). Since the folding mutations may prevent the quaternary structure

of hLAMAN, we focused our analysis on the positions of the reported mutations affecting

the enzyme activity. In Figure 6B are represented the WIPS trajectories for two of the

strong coupled residues with the active site: D159 and R229. The side of the spheres denote

the frequency of a node (residue) and the width of the cylinders the frequency of an edge

(residue–residue interaction) in the generated path. Larger sizes indicate higher frequencies,

what means an increased importance in the allosteric communication. The strongly coupled

position D159, only needs four residues to reach the active site (77, 159, 198, and 445).

In contrast, the residue R229 needs eight residues to reach it. On the way to the active

site, other positions listed in Table 1 (e.g., H200) are found. The pathways for the rest of
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positions of the missense mutations affecting the activity are plotted in Figures S3 and S4,

summarize in Table S4, and the contributions of the node in Figure S5.

We further analyzed the coupling of the reported mutations with the same 10 residues from

the active site but via bond-to-bond propensity descriptor (Figure 7A and Table S2).18,53

Bond-to-bond propensity describes the effects of fluctuations of given bonds on any other

bond in the protein. As before, the bond-to-bond scoring is defined between 0.0 and 1.0,

but in this case 1.0 is the maximum value for each position. In contrast to the dihedral-

dihedral MI analysis, with the bond-to-bond propensity, we can see the contribution due

to the network of covalent bonds. Positions related to the misfolding of hLAMAN have in

general high bond-to-bond propensity scoring values. The ones related to the loss of the

activity of the enzyme tend to have smaller values. More of the half of the positions of the

misfolding group shows a mean scoring value above 0.60. In contrast, only 4 positions out

of 12 have a mean value ≥ 0.60 in the group of mutations affecting the enzyme activity. For

the non-characterized missense mutations, the positions R916 and L518 show large scoring

values (≥ 0.60). G801 presents a small value. We represented the total dihedral MI vs the

bond-to-bond scoring mean values (Figure 7B). We normalized all the data by dividing by

the maximum value within the series. This way, all data are distributed within {0,1}. Few

positions (D159, R229, R750, and P197) present both high MI and bond-to-bond scoring

values (right top quadrant). In the left top quadrant (low total dihedral MI value and large

bond-to-bond scoring) are located most of the positions related to folding missense mutations,

with only two mutations affecting the activity (P379 and G451), which are glycine/proline

residue. Regarding the position of the missense mutations that are not classified yet, two

of them (R916 and L518) are present in this quadrant, while G801 presents both low MI

and bond-to-bond scoring. Altogether, with this projection MI vs bond-to-bond scoring, a

tendency is observed for the missense mutations affecting the folding of the enzyme: low MI

values and large bond-to-bond propensities.
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Figure 7: (A) Scoring for bond-to-bond propensities for the positions. (B) Total dihedral
MI vs bond-to-bond propensity scoring for the reported missense mutations.

A new view of hLAMAN missense mutations

The analysis of MD-derived conformational ensembles can provide useful information about

the molecular basis for each of the reported mutations. As discussed above, we have analyzed

the impact of the reported mutation by computing from conformational ensembles the global

stability of the enzyme (∆∆GX→Y values), the cross-talking of each of the positions with the

active site (total dihedral MI and bond-to-bond propensity scoring), as well as the dynamical

component for each of the positions (width of the ∆∆GX→Y ). The different scoring of each

of the residues in each of these four descriptors can unveil the molecular basis for causing

malignancy. We merged the data of the four descriptors for all missense mutations and we

plotted the data as radar chat (Table 2 and Figure S6). All values are defined for a range

between 0 and 1 after normalizing by the maximum value of the two series. Looking at Table

2, the relative impact of one mutation in each of the descriptors can be identified. In the

graphical representation, the radar chart of the mutations can provide a quick overview of the

molecular reasons of malignancy for a given variant. As an example, in Figure 8 are shown

the three unknown variants, which have been not yet classified: L518P, G801D and R916D.
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The median values for the folding and defective activity variants are also shown. Based on

their projections, the G801D enzyme is more similar to those mutation causing unfolding,

whereas L518P and R916S mimics the radar chart of the group of mutations causing the loss

of enzyme activity, with a strong coupling with the active site via the backbone bones. Of

the three mutations, G801D is the one with the larger impact on the stability of hLAMAN

and L518D the one with a larger dihedral coupling with the active site (total dihedral MI

values).

Figure 8: Radar chart of variants L518P, G801D and R916D (grey surface) for the descriptors
total dihedral MI, bond-to-bond scoring (b2b), ∆∆GX→Y , and the standard distribution of
the latter. All values are normalized and defined between 0 and 1. The median values of
the defective activity (orange surface) and folding (blue surface) missense groups are also
shown.
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Table 2: A new analysis of the reported missense mutations in hLAMAN analyzing MD
ensembles.

Mutant Chain Total dihedral MI ∆∆GX→Y SD(∆∆GX→Y ) bond-to-bond propensity

(a) Protein folding

C55F A 0.122 0.172 0.056 0.419
A95P A 0.162 0.257 0.058 0.720
P197R A 0.626 1.000* 0.178 0.499
R202P A 0.323 0.011 0.059 0.770
L352P A 0.127 0.209 0.066 0.583
T355P B 0.126 0.141 0.071 0.548
P356R B 0.131 0.343 0.152 0.607
G390C B 0.181 0.603 0.145 0.219
H445Y C 0.732 0.929 1.000 0.574
S453Y C 1.000 0.495 0.205 0.389
S453F C 1.000 0.495 0.205 0.389
L565P C 0.359 0.294 0.087 0.929
W714R D 0.145 0.270 0.087 0.751
R750W D 0.514 0.106 0.085 0.912
G800W D 0.125 1.000* 0.192 0.552
G800R D 0.125 1.000* 0.515 0.552
L809P D 0.175 0.285 0.186 0.798
G891R E 0.147 0.714 0.066 0.709
L892P E 0.207 0.220 0.232 0.856
R916C E 0.263 0.182 0.052 0.799
R916H E 0.263 0.764 0.620 0.799
L956R E 0.202 0.182 0.085 0.794
F1000S E 0.121 0.295 0.040 0.751

(b) Activity defective

H72L A 0.000** 0.077 0.094 0.000**
D74E A 0.000** 0.048 0.065 0.000**
Y99H A 0.349 0.116 0.039 0.521
D102N A 0.161 0.091 0.038 0.492
G153V A 0.588 0.623 0.157 0.020
D159N A 0.768 0.122 0.043 0.807
H200L A 0.358 1.000* 1.000* 0.607
H200N A 0.358 1.000* 1.000* 0.607
R229W A 0.660 0.092 0.072 0.650
P263L A 0.147 0.132 0.120 0.314
S318L A 0.476 0.085 0.057 0.127
P379L B 0.188 0.208 0.096 0.569
G420V B 0.112 0.301 0.069 0.371
G451C C 0.420 0.514 0.175 0.591
V457E C 0.681 0.266 0.091 0.448
T745R D 0.527 0.559 0.179 0.723
R950P E 0.133 0.213 0.043 0.609

(c) Not classified

L518P C 0.180 0.272 0.096 0.587
G801D D 0.230 0.485 0.168 0.338
R916S E 0.120 0.227 0.058 0.799

∗Data above 20.35 kcal mol−1, the normalizing value.∗∗Residue defined as part of the active site.
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Conclusions

We have analyzed MD-derived conformational ensembles to understand how remote missense

mutations affect the loss of enzyme activity and the folding of hLAMAN. The relevant

biological quaternary structure of hLAMAN is a homodimer of the polypeptide A-E. By

analyzing the key residues for the integrity of the dimer interface between units A and A’ in

hLAMAN, we could assign an important role for the reported missense mutations like Y99H

and D102N. They are located at the hLAMAN homodimer interface and they participate in a

well-defined amino acid network. Thus, they mutation may significant disturb this network of

interactions between both units. Additionally, the interaction between units A and B in the

polypeptide A-E of hLAMAN is the stronger one amongst all subunits. The computation

of the impact of the missense mutation on the global stability of the enzyme scaffold as

∆∆GX→Y shows that the mutations affecting the folding of hLAMAN present larger values

than the group affecting the activity. In addition to that, the fluctuations of ∆∆GX→Y

along the MD ensembles indicates the relevance of the mutation on the interactions within

the local environment and its dynamical effect. The use of RMSF per residue along the MD

simulation does not provide such information. We have also analyzed the coupling of the

reported mutations with ten residues located at the active site via two metrics: the total

dihedral MI and the bond-to-bond propensity scoring. Using them, we see that the two

groups of missense mutations show different trends for each of the descriptors, what could

be use as a classification metrics. Altogether, we have reported here the contribution of each

of the pathogenic missense mutations into the stability of hLAMAN, its dynamics, and the

network of interactions with the active site. Such analysis and understanding at the atomic

level can help on deciphering the role of future missense mutations in LSDs as well as to

better adapt and designing novel molecules (i.e., pharmacological chaperones or ERT), and

potentially, to contribute to the foundation for precision medicine in LSDs.
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Materials and Methods

hLAMAN expression and purification

The gene encoding for hLAMAN (MAN2B1) was acquired inserted into the pET28b+ vec-

tor (GenScript). After amplification using the primers 5’-TGCGCGCACGTGGATGGGCAGCAGC

CATCATCATCATCATCACAG-3’ and 3’-TGCGCGGCGGCCGCTTAGCCATCCACTTCC-5’ (GenScript) the

gen of interest was cloned into the K. phaffii expression vector pPICZalpha (Thermo Fischer

Scientific) using the restriction enzymes EcoRI and NotI. Following transformation (100 ng

of DNA plasmid) and amplification in E. coli NEB10-beta cells, the final pPICZalpha was

isolated and 13 µg of the DNA plasmid were linearized using SacI as restriction enzyme. K.

phaffii X33 was transformed with the linearized plasmid. Positive colonies were selected on

YPDS agar plates containing 100 µg mL−1 of the antibiotic ZeocinTM . To test the efficacy

of the hLAMAN expression, a high-throughput expression screening was performed by cul-

tivation of different colonies in 96-deep well plates followed by dot blotting. The 96-deep

well plates contained a minimal glucose medium in 0.4 M potassium phosphate buffer pH 6.0

(1.34 % yeast nitrogen base, 1 % D-glucose, 500x biotin) were inoculated with 80 different

colonies and were grown in the presence of different concentrations of ZeocinTM (100, 250,

500, and 1000 µg mL−1). hLAMAN expression was induced by addition of methanol (5 %

methanol in glucose-deprived minimal medium) every 24 h. After 96 h cells were harvested

by centrifugation and the protein fraction from the supernatant were subjected to dot blot-

ting on a nitrocellulose membrane. After blocking the membranes in 5 % (w/v) non-fat dry

milk in 1x Tris-buffered saline, 0.1 % Tween(R) 20 Detergent (TBST) media at pH 7.4, the

primary antibody anti-HIS IgG (diluted in 5 % (w/v) non-fat dry milk in TBST) was used.

After 2 h of incubation, the membranes were washed four times with 1x TBST and then,

incubated with HRP-conjugated goat-anti-rabbit IgG (diluted in TBST containing non-fat

dry milk (5 %, (w/v)) for 2 h. After another four washing steps with 1x TBST, the im-

munoreactive bands were visualized by chemiluminescence detection using the Super Signal
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West Femto Maximum Sensitivity substrate (Thermo Fischer Scientific) and a Chemidoc

detection system (Biorad). The colony showing the highest expression level was selected for

a scale-up expression. 25 mL of BMGY media (1 % yeast extract, 2 % peptone, 100 mM

potassium phosphate buffer, pH 6.0, 1.34 % YNB, 500x biotin, 1 % glycerol) and incubated

overnight at 28 øC with a mixing of 180 rpm for growth. Upon an optical density at 600

nm of 6.0, the cells were harvested and resuspended in 200 mL of BMMY media (1 % yeast

extract, 2 % peptone, 100 mM potassium phosphate buffer, pH 6.0, 1.34 % YNB, 500x bi-

otin, 0.5 % methanol) to induce expression. To maintain expression, 100 % methanol was

added every 24 hours to a final concentration of 0.5% at 28 °C. Aliquots were collected at

various time points, centrifuged, snap-frozen, and stored for expression analysis of the pellet

and the supernatant using SDS-PAGE and Western blot. The anti-His antibodies (Abcam,

ab9108) were used for blotting.

Modeling of the quaternary structure of hLAMAN

The initial Cartesian coordinates of the polypeptide of hLAMAN (UniProtKB - O00754)

were taken from the AlphaFold Protein Structure Database (AF-O00754-F1).15 The sig-

nal peptide (1-49 amino acids) was removed, and the loops were manually cleaved between

amino acids 345-346 (A-B), 429-430 (B-C), 601-602 (C-D), and 882-883 (D-E) (Figure S1).

The reported N-glycosylation points at positions Asn137, Asn367, Asn497, Asn645, Asn692,

Asn766, and Asn930 as well as the catalytic zinc atom, were placed into hLAMAN by

structural superimposition with bLAMAN (PDB id. 1O7D,30 UniProt code Q29451) or by

manual docking. The experimentally reported disulfide bonds for the pairs 55-358, 268-273,

412-472, and 493-5019, were already present in the AlphaFold model and were included when

building up the topology of the system. The protonation states of the titratable residues on

the protein were calculated via the H++ web server54 assuming a pH value of 4.8 (close to

the lysosomal one). We were careful with the catalytic residue Asp319 (general acid for the

first step of the reaction), which was manually protonated to accomplish the proposed mech-
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anism of action.55 As hLAMAN substrate, we included the β-D-mannopyranose-(1-6)-α-D-

mannopyranose (BMAM), derived from the crystal structure of a GH125 1,6-α-mannosidase

variant (PDB id. 5M7I56). BMAM was manually docked into the active site of hLAMAN

guided by structural superimposition with other glycosydades.

Classical molecular dynamics (MD) simulations

MD simulations were carried out using the suite of programs Amber20.57 Protein residues

and solvated ions were treated with the AMBER ff19SB force field and GLYCAM06 for the

N-glycosylated residues and the substrate BMAM.58,59 Parameters for all atoms involved in

the coordination sphere of the catalytic Zn2+ were derived by means of the Metal Center

Parameter Builder (MCPB) approach.60 The necessary quantum geometry optimization of

the Zn2+-coordination sphere in the gas phase was carried out with Gaussian1661 at the

B3LYP/6-31G* level of theory.62–65 The hLAMAN monomer (A-E) as well as the hLAMAN

dimer (A-E)2 were simulated. All systems were first energetically minimized to avoid steric

clashes, and then placed in the center of a cubic box filled with 28,000-29,000 TIP3P water

molecules.66 Then, the solvated systems were minimized in three consecutive steps (first all

protons, then solvent, and finally, all system) and heated up in 50 ps from 100 to 300 K using

an NVT ensemble with the Langevin thermostat (gamma friction coefficient of 1.0 ps -1).

Care was taken to constrain the solute during the heating step by imposition of a harmonic

force on each atom of the solute of 40 kcal mol-1 Å-2. Afterward, these harmonic constraints

were gradually reduced up to a value of 10 kcal mol-1 Å-2 in 4 simulation stages (NVT, 300

K). The systems were switched to constant pressure (NPT scheme, Berendsen barostat 300

K), and the imposed constraints from the heating were totally removed. Each of the systems

was further simulated for a total time of 1.5 µs in three independent MD simulations of 0.5 µs.

Atom-pair distance cutoffs were applied at 10.0 Å to compute the van der Waals interactions

and long-range electrostatics by means of the Particle-Mesh Ewald (PME) method. SHAKE

algorithm was applied to restrain the hydrogen atoms on water molecules.67 MD trajectory
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analysis was carried out using the cpptraj 68 module from Amber2069 for monitoring the

root-mean-square deviation (RMSD) and root-mean-square fluctuation (RMSF), amongst

other parameters.

Mutual information (MI) calculation

We considered the communication of all residues in hLAMAN with the active site via the

torsional angles. We computed the mutual information (MI) pairwise values using the Par-

allel Software Suite for the Calculation of Configurational Entropy in Biomolecular Systems

(PARENT).28,70,71 As input data set, we analyzed a merged MD ensemble from three in-

dependent MD simulations of hLAMAN monomer in explicit aqueous solution (3 x 0.5 µs,

12.000 snapshots; the first 10 ns of the MD trajectories were not taken into consideration).

All glycosylated residues where changed to Asn for the analysis afterwards. We analyzed

the dihedral-dihedral MI values, which can present values from 0 (no coupling) to 1 (maxi-

mum coupling). These dihedral angles span the ones of the backbone (ϕ, ψ). In particular,

we analyzed the torsional MI values between each residue i in the protein with 10 selected

residues placed at the active site, as done in the bond-to-bond propensity analysis (H72,

D74, W77, D196, R220, D319, H446, D447, Y660, and R823). A 962 x 962-contact matrix

was generated with the MI values (see Figure S1). The mean value across the matrix is 0.05,

with auto-coupling between amino acids excluded from the analysis.

Bond-to-bond propensity analysis

The bond-to-bond propensities for wild-type hLAMAN were computed using the server

ProteinLens.19,72 The connectivity of the covalent bonds between the source (in our case

the active site) and every other bond in the protein structure were measured with the bond-

to-bond propensity analysis. This is done by assessing the propagation of a perturbation

originating at the source site through an edge formulation of random walks. On they way, the
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propagation of these ’fluctuations’ within the model depends on the strength of interactions

between atoms (e.g., hydrogen bonds, hydrophobic interactions). We utilized 9 randomly-

selected snapshots from the MD simulation of the wild-type hLAMAN, excluding the first 100

ns of each of the single trajectories. As the primary source site for fluctuation propagation,

we defined 10 residues located at or in close proximity to the active site: H72, D74, W77,

D196, R220, D319, H446, D447, Y660, and R823. As outcome, the statistical quantile score

is obtained, which ranges between 0 (no coupling) to 1 (full coupling).

Weighted implementation of suboptimal path (WISP) analysis

WISP transforms the protein into a network and identifies how distal regions communicate

allosterically. By designating a source and sink residue, the analysis reveals the shortest

pathways for communication between them, pinpointing key residues and residue interac-

tions. A correlation cutoff of 0.25 (absolute value) is used to determine the 500 shortest

paths between source and sink, enabling the analysis of node and edge degenerancies along-

side path lengths. We used the Key Interaction Finder (KIF) software.73 KIF methodology

is based on the calculation of a correlation matrix between each of the structural features

in the protein, which is transformed into a per-residue matrix by identifying the largest cor-

relation between any pair of residues. This step increases the dimensions from the number

of features squared to the number of residues squared, with the diagonal set to 1. Next,

the contact maps/matrices are created using the MDTraj library74 to measure the heavy-

atom distances between residue pairs in a given structure. A 6 Å cutoff defines whether two

residues are in contact, resulting in a binary matrix containing 1 (for contacts) and 0 (no

contacts within the cutoff). These correlation and contact matrices are inputted into the R

package Bio3D,75 facilitating the WISP analysis.
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Binding energy and ∆∆GX→Y calculations

A total of 60 frames from the merged MD ensemble were printed and analyzed with the force

field FoldX5 v202452 to compute the binding energy between hLAMAN subunits (AnalyseC-

omplex module) and to calculate the impact on the energy of the system after amino-acid

mutation as ∆∆GX→Y (PositionScan module). To calculate the individual energetic contri-

bution of each of the resides at the A-A’ interface, we made use of the software MM-ISMSA.76
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the second-sphere influence on hLAMAN. S5. KIF-WISP node degeneracy for each path

derived from the hLAMAN trajectory. S6. Radar charts for data shown in Table 3. Tables:

S1. Mean ∆∆GX→Y value (kcal mol−1) for the reported missense mutations computed on the

MD ensemble of wild-type hLAMAN. S2. RMSF (Å) for the reported missense mutations

computed along the MD simulation of the hLAMAN monomer. S3. Computed bond-to-

bond propensity scoring and mutual information (MI) for the reported missense mutations
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in hLAMAN. S4. Resides identified on the path from the reported position to the active site

using the KIF-WISP analysis.
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