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Abstract

Among Na-ion solid electrolytes, Na3SbS4 has achieved high ionic conductivity

(σion) exceeding 10 mS/cm through aliovalent doping. σion enhancement due to alio-

valent doping is qualitatively explained by the increase in the concentration of defects

that mediate ion diffusion. However, a rigorous atomic-scale mechanistic explanation is

needed. Doping also affects σion by modifying ion mobility – an effect that is not well

understood and often overlooked. We use first-principles defect calculations to mecha-

nistically explain and quantify the increase/decrease in Na vacancy concentration due

to aliovalent doping of Na3SbS4. By focusing on isovalent doping, we reveal local and

global structural effects of doping on the migration barrier, and therefore, ion mobility.

In conjunction with experiments, we demonstrate the interplay between the local and
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global effects. Doping with heavier anions to achieve more polarizable frameworks is

a common approach to enhancing σion. Our findings present a unique approach to

enhancing σion by doping with smaller and lighter cations that form stiffer bonds with

anions, which in turn soften the parent framework.

Prior to the development of Li-ion technology in the 1990s, Na-ion batteries were the

focus of the research community.1 Na-ion battery technology offers tremendous potential

due to the abundance, cost effectiveness, and suitable redox potential of sodium.2,3 While

the deployment of Na-ion batteries in transportation and portable devices is limited by

lower energy/power density compared to their Li-ion counterpart, lower material cost makes

Na-ion batteries more suited for grid-scale storage.2 All-solid-state-batteries containing in-

organic solid electrolytes (SEs) are safer and have higher energy/power density compared

to current Li-ion technology that uses liquid organic electrolytes.4 Yet, SEs suffer from low

ionic conductivity (σion) and limited (electro)chemical stability that have impeded their

commercialization. σion of SEs must be increased to be competitive with liquid electrolytes

(σion ∼ 10−2 S/cm) while ensuring electrochemical stability with metal anodes and high-

voltage cathodes.5–8

Among Na-ion SEs, Na3SbS4 has a room-temperature σion of around 10−3 S/cm.9–11

Tungsten (W) doping increases σion of Na3SbS4 above 10−2 S/cm.12–14 σion is the product of

the mobile ion defect concentration n, ion mobility µ, and electronic charge e – a constant.

Mathematically, σion = nµe. It has been qualitatively shown that aliovalent doping with

W increases the concentration of Na vacancies that mediate Na-ion diffusion, i.e., doping

increases n.15,16 However, doping also affects the mobility of Na ions by modifying their

migration barrier (∆Em), but such effects are not fully understood for doped-Na3SbS4.

In this work, we use first-principles defect calculations to quantitatively demonstrate

the increase/decrease in Na vacancy concentration due to aliovalent doping of Na3SbS4. In

conjunction with experiments, we reveal local and global structural effects of doping on
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∆Em. These effects and their interplay manifest even in the case of isovalent doping where

doping does not change the mobile ion concentration. We computationally probe 8 different

dopants – 5 aliovalent (W, Mo, Si, Ge, Sn) and 3 isovalent (V, Nb, Ta). We compare our

computational predictions with existing experimental literature on aliovalent dopants. The

complementary experiments in this study focus on isovalent doping.

First, we focus on the aliovalent doping of Na3SbS4. Prior experimental studies have

considered W, Mo, Si, Ge, and Sn as aliovalent dopants for Na3SbS4.11–13,17 We use first-

principles defect calculations to determine the formation energy (∆ED,q) of substitutional

dopants in tetragonal Na3SbS4. While it is claimed that tungsten doping induces a phase

transition from the tetragonal to the cubic structure,13 careful measurements have shown

that the local structure remains tetragonal.15 Since Sb is nominally a 5+ cation in Na3SbS4,

substitutional W6+ and Mo6+ would be donor dopants while Si4+, Ge4+, and Sn4+ are accep-

tor dopants. Figs. 1(a) and 1(b) show the calculated ∆ED,q of native defects (VNa, VSb, VS,

NaSb, SbNa, NaS, SNa, SSb, SbS, Nai) at a set of elemental chemical potentials that represent

four-phase equilibrium in the Na-Sb-S-dopant quaternary chemical space (vertex V5, Table

S2–6). ∆ED,q of native defects are taken from our previous work (Ref. 11) where we showed

that Na vacancies (VNa) mediate Na-ion diffusion in Na3SbS4. For clarity, only the native

defects with low ∆ED,q are labelled; the four-phase equilibrium is chosen to be consistent

with our previous work for undoped Na3SbS4.11

We find that W and Mo are effective donor defects, as evidenced by the low ∆ED,q

of substitutional WSb and MoSb (Fig. 1a). The self-consistently determined equilibrium

Fermi energy, EF,eq, which is the relevant Fermi energy is evaluated at 873 K – synthesis

temperature of Na3SbS4 (see Methods for details). In undoped (or self-doped) Na3SbS4, EF,eq

is mainly determined by acceptor V −1
Na and donor V +1

Sb . Doping with W and Mo shifts the

EF,eq closer to the conduction band, i.e., n-type doping, by 0.36 and 0.16 eV, respectively,

relative to the undoped case. Consequently, ∆ED,q of V −1
Na is lowered. Fig. 1c shows that V −1

Na

concentration increases by approx. 150 and 10 times due to W and Mo doping, respectively.
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Figure 1: Formation energy of relevant native defects and substitutional dopants in Na3SbS4.
(a) donor dopants – W and Mo, and (b) acceptor dopants – Si, Ge, and Sn. Equilibrium
Fermi energy, EF,eq, is calculated at 823 K. (c) Experimentally measured ionic conductivity
(σion)11–13,17 vs. calculated V −1

Na concentration for W, Mo, Si, Ge, and Sn doping.

Our computational prediction is consistent with the experimentally observed increase in

σion (Fig. 1c). Assuming no change in Na ion mobility due to doping, the increased V −1
Na
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concentration should translate to a linearly proportional increase in σion. However, measured

σion increases by only 30 and 3 times due to W and Mo doping, suggesting additional doping

effects are at play that diminish the impact of V −1
Na concentration increase. Dopants most

likely also affect the migration barrier and therefore, the mobility of Na ions. We explore

this effect in more detail later in this study.

Our defect calculations confirm that Si, Ge, and Sn act as acceptor dopants, i.e., p-type

dopants, which shift EF,eq towards the valence band and increases ∆ED,q of V −1
Na (Fig. 1b).

We find that substitutional Si (SiSb) has the lowest ∆ED,q followed by Ge and Sn. Si doping

shifts EF,eq by 0.21 eV, which lowers V −1
Na concentration by 20 times relative to the undoped

case (Fig. 1c). Experimentally, σion decreases by 2 times when doped with Si. Since ∆ED,q

of GeSb and SnSb are comparable or even slightly higher than V −1
Na , we predict that Ge and Sn

doping will have minimal effect on V −1
Na concentration. However, measured σion is found to

decrease dramatically by almost 2 orders of magnitude, again suggesting that doping effects

beyond changes in the mobile ion concentration are at play.

To understand how doping affects σion beyond changing the mobile ion concentration,

we probe three transition elements (V, Nb, Ta) that exist in +5 oxidation state. Being

redox active, these transition elements also exist in other oxidation states. The hypothesis

is that V, Nb, and Ta in their +5 oxidation state isoelectronically substitute on Sb site, and

affect σion of Na3SbS4 by modifying the ion mobility (e.g., by altering migration barrier)

alone. By keeping the mobile ion concentration unchanged, isovalent doping allows us to

deconvolute doping effects on the mobile ion concentration and mobility. We perform defect

and migration barrier calculations in conjunction with experiments to elucidate these effects.

First, we computationally check if V, Nb, and Ta are isovalent dopants with high solubility

in Na3SbS4. Fig. S1 presents ∆ED,q of substitutional VSb, NbSb, and TaSb. We consider -1,

0, and 1 charge states of these defects, but find that the neutral charge state to be the most

stable at EF across the band gap. In addition, ∆ED,q of NbSb and TaSb is small (≲ 0.05 eV)

suggesting high solubility of Nb and Ta on the Sb site. While ∆ED,q of VSb is higher than
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Figure 2: Computed and measured lattice parameters (a, c), cell volume, and lattice pa-
rameter ratio c/a as a function of composition x in Na3Sb1−xMxS4 (M = V, Nb, Ta).

Nb and Ta, it is still small ∼0.38 eV. Our defect calculations point to the high solubility

of isovalent V, Nb, and Ta substitution in tetragonal Na3SbS4, which is consistent with

the reported synthesis of fully-substituted tetragonal Na3VS4,18 orthorhombic Na3NbS4,19

and orthorhombic Na3TaS4.20 The fully-substituted versions all feature Na ions and MS4

tetrahedra (M = V, Nb, Ta). Motivated by these findings, we synthesized Na3Sb1−xMxS4

(M = V, Nb, Ta) samples via solid-state reaction (see Methods). To avoid complications

associated with phase change (e.g., tetragonal → orthorhombic), we consider compositions

with x up to 0.2.

Fig. 2 presents the calculated and measured changes in the lattice parameters (a, c), unit-

cell volume, and c/a as a function of the composition (x). Lattice parameters and volume
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Figure 3: (a) Nyquist plot measured at -40◦C for Na3Sb1−xMxS4 with x = 0.05 (M = V,
Nb, Ta). (b) ionic conductivity at room temperature as a function of x. (c) Arrhenius plot
based on the total resistance for x = 0.05, shown in (a). (d) measured activation energy as
a function of x. Values of undoped samples are shown as black squares.

change almost linearly with x following Vegard’s law, which confirms the incorporation of

V, Nb , and Ta in tetragonal Na3SbS4. Generally, the computed trends are consistent with

the experimental measurements, although the computed parameters are larger than the

measured values because of the well-known underbinding with GGA exchange-correlation

functional. Nonetheless, the computed a, c, and volume for Na3SbS4 are overestimated by

∼0.9%, ∼1.2%, and ∼3.0%, respectively, which are typical errors with GGA functional.

The observed changes are also consistent with the ionic radii. V5+ is significantly smaller

than Sb5+ while Ta5+ is similar in size to Sb5+; consequently, V (Ta) incorporation causes

the largest (smallest) change in a and volume. However, c slightly increases with Nb and

Ta doping, and as a result, c/a also increases, indicating an increase in the tetragonality.

Again, this behavior is consistent with experimental measurements. The changes in lattice

parameters alone provide early indications that V doping is likely to behave differently from

Nb and Ta doping.

We use temperature-dependent impedance spectroscopy to study the effect of isovalent
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doping on σion of Na3Sb1−xMxS4. The representative data obtained at -40◦ C is shown in

the Nyquist plot in Fig. 3(a). The spectra obtained from all samples could be fitted by a

parallel circuit consisting of one resistor representing the ion resistance, one constant phase

element (CPE), its capacitive component, and a CPE in series with it, representing the

ion-blocking behavior. As with other sulfide solid electrolytes, we were unable to separate

the bulk and grain boundary contributions even at -40 ℃ but the capacitances of the ion

transport part obtained from the fit were 5-15 pF, indicating that the data reflects the bulk

contribution,21 i.e., the effect of the substituted elements in the structure. Fig. 3(b) shows

the measured σion at room temperature for compositions x ≤ 0.2. σion of undoped Na3SbS4

is 0.4 mS/cm, which is consistent with our prior results under the most Na-rich synthesis

condition.11 Na-ion diffusion slows down with increasing tetragonality (c/a),22,23 which we

observe for Nb and Ta doping (Figs. 2d, 2e). Indeed, we observe a monotonic decrease in

σion with increasing Nb and Ta doping in Fig. 3(b). However, we observe non-monotonic

effect of V doping on σion, with σion first increasing (up to x ∼0.05) and then decreasing in

a manner similar to Nb and Ta. This interesting non-monotonic change in σion cannot be

simply described by differences in the ionic radii of the dopants relative to Sb, but it is an

indication of competing factors at play. Figs. 3(c) and 3(d) show the Arrhenius temperature-

dependence of σion for x = 0.05 and the comparison of the activation energies (obtained from

the Arrhenius dependence) across all samples, respectively. Similar Arrhenius dependence

implies the ion diffusion mechanism remains unchanged due to V, Nb, and Ta doping. We

notice a slight increase in the activation energy for Nb- and Ta-doped samples, but remains

virtually unchanged for V doping. Next, we elucidate the local and global structural effects

of doping on σion and derive materials design rules for solid electrolyte doping.

Doping affects the energy landscape for ion migration in two distinct ways. Firstly, the

migrating ion locally interacts with the dopant, which will change the ion migration barrier

(∆Em). Secondly, doping changes the global structural properties such as the cell volume,

which in turn changes ∆Em. To quantity the local and global effects, we calculate ∆Em
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Figure 4: Migration barrier of Na ions mediated by Na vacancy (V −1
Na ) in undoped and M -

doped Na3SbS4 (M = V, Nb, and Ta) along the a axis. The structures along the migration
pathway are shown, with positions 1 and 3 corresponding to the 4d Wyckoff site and 2
corresponding to 2a site of Na. Na-vacancy mediate diffusion of Na ions follows a concerted
mechanism along the a axis. The dopant M is located at the center of the configuration
coordinate. The configuration coordinate is normalized using the square root of the sum of
squared distances of all atoms between images along the pathway.

for Na-ion migration using the nudged elastic band method (see Methods for details). We

model the Na-ion diffusion mediated by charged Na vacancies (V −1
Na ). Specifically, we focus

on Na-ion diffusion along a axis of tetragonal Na3SbS4 (∼32 meV, Fig. 4) since ∆Em along

c axis is significantly larger (∼78 meV, Fig. S2). In a tetragonal cell, a and b are equivalent.

In a polycrystalline sample, we expect the overall σion to be dominated by Na-ion diffusion

along a and b (Fig. S2). We also find that Na-ion diffusion along a and b follow a concerted

mechanism (Fig. 4), also observed in other solid electrolytes.24,25

To fully understand the competing nature of the local and global structural effects, we

must deconvolute the two effects. We do so by calculating ∆Em in two scenarios: (1) Na-ion

migrating in the vicinity of the dopants, using undoped Na3SbS4 cell parameters, and (2)

Na-ion migrating in a cell with volume adjusted to match the doping level (Fig. 2), without

explicitly adding the dopant in the cell. The former captures the local structural effects

while the latter reflects the global effects.
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Fig. 4 shows the energy landscape for Na-ion migration in the vicinity of the dopant,

which is placed at the location “3” on the configuration coordinate (corresponding position

in the structure shown below) and effective conc. is x = 0.0625. Doping with V, Nb, and

Ta increases ∆Em by 41.9, 11.4, and 13.9 meV, respectively, compared to undoped Na3SbS4,

where ∆Em is 32 meV. In fact, ∆Em for V doping (74 meV) is comparable to that along c

axis in undoped Na3SbS4 (78 meV).

Next, to capture the global structural effects of doping, we compute ∆Em of Na ions in

simulation cells that are scaled to match the volume of Na3Sb1−xMxS4 (Fig. 2c) without

explicitly adding the dopant atoms in the cells. Fig. 5 presents ∆Em along the a/b axes as

a function of the doping level, x. ∆Em computed in this manner is essentially the Na-ion

migration barrier far from the dopant site, where the volume changes affect ∆Em but direct

local interaction with the dopant atom is weak or practically absent. ∆Em decreases almost

linearly with increasing V doping. Nb and Ta doping also decrease ∆Em (at x = 0.0625)

relative to undoped Na3SbS4 but V doping reduces ∆Em by 2X compared to Nb and Ta. In

summary, our computational results suggest that while ∆Em increases locally in the vicinity

of the isovalent dopants, global volume contraction decreases ∆Em. The latter effect will

prevail only at low doping concentrations because the local effects will dominate at higher

concentrations.
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With a quantitative understanding of the two competing factors, we can now, at least

qualitatively, explain the observed trends in σion as a function of M doping (Fig. 3).

Mathematically, σion = nµe, where n remains unchanged due to isovalent doping. µ =

A.e−∆Em/kBT , where A is the prefactor that depends on a geometric factor and jump fre-

quency and kB is the Boltzmann constant. Assuming the prefactor remains unchanged,

changes in σion due to doping reflects changes in ∆Em. Here, ∆Em is an effective migration

barrier that includes both local and global effects of doping. For Nb and Ta doping, σion

consistently decreases with increasing doping concentration since the barrier-reducing global

effect is weaker than the local barrier-enhancing effect. For V doping, the barrier-reducing

global effect is roughly two times stronger than Nb and Ta, and therefore, we observe an

increase in σion at low doping concentrations followed by the expected decrease at higher

concentrations where the barrier-enhancing local effects dominate.

Zeng et al. reported that local structural distortions give rise to nearly-degenerate po-

tential energy surfaces with low ∆Em that create ion percolating pathways.26 Motivated by

this idea, we analyze the structural distortions caused by isovalent dopants (Fig. S3). We

characterize the structural distortion by calculating the Voronoi volumes of each Na ion in

Na3Sb1−xMxS4 (M = V, Nb, Ta) for x = 0.03, 0.06, and 0.12. The Voronoi volumes of the

two Na Wyckoff sites (2a, 4d) in undoped Na3SbS4 are marked with vertical dotted lines in

Fig. S3. In doped Na3SbS4, there is a distribution of Na Voronoi volumes; the distribution

becomes wider with increasing isovalent doping for V, Nb, and Ta. The distributions for

V doping are noticeably wider compared to Nb and Ta, indicating greater local structural

distortions and possible formation of percolating pathways for Na-ion migration.

We perform Raman spectroscopy to further elucidate the effect of doping on the structural

distortions and the vibrational properties. Fig. 6 (top) shows the Raman spectra measured

in the vicinity of a symmetric (νS) and two asymmetric (νa) SbS3−
4 stretching modes.10 SbS3−

4

peaks persist even after M doping as the Sb-S sublattice is still predominantly composed of

SbS4
3−. The lower panels in Fig. 6 are the peak positions of SbS4

3− vibration modes. We
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Figure 6: Raman spectra of symmetric (νS) and asymmetric (νa) SbS3−
4 stretching modes

in undoped and M -doped Na3SbS4 (M = V, Nb, Ta). SbS3−
4 stretching modes soften in

V-doped Na3SbS4 as indicated by the lower wave numbers.

find that the peak positions remain virtually unchanged for Nb and Ta doping, suggesting

minimal effect of doping on the vibrational properties of the Sb-S sublattice. V doping causes

a noticeable shift in the SbS4
3− vibrational modes to lower wavenumbers, consistent with the

larger structural distortions (Fig. S3). In contrast, the VS4
3− vibrational modes appear at

wavenumbers larger that SbS4
3−, indicating stiffer V–S bonds. Softening of SbS4

3− stretching

modes is likely a result of the chemical pressure generated by the introduction of smaller and

lighter V, and stiffer V-S bonds. Softer Sb-S sublattice is more polarizable, which reduces the

interaction between the Sb-S framework and migrating Na ions and thereby, boosts σion.27

In summary, we use first-principles defect calculations to quantify the increase/decrease

in Na vacancy concentration due to n- and p-type aliovalent doping of Na3SbS4. In addition

to changing the concentration of defects that mediate ion diffusion, doping also affects the ion
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mobility, mainly by modifying ∆Em. We perform first-principles defect and migration barrier

calculations in conjunction with experiments to mechanistically elucidate the local and global

effects of doping on ∆Em and therefore, σion. Doping or alloying with heavier anions to

achieve a more polarizable framework is a commonly prescribed approach to enhancing

σion of solid electrolytes.28 Our findings highlight an alternative and unique approach to

enhancing σion by doping with smaller and lighter cations that form stiff bonds with the

anion, which in turn softens the parent framework.
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