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 2 

Abstract 14 

 15 

Software programs for parameter estimation, phase visualization and predictive 16 

modeling of supercritical extraction process and data using algorithms is presented in this work. 17 

A contextually appropriate, iterative, ordinary least squares estimation and selection method is 18 

developed for estimating model coefficients of density based semi empirical model equations 19 

associated with this process and data. Visualization of the phase behaviors projected by the 20 

specific density based semiempirical model equation(s) is also performed iteratively by plotting 21 

three-dimensional surfaces involving the state variables and solute solubility mole fraction. 22 

Predictive modeling of input empirical data has been implemented using three supervised 23 

machine learning algorithms (Multilayer perceptron, K-nearest neighbors and Support vector 24 

regression). Hyperparameter optimization of the machine learning algorithms is performed 25 

prior to prediction. Detailed analysis of the prediction is conducted by using standard scoring 26 

metrics and descriptive charts. Theoretical inference and discrepancies regarding the predicted 27 

window of maximum/optimal solubility, modeling efficiency, vapor liquid equilibrium and 28 

phase behaviors projected by the model equations have been elucidated from the program 29 

outputs. In summary, these programs are unique, accurate, reliable and simple computational 30 

tools for evaluating/designing density based semiempirical equation(s) of supercritical 31 

extraction process and associated data.  32 

 33 

Keywords: Parameter Estimation, Phase Visualization, Predictive modeling, Ordinary Least 34 

Squares, Machine Learning. 35 

 36 

Introduction 37 

 38 

Theoretical, Empirical and Semi empirical Models are being developed and studied for 39 

modeling and understanding Super/subcritical fluid extraction processes (Huang et al. 2012; 40 

Rai et al. 2014). In particular, Density based Semiempirical model equations (DBSE Model 41 

Equations) are very popular and are being designed for modeling this process and therefore is 42 

part of a growing body of research (Hawthorne 1990; Herrero et al. 2010; Knez et al. 2013; 43 

Alwi and Garlapati 2021a).  44 

Novel DBSE models are developed with the aim to capture (approximate) and reproduce data 45 

specific non linearity and complexity (dynamic and non-dynamic behavior) in the process. 46 

Modeling in this scenario is primarily focused on the operating range of the process parameters 47 
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observed during desired output/yield levels (Tabernero et al. 2010). Unfortunately, in most 48 

cases, this window (presumably rich in information) is narrow and is solute/process specific. 49 

Almost every study describing a novel DBSE model have proceeded by distilling facts about 50 

the variation in solvating power observed in the process and drawing fundamental relations 51 

(from similar studies) between the operating process parameters and the dependent variable 52 

[ln(y), T, P, D]. A good and elegant example for this is the study and model presented by 53 

(Asgarpour Khansary et al. 2015). Least squares modeling is a subclass of Black box modeling 54 

and has been extensively employed for estimating model parameters, their confidence regions 55 

(Bounds/Intervals) and importantly for identifying causation of variance in linear models. 56 

Herein, Ordinary least squares estimation method is used for estimating parameter coefficients 57 

(and their confidence regions) present in DBSE Model equations (Lakshmi et al. 2021).  58 

Further, A necessary requirement for the design of DBSE models is the qualitative and 59 

quantitative knowledge of phase behavior of components in the reaction mix during the process. 60 

Phase diagrams illustrate important differentials in vapor pressure curves of pure CO2 and other 61 

reaction components in the presence of solutes. This information is crucial for accurately 62 

identifying operating conditions wherein melting of the reaction mix leading to a desirable 63 

solute rich liquid phase occurs. In essence, phase diagrams are central to the process of finding 64 

regions (boundaries) of importance in the P-T-D-x (Pressure-Temperature-Density-solute 65 

solubility mole fraction) projections, wherein separations and extraction is actually possible 66 

(and feasible) and occurs in reality (Bartle et al. 1991). These regions (phase/parameter 67 

boundaries) depict equilibrium planes and latency of reaction mix that aid in process design and 68 

this is considered as a multifaceted and multi-attribute dependent endeavour. These attributes 69 

can be and are not limited to,  70 

1. Regions where solvent compression occurs leading to repulsive solute-solvent 71 

interactions causing undesired immiscibility.  72 

2. Regions where two-phase retrograde condensation/crystallization occurs near the lower 73 

and upper crossover regions/planes/edges. 74 

3. Regions (edges/paths/points/trajectories) depicting the component(s) latency (phase 75 

change), chemical potential thermal stability of the solute leading to variations in 76 

solvating power/effect. Physical properties of solutes vary widely and significantly 77 

amount to differences during solute solubility prediction.  78 

Machine learning algorithms, in recent years, are gaining importance and are being developed 79 

for predictive modeling for engineering applications. ML algorithms can accommodate 80 
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(consider) ‘n’ number of parameters, and therefore can predictively model processes with 81 

desired tolerance, precision and accuracy. Invaluable for accountability and research 82 

applications, hyperparameters associated with ML algorithms offers the choice of model 83 

optimization and validation. Standardized ML algorithms are applied to model a multitude of 84 

phenomena/processes in Engineering (Selvaratnam and Koodali 2021). Therefore, with the fast 85 

parametrization and modeling of analytical and industrial processes, supervised learning 86 

models like, Regression, Multilayer Perceptron, Support Vector Machine and K-nearest 87 

neighbours are (can also be) specially applied to these processes. For Chemistry and Chemical 88 

Engineering applications, A number of Software program packages based on supervised 89 

learning are already available and are always under continuous development (Khatib and de 90 

Jong 2020). In recent years, estimating/predicting solute solubility during the supercritical fluid 91 

extraction is gaining importance and necessitates predictive modeling of this process (Butler et 92 

al. 2018; Schweidtmann et al. 2021; Roach et al. 2023). The reliable and utilitarian software 93 

program can be used to accurately describe extant pattern and behavior in the measured data 94 

associated with this process and possibly beyond the regions and scope of this measured 95 

empirical data for reaching higher levels of process interpretation and accurate predictive 96 

capabilities. With this as the goal, the predictive modeling program described here has been 97 

written and focused to meet this expectation(s). Further, the complete work (workflow) 98 

presented here, is also designed for visualization and for explicating the phase behavior of 99 

existing (and newer) model equations and for evaluating the boundedness of the estimated 100 

parameter space. This workflow is holistic and is particularly useful for designing newer, 101 

efficient (accurate and precise) equations heuristically. Conveniently, As previously mentioned, 102 

a one-time-run-all code has been provided for implementing state-of-the-art machine learning 103 

algorithms for predictive modeling of DBSE model equation associated data. When correctly 104 

deployed, this work could potentially reach the helm of this growing body of research from this 105 

three-pronged computational modeling approach. To summarize, the programs are stand alone, 106 

simple, unique, computationally economic and are also easy to implement. The objectives and 107 

Software being postured here in this article are listed below,  108 

1. A MATLAB program for estimating and comparatively analysing, parameters of 109 

extant/newly developed density based semi empirical model equations of supercritical 110 

fluid extraction process comprising of variables [ln(y), T, P, D] using ordinary least 111 

squares parameter estimation method.  112 

2. A MATLAB program for visualizing parameter profiles and Phase behaviors of DBSE 113 

model equations using 3D surface plots.  114 
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3. A Python based Jupyter Notebook for implementing supervised machine learning 115 

algorithms (Multilayer Perceptron, K nearest neighbours and Support vector machines) 116 

based on experimental data involving the variables (Temperature (T), Pressure (P), 117 

Density (D) and Solute solubility Mole fraction (y)).  118 

4. Provide concluding remarks about the program scripts, its usage and availability.  119 

Experimental 120 

 121 

Description of Data: Input Matrices and Parameter Description 122 

 123 

The MATLAB (Matlab 1984) and Python program scripts presented in this work requires two 124 

input matrices. First, Consider, the Input data as a matrix where in, 𝐷𝑎𝑡𝑎 ∈  𝑅𝑛 and 𝑛 ∈ 𝑍, 125 

then,  126 

𝐷𝑎𝑡𝑎𝑖,4 =  [

𝑇1,1 𝑃1,2 𝐷1,3 𝑦1,4

⋮ : : ⋮
𝑇𝑖,1 𝑃𝑖,2 𝐷𝑖,3 𝑦𝑖,4

]  (1) 127 

Where T is temperature in Kelvin, P is pressure in Mpa, D is density in Kg/m3 and y is solubility 128 

mole fraction of the solute in the reaction mix. The index ‘i’, runs over the entire column of a 129 

single feature. This is the first input data matrix required and is parsed by the scripts via the 130 

Input_Data.xlsx file.  131 

 132 
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Fig. 1 Flow chart illustrating a single iteration by the parameter estimation, 3D visualization 133 

and Predictive modeling program scripts 134 

 135 

Fig. 2 (a) Heat Map plot of correlation values of input parameters (Temperature, Pressure, 136 

Density and Solute Mole fraction). (b) Parameter pair plot of data points including all 137 

combinations of input parameters for illustrating patterns present among variable pairs 138 

 139 

The second (required) matrix is comprised of the terms of the input density based semi 140 

empirical equations. For illustration, consider a simple four parameter (however, users can input 141 

any number of terms) linear model equation and its basic generalization,  142 

ln(𝑦) = 𝐴 + 𝐵[𝑇] + 𝐶[𝑃] + 𝐷[𝜌]  ≡ Y =  𝑝1[𝑇𝑒𝑟𝑚1] + 𝑝2[𝑇𝑒𝑟𝑚2] + 𝑝3[𝑇𝑒𝑟𝑚3] + 𝑝4[𝑇𝑒𝑟𝑚4]  (2) 143 

Where, A, B, C, D corresponds to p1, p2, p3, p4 and are the parameter coefficients or estimands 144 

of the DBSE model equation given above (however, users can input any number of terms). Let 145 
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these parameter coefficients be grouped into vector ‘P’. Let the terms of the model [term1, 146 

term2, term3, term4] be grouped into a vector named as ‘Terms’. For the estimation of the 147 

model coefficients in [P] and for obtaining parameter estimates �̂�, the terms of the sampled 148 

DBSE model equations are input into respective cells of rows particular to each model equation 149 

in a separate file (Models_Equations.xlsx). These are the two input matrices required by the 150 

MATLAB based parameter estimation script and the visualization script. A toy input data 151 

sample containing 1000 experiments along with a sample of ten randomly selected, 152 

semiempirical equations have been used for producing the output present in this article. The 153 

possible modification path traversed by the data in a single iteration is illustrated (Fig. 1). Also, 154 

the Input data is initially analyzed using basic statistical metrics in the Jupyter Notebook and 155 

the outputs (Correlation heat map and parameter pair plot) are depicted (Fig. 2 a, b). Refer to 156 

the user guide (given in the repository) for information on using these program scripts for 157 

custom data and model equations (existing/newly proposed). The user guide also provides 158 

information regarding the preselection of the base model along with the descriptions of the 159 

randomly sampled model equations present in the unmodified file (Models_Equations.xlsx).  160 

 161 

Parameter Estimation: Ordinary Least Squares Method 162 

 163 

Estimation of parameter coefficients represented in the vector P is performed using the method 164 

of Ordinary Least Squares Parameter Estimation (Dismuke and C R Lindrooth 2006) in the 165 

MATLAB program script (DBSE_OLS_Estimation.m). A concise development of the 166 

implemented algorithm is presented. Consider a representation of a DBSE model equation in 167 

the form of the classical linear regression model,  168 

𝑌𝑖,1 = [𝑇𝑒𝑟𝑚𝑠 ]𝑖,𝑘[𝑃] + 𝜀𝑖,1  (3) 169 

Let the assumptions, about the error in the models be, errors are additive, uncorrelated, has zero 170 

mean and has constant variance.  171 

Also,  172 

𝐸(𝜀𝜀𝑇) = 𝜎2𝐼𝑖  (4) 173 

Where ε is the residual vector and σ2 is the variance of the residual. Further, let the data 174 

substituted, matrix of terms ‘Terms’ be represented for brevity as X and let Y be the vector of 175 

natural logarithm of solubility mole fraction values. Then the ordinary least squares estimator 176 

�̂� is given by, 177 

�̂� = [𝑋𝑇𝑋]−1𝑋𝑇𝑌  (5) 178 

The vector of residuals ε is given by, 179 
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𝜀 = 𝑌 − 𝑋�̂�  (6) 180 

The confidence intervals (bounds) of the estimates are computed at 95% confidence level. 181 

Further, model selection is iteratively performed using an F-Statistic score (Belitser et al. 2011) 182 

for each model equation relative to a preselected base model (This is input in the first row of 183 

the Models_Equations.xlsx file). Let the residual sum of squares for the DBSE model of a 184 

particular iteration and the same for base model be,  185 

𝑅𝑜𝑙𝑠
𝑚𝑜𝑑𝑒𝑙 = 𝜀𝑜𝑙𝑠

𝑇 𝜀 𝑅𝑜𝑙𝑠
𝑏𝑎𝑠𝑒 = 𝜀𝑏𝑎𝑠𝑒

𝑇 𝜀  (7) 186 

Then the equation for an F-score metric-based model selection is, 187 

(𝑅𝑜𝑙𝑠
𝑏𝑎𝑠𝑒−𝑅𝑜𝑙𝑠

𝑚𝑜𝑑𝑒𝑙)

(𝑛𝑝,0−𝑛𝑝,𝑏𝑎𝑠𝑒)
⁄

𝑅𝑜𝑙𝑠
𝑚𝑜𝑑𝑒𝑙

(𝑛− 𝑛𝑝,0)
⁄

> 𝐹(𝑛𝑝,0−𝑛𝑝,𝑏𝑎𝑠𝑒),(𝑛− 𝑛𝑝,0)
0.05   (8) 188 

Where np,0 is the number of parameters in the current iteration and n is the number of data points 189 

(experiments) in the parsed input data and np,base is the number of parameters in the base model. 190 

In the data driven paradigm where modeling is focused on fitting a specific sample of empirical 191 

data, this automated selection procedure is beneficial for decimating lower quality equations 192 

and for identifying the most contextually appropriate one(s). Further, error metrics namely, 193 

mean squared error (MSE), Root Mean Squared Error (RMSE), Mean Absolute error (MAE) 194 

and Percentage Absolute Average Relative Deviation (% AARD) were computed between 195 

experimental and predicted solubility using the expressions,  196 

𝑀𝑒𝑎𝑛 𝑆𝑞𝑢𝑎𝑟𝑒𝑑 𝐸𝑟𝑟𝑜𝑟 =  
1

𝑛
∑ (ln (𝑦)𝑖

𝑝𝑟𝑒𝑑 − ln (𝑦)𝑖
𝑒𝑥𝑝)

2𝑛
𝑖=1   (9) 197 

𝑅𝑜𝑜𝑡 𝑀𝑒𝑎𝑛 𝑆𝑞𝑢𝑎𝑟𝑒𝑑 𝐸𝑟𝑟𝑜𝑟 =  √1

𝑛
∑ (ln (𝑦)𝑖

𝑝𝑟𝑒𝑑 − ln (𝑦)𝑖
𝑒𝑥𝑝)

2
𝑛
𝑖=1   (10) 198 

𝑀𝑒𝑎𝑛 𝐴𝑏𝑠𝑜𝑙𝑢𝑡𝑒 𝐸𝑟𝑟𝑜𝑟 =
1

𝑛
∑ |(ln (𝑦)𝑖

𝑝𝑟𝑒𝑑 − ln (𝑦)𝑖
𝑒𝑥𝑝)|𝑛

𝑖=1   (11) 199 

%𝐴𝐴𝑅𝐷 =  
100

𝑛
∑

|ln (𝑦)𝑖
𝑝𝑟𝑒𝑑

−ln (𝑦)𝑖
𝑒𝑥𝑝

|

ln (𝑦)
𝑖
𝑒𝑥𝑝

𝑛
𝑖=1   (12) 200 

Error metrics have been computed using natural logarithm of solubility mole fraction values 201 

for predictions after parameter estimation and actual solubility mole fraction values have been 202 

used for predictions from predictive modeling.  203 

 204 

Visualization of Phase Behaviour Projected by DBSE model Equations: 205 

 206 

Visualization of Phase behavior using three dimensional surfaces of the input DBSE model 207 

equation is also implemented using MATLAB. The MATLAB script (DBSE_3D_Viewer.m), 208 
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requires, model equations and empirical data (Input_Data.xlsx and Models_Equations.xlsx) 209 

along with the estimates (Parameter_Predictions_Results.xlsx) and iteratively plots three 210 

dimensional surfaces of the model equations using finitely spaced grid points of the parameters 211 

present in the particular DBSE model equation in the iteration.  212 

 Three surfaces are plotted by this script namely, Pressure-Temperature-Solute mole 213 

fraction, Density-Pressure-Solute mole fraction and, Density-Temperature-Solute mole 214 

fraction. Standard, inbuilt commands from MATLAB are used for plotting the surfaces for all 215 

of the input DBSE model equations. The output images are also in the standard interactive 216 

MATLAB plot window which allows for altering values of axes to obtain surfaces (Rovenski 217 

2010). Notedly, empirical data is used by this script only for finalizing extreme values of the 218 

grid points used for plotting these surfaces. Therefore, the surfaces plotted by this script 219 

illustrate phase behavior and vapor liquid equilibrium data projected by the specific DBSE 220 

model equation and these surfaces are not influenced by the pattern prevalent in the input 221 

empirical data. Finally, this script exports all three surfaces plotted for a DBSE model equation 222 

as subplots in a single image (.jpg) format.  223 

 224 

Prediction of Solute Solubility: Machine Learning Algorithms 225 

 226 

Three Supervised Machine learning algorithms have been implemented using the Python 227 

module, Sklearn (Pedregosa et al. 2011) in a single Jupyter notebook 228 

(DBSE_Predictive_Modeling.ipynb) (Menke 2020). This Notebook, using input empirical data, 229 

in a single run, implements the Multilayer perceptron, K-nearest Neighbours regression and 230 

Support Vector regression algorithms before performing detailed and comparative analysis on 231 

the predictions and results. Standardized metrics are used for performing validation and analysis 232 

of results. Numpy (Oliphant 2006), Openpyxl, Pandas (W McKinney 2011), Matplotlib (Hunter 233 

2007) are among the python packages used for implementing these algorithms. This script 234 

requires empirical data (experiments in rows complete with Pressure, Temperature, Density and 235 

the resultant, solute mole fraction) characteristic to density based semi empirical model 236 

equations. Also, the input parameter space is not exhaustive and can incorporate additional 237 

parameters based on preference. Descriptions of the implemented algorithms and their tuneable 238 

hyperparameters are provided in the subsequent paragraphs.  239 

 240 

 241 
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Multilayer Perceptron Regression [MLP] 242 

 243 

Multilayer Perceptron [MLP] is a fully connected class of feed forward artificial neural 244 

networks classified as a supervised machine learning algorithm. This framework consists of 245 

updatable, weight assigned nodes called neurons that are sorted into three types of fully 246 

connected layers namely, input layer, hidden layer(s) and an output layer. During the training 247 

of a single instance (experiment), parameter (feature) information is fed into the input layer 248 

which is then transmitted to the next hidden layer(s) where activation function(s) modify this 249 

information for final modification in the output layer. The output layer, using an activation 250 

function, modifies the received information and provides data output. This output is the 251 

prediction value of the algorithm. Information modification during training (learning) results in 252 

the updation of the initialized weights (associated with neurons and connections) from the 253 

previous learning iteration (Murtagh 1991). In MLP, for obtaining accurate and precise output 254 

(solute solubility mole fraction), hyperparameter search space for size of hidden layer, neurons, 255 

activation functions, learning rate, data split ratio, solver, alpha value etc can be easily 256 

optimized in the notebook based on preference and data. Theoretical explanation and 257 

development of the MLP algorithm can be obtained in literature elsewhere (Schilling et al. 258 

2015). The results and analysis from this program code are finally saved (Ml_Results.xlsx).  259 

 260 

K-Nearest Neighbours Regression [KNN] 261 

 262 

K- Nearest Neighbours algorithm is a non-parametric, supervised machine learning algorithm. 263 

For regression problems, the algorithm learns to predict the target class value based on the k 264 

closest training examples (instances or experiments) in the input data. The model during 265 

learning (training), performs search in the data pattern space for the closest number of training 266 

instances. The results from this search which are the closest ‘k’ number of training instances 267 

(neighbours), are averaged to obtain the prediction value (solute solubility mole fraction) during 268 

testing (Kramer 2013). The adjustable/tuneable hyperparameters for this algorithm is the ‘k’ 269 

value (sampling metric) and the distance (closeness) measurement metric (Cunningham and 270 

Delany 2022). Here, Euclidean distances are calculated to measure closeness for the 271 

preassigned k value which is used to obtain a detailed, comparative, analysis of the prediction 272 

which also is saved (Ml_Results.xlsx).  273 

 274 
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Support Vector Regression [SVR] 275 

 276 

The support vector regression algorithm is a class of support vector machine algorithm and is 277 

also a supervised machine learning algorithm. In fewer sentences, support vector regression 278 

algorithm, using a kernel function, tries to map the input parameter variable data to a feature 279 

space (usually of higher dimension) and with the aim of minimizing prediction error, tries to 280 

find a hyperplane in this feature (parameter) space that maximizes the distance margin between 281 

this plane and the closest data points. Theoretical development of the SVR technique and the 282 

mechanism behind its prediction capabilities can be obtained in detail here (Smola and 283 

Schölkopf 2004). The tuneable hyperparameters here are the kernel function, gamma value and 284 

the test-train data split ratio. Scaling of the parameter data has not been implemented for SVR 285 

as the pattern present in the parameter space is highly relevant for accurate prediction 286 

(Tsirikoglou et al. 2017). The jupyter notebook, after implementing support vector regression, 287 

separately provides results which also is saved (Ml_Results.xlsx).  288 

Results and discussion 289 

Parameter Estimation: Ordinary Least Squares Method 290 

(a) 
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(b) 

 
  

(c) 

 
 291 

Fig. 3 Standard output (enlarged) for the model equation(s) being iterated from the MATLAB 292 

based parameter estimation script. (a) Plot of Experimental (black) v/s Predicted (red) values 293 

of the natural logarithm values of solute solubility molefraction. (b) Plot containing normality 294 

plots and residual plots for base model equation of choice and the model equation being iterated. 295 

(c) Bar plots pertaining to error metrics for all input equations. 296 

 297 
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As previously derived, A customized Ordinary least squares estimation method has been 298 

implemented to obtain parameter estimates of model equation constants along with confidence 299 

intervals in a ‘one model equation at a time’ iterative rule fashion. This ensures that the 300 

parameter (model coefficients) estimates are from a standardized and popularly used method 301 

used on all model equations in the batch sample (input using an .xlsx file). Confidence intervals 302 

(upper and lower bounds) are estimated for each estimate at 95 percent confidence. 303 

Conveniently, the results are saved and exported to retrievable file formats. The pictorial output 304 

from this script is shown in (Fig. 3 a – c). Natural logarithm values of solute solubility mole 305 

fractions are plotted against number of experiments for both empirical data and predictions 306 

made using the estimates (model constants) and state variables (Pressure, temperature and 307 

Density) associated with the model equations. Normality plots and residuals of the base model 308 

and the model equation (being iteratively estimated) are also charted for ascertaining the nature 309 

of the data. The normality and residual plots are shown (Fig. 3b). Normality plots reaffirm the 310 

considered assumptions about the residuals while estimating parameter coefficients (Model 311 

constants). This step makes sure the estimates are contingent with the assumptions made 312 

regarding the data and by extension, also the residuals. In the Fig. 3 b above, the data appear to 313 

lie on the line of reference demonstrating the degree of normality present in the sample data. 314 

Unfortunately, the large amount of data (from the toy data sample) in the shown residuals plot 315 

indicate a pattern and masks the randomly distributed points in the region of interest. This 316 

region of interest corresponds to the operating conditions where solute solubility is supposedly 317 

maximum/optimum (window of maximum solubility). However, this also will change when 318 

different empirical data is used. Scores computed from F Distribution, provide clear, statistical 319 

comparison between the model equation being iteratively estimated and the base model 320 

equation of choice (Input in the first row in the Models_Equations.xlsx file). Additionally, 321 

excellent inference can be made based on published literature regarding the estimates and 322 

selection output produced by this program (Garlapati and Madras 2010; Reddy and Madras 323 

2011; Bian et al. 2016; Alwi and Garlapati 2021b). The pictorial illustration indicates the 324 

plotting constraints (maximum number of subplots in the image output) associated with the 325 

presented code and it is encouraged to consider this factor while sampling model equations. 326 

Plotting natural logarithm values of the predicted data against actual solute solubility mole 327 

fraction values of the predicted data (from model equations), provides clear distinction and 328 

higher resolution of model fit and deviation from empirical data. Errors and residuals are also 329 

calculated using natural logarithm values for this important reason. In reality, based on the toy 330 

sample empirical data, the error metrics and residuals appear to be significantly (desirably) low 331 
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when actual solubility values are used as opposed to their natural logarithm values. Mean 332 

squared error (MSE), Root Mean Squared Error (RMSE), Mean Absolute error (MAE) and 333 

Percentage Absolute Average Relative Deviation (% AARD) values are computed using Eq. 334 

(9)-(12), plotted and presented in the form of bar graphs in a single image format (Fig. 3 c). 335 

Errors of all model equations appear to only slightly differ indicating superior quality of the 336 

sampled toy data. However, as previously mentioned, this too will differ for other empirical 337 

data. Due to constraints for assessing and visualizing higher numbers of equations, sampling 338 

(ten to fifteen equations) and selection of model equations (for achieving column rank) must be 339 

of higher quality. However, the provided code for batch estimation 340 

(DBSE_OLS_Estimation_Batch.m), has full capability to estimate as many as a hundred DBSE 341 

model equations in a single implementation.  342 

In summary, this program script provides parameter estimates of model(s) coefficients 343 

along with their confidence regions (intervals). Further, the model selection and identification 344 

routine is also favorable for comparative assessment and selection of the best performing model 345 

equation all of which are then exported to popular file formats.  346 

 347 
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Visualization of Phase Behavior projected by DBSE Model Equations: 348 

 349 

Fig. 4 Three dimensional surfaces of ln(y)-P-T, ln(y)-D-P, ln(y)-D-T. (a) This plot is the only 350 

standard output produced by the MATLAB based visualization script. (b) Two dimensional, 351 

color coded contour plot of P-T, P-D, D-T obtained from the same MATLAB interactive plot 352 

window. The projections for these plots are visible on the respective 3D surface (a). (c) Two 353 

dimensional, color coded contour plot of ln(y)-T, ln(y)-D, ln(y)-D obtained from the MATLAB 354 

interactive plot window. 355 
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The three-dimensional surfaces of the P-T-D state variables and the natural logarithm values of 356 

solute solubility mole fraction obtained from this script for visualization is illustrated in Fig. 4 357 

a – c. The interactive nature of the MATLAB surface plot window and the ease with which axes 358 

values of the plotted surface can be altered makes the obtained pictorial output invaluable for 359 

evaluating the phase equilibria characteristic to the respective DBSE model equation. Fig. 4 a 360 

shows a grab of the three surfaces [P-T-ln(y), P-D-ln(y), T-D-ln(y)] arranged as subplots from 361 

a single interactive (image) window output. As previously mentioned, Grabs of two-362 

dimensional plots (Fig. 4 b – c) can be obtained from these surfaces by independently altering 363 

the axes values of the surfaces in the interactive MATLAB plot window. The surfaces are 364 

primarily color coded to indicate the gradient in solute solubility. Projections of these surfaces 365 

manifest as grid lines (phase curves of ln(y)) on the axes planes. These plots indicate the major 366 

and minute differences in the projected phase behavior put forth by the model equations. 367 

Conveniently, even small or minute variations in a combinatorial pool of model equation 368 

designs (derived from a parent equation) manifests acutely in the shape and color gradient of 369 

the corresponding surface plots (Goos et al. 2011; Yamini and Moradi 2011; Cockrell et al. 370 

2021). Further, literature (Schneider 1978; Mouahid et al. 2022) can be referred to make 371 

accurate inferences regarding model specific phase behavior from these surfaces and 372 

projections. However, a probable/possible approach (from the users’ perspective) for gaining 373 

satisfactory information from these surfaces (3D), its derivative plots and plane projections 374 

(2D) is provided below.  375 

Consider a set of model coefficient parameter estimates, from a DBSE model equation, 376 

derived from empirical data from a (sufficiently) well modelled super/sub critical fluid 377 

extraction process (for example, coffee or tea decaffeination) pertaining to a ternary system of 378 

CO2/H2O solvent, Co-solvent (Ethanol or methanol) and solute (This ground truth data is 379 

subject to availability and procurement by the user and is not provided here in/with this article). 380 

Let this set of obtained estimates (which are highly process centric and equation specific) be 381 

then used to plot the 3D surfaces and derivative plots (from this script). Naturally, due to the 382 

process being sufficiently well modelled (as previously assumed), knowledge regarding the 383 

projected Phase diagrams, vapor-liquid equilibrium behavior, maximum/optimal/desirable 384 

solubility window and equilibrium points and planes is readily available, importantly reliable 385 

and trustworthy for these estimates (ground truth), plots and the associated empirical data. Let 386 

this information (again, not provided here with this article) be the ground truth and basis for 387 

performing further comparative analysis using the MATLAB based plotting and visualization 388 

script presented here in this article. Then the surfaces and 2D projections obtained by 389 
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implementing this visualization script for the same empirical data (and the model coefficient 390 

estimates) for a batch of DBSE model equations (existing/newly developed) can now be used 391 

to evaluate and glean information regarding the optimal window and other important associated 392 

attributes like the upper and lower critical end points, planes and edges associated with latency 393 

and the triple point. Further, vapor pressure curves and the data characteristic to the components 394 

(pure and mixture) in the ternary system can be identified and compared to this ground truth.  395 

Generally, the qualitative and quantitative data regarding the latency, miscibility, 396 

compression, crystallizability of the components in the reaction mix can be obtained from these 397 

surfaces. Further, the identified solid-liquid-gas lines (by using cursor on the surface and 398 

comparing point coordinates) describing boundaries of latency (or miscibility) projected on the 399 

surface specific to the DBSE model equation(s) can also be compared to this (empirical) truth 400 

and the error values quantify deviation and subtle / major differences. Similarly, values of slope 401 

differentials (dP/dT, dT/dD and dP/dD) are easily computed from the surfaces for these 402 

equations. The computed slope values could be used to identify upper and lower crossover 403 

pressures bordering the retrograde solubility region in the phase diagrams for explaining / 404 

utilizing retrograde solubility interference (Foster et al. 1991; Esmaeilzadeh and Goodarznia 405 

2005; Kalikin et al. 2021). This is useful for screening newly designed DBSE model equations 406 

for the maximum/optimal solubility window and the basis of which can further be used for 407 

iteratively optimizing the optimal solubility window (by region specific selection), redesigning 408 

customized, newer and efficient model equation alternatives. Overall, This Comparative 409 

evaluation based on this ground truth is useful for selecting equations that project phase 410 

behaviour with higher resolution and accuracy within the newly estimated/optimized optimal 411 

solubility window. The Phase behavior projected from this particular newly selected equation 412 

will now prove to be more beneficial for decision making and dynamic process optimization 413 

(better than the present ground truth data). 414 

Often, In Pilot / Production scale equipment, optimization is focused on Cost 415 

effectiveness and dynamic feasibility factors (that influence cost effectiveness) including, but 416 

not limited to, Process duration/Residence time, Resource consumption/availability, Climate 417 

change/Ambient physical conditions, Hazard/Risk propensity among others. In such scenarios, 418 

optimal solubility windows (based on current feasibility thresholds) can be estimated/optimized 419 

(using this script) and implemented for large scale extraction. Conversely, Phase and VLE data 420 

from the optimized surfaces derived from Model equations that are specifically designed (using 421 

this work) for a particular process can potentially inform future decisions and process 422 

trajectories for meeting optimal feasibility goals.  Note that the maximum solubility window 423 

https://doi.org/10.26434/chemrxiv-2024-fw30s-v3 ORCID: https://orcid.org/0000-0002-5318-8639 Content not peer-reviewed by ChemRxiv. License: CC BY-NC-ND 4.0

https://doi.org/10.26434/chemrxiv-2024-fw30s-v3
https://orcid.org/0000-0002-5318-8639
https://creativecommons.org/licenses/by-nc-nd/4.0/


 18 

(Not the optimal solubility window) depicted in Figure 4(b) is predicted and shown to lie around 424 

the red regions (between 320K-340K and 30-32 MPa) by the tenth model equation (from the 425 

same randomly mined sample of ten input equations). As pictorially shown, and explained, the 426 

optimal solubility window is largely exploratory, process centric and will differ for a different 427 

sample of equations for the same data (empirical ground truth) or other obvious differences in 428 

physical parameters (residence time and quantity of reaction mix etc). To summarize, the plots 429 

provide satisfactory, quantitative and qualitative knowledge regarding the phase behavior and 430 

equilibria characteristic to the equations being studied, using this MATLAB based plotting and 431 

visualization script.  432 

 433 

Prediction of Solute Solubility: Machine Learning Algorithms 434 

 435 

Multilayer Perceptron regression (MLP), K-Nearest Neighbours regression (KNN) and Support 436 

Vector Regression (SVR) algorithms have been implemented using ‘sklearn’ package in python 437 

in a single jupyter notebook. A toy data sample of 1000 randomly mined experiments are used 438 

to illustrate the working of this jupyter notebook. The input parameters present in the toy data 439 

sample are Temperature, Pressure and Density. The target / output / dependent variable is the 440 

Solute solubility mole fraction. Additional parameters can be easily incorporated into the data 441 

sample by simply concatenating them as columns after the Density data column in the input 442 

data (Input_Data.xlsx). The notebook initially provides description of the data using basic 443 

statistical metrics (count, mean, standard deviation, minimum and maximum value), 444 

Correlation values between the parameters and output, Heat map of correlation values and a 445 

parameter pair plot for comparing the considered parameter pairs (combinations) on a chart. 446 

These charts are shown in (Fig. 2 a – b). The results (graphs, errors and plots) and discussion 447 

pertaining to each algorithm is provided in the subsequent paragraphs.  448 

 449 

(a) 

 

(b) 

 

(c) 

 
 450 
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Fig. 5 Standard output from the jupyter notebook about the predictions and analysis of the 451 

Multilayer perceptron algorithm (a) Scatter Plot of Experimental (green) v/s Predicted (blue) 452 

values of solute solubility molefraction from the Multilayer perceptron algorithm. (b) Plot of 453 

residual values from the Multilayer perceptron algorithm. (c) Bar plot of error metrics of the 454 

predictions from the Multilayer perceptron algorithm. 455 

Multilayer Perceptron regression (MLP) is the first algorithm implemented in this 456 

Jupyter notebook. Data scaling (preprocessing) is performed using the ‘MinMaxScaler’ routine 457 

before further transformation of the data. The data is then split (preprocessing) using the test-458 

train-split routine. The results and the output obtained are illustrated in Fig. 5 a – c. Regression 459 

model is built using the standard ‘MLPregressor’ routine. Hyperparameter optimization / tuning 460 

is performed using the ‘GridSearchCV’ routine for the MLP algorithm. As explained, the space 461 

for grid search for the hyperparameters (Number of hidden layers, activation functions, solvers, 462 

learning rate) has to be defined in the beginning of the notebook for hyperparameter 463 

optimization. Further, 5-fold cross validation is performed based on negated values of root 464 

mean square error as the model scoring metric. The program performs tuning and the 465 

hyperparameters of the best model are then used to refit and obtain the prediction output 466 

(Schilling et al. 2015). Error metrics for this algorithm are (output) plotted (Fig. 5 c) separately.  467 

 468 

(a) 

 

(b) 

 

(c) 

 
 469 

Fig. 6 Standard output from the jupyter notebook about the predictions and analysis of the K- 470 

Nearest Neighbours algorithm. (a) Scatter Plot of Experimental (green) v/s Predicted (blue) 471 

values of solute solubility molefraction from the K- Nearest Neighbours algorithm. (b) Plot of 472 

residual values from the K- Nearest Neighbours algorithm. (c) Bar plot of error metrics from 473 

the K- Nearest Neighbours algorithm.  474 

K-Nearest Neighbours regression (KNN) is implemented after MLP in the notebook. 475 

As discussed, Data scaling was deemed unnecessary and has not been performed. However, 476 

test train split is performed using the same routine as MLP. Further, The Hyperparameter K is 477 

set to a random value of 3 for the toy data sample and can easily be changed / tuned based on 478 
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data and preference at the beginning of the notebook. Error metrics for the KNN algorithm is 479 

plotted (Fig. 6 c) separately. Further insight regarding the model can be obtained from data, 480 

hyperparameter optimization and previous literature (Soleimani Lashkenari and KhazaiePoul 481 

2017).  482 

 483 

(a) 

 

(b) 

 

(c) 

 
 484 

Fig. 7 Standard output from the jupyter notebook about the predictions and analysis of the 485 

Support Vector Regression algorithm. (a) Scatter Plot of Experimental (green) v/s Predicted 486 

(blue) values of solute solubility molefraction from the Support Vector Regression algorithm. 487 

(b) Plot of residual values from the Support Vector Regression algorithm. (c) Bar plot of error 488 

metrics from the Support Vector Regression algorithm.  489 

Support Vector Machine Regression (SVR) algorithm is implemented next in the 490 

notebook. Like before, data scaling is not performed so as to preserve pattern in the input 491 

parameter space. Data has been split for model training using the test – train split routine like 492 

before and can be easily adjusted. The choice of Kernel function hyperparameter is also tuned 493 

using ‘GridSearchCV’ and the grid search space can be modified for this at the beginning of 494 

the notebook. Five-fold cross validation is performed based on the negated root mean squared 495 

error scoring metric and the kernel function associated with the best scoring model is then used 496 

to refit and obtain the predictions (Tsirikoglou et al. 2017). Error metrics for SVR, like before, 497 

is also plotted (Fig. 7 c) separately.  498 

 499 

(a) 

 

(b) 

 

(c) 
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(d) 

 

(e) 

 

(f) 

 
 500 

Fig. 8 Standard output from the jupyter notebook about the predictions and comparative 501 

analysis of all three algorithms from each complete program run. (a) Combined plot of residual 502 

values of all three machine learning algorithms (MLP, KNN, SVR) for comparison (b) Plot of 503 

Prediction values of KNN and SVR algorithms with experimental solubility values. (c) Bar plot 504 

of mean squared error values of all three machine learning algorithms (MLP, KNN, SVR) for 505 

comparison. (d) Bar plot of root mean squared error values of all three machine learning 506 

algorithms (MLP, KNN, SVR) for comparison. (e) Bar plot of percent absolute average relative 507 

deviation values of all three machine learning algorithms (MLP, KNN, SVR) for comparison. 508 

(f) Bar plot of mean absolute error values of all three machine learning algorithms (MLP, KNN, 509 

SVR) for comparison. 510 

Model fitting and prediction of all three algorithms (MLP, KNN and SVR) for the 511 

sample data yielded results and the computed errors (MSE, RMSE, MAE and %AARD) are 512 

plotted separately on bar plots (Fig. 8 c, d, e, f). The predictions v/s empirical data graph is also 513 

plotted and exported by the notebook (Fig. 8 b). Likewise, residuals are also plotted for all three 514 

algorithms (Fig. 8 a). Hyperparameter tuning for all three algorithms is implemented and other 515 

intricate nuances (relative parameter importance, stacking of experiments based on specific 516 

parameters/order) pertaining to the predictions can be easily made based on the best performing 517 

algorithm and the input data (Feurer 2019). The parameter space, as previously explained, can 518 

(only) be increased to explore and incorporate additional parameters like Residence time, 519 

Mass/Volume of Raw Material, Viscosity of the Material, Melting point, Boiling Point, Total 520 

polar surface area, Critical Temperature, Critical Pressure, Molecular Weight of solute, 521 

percentage of co-solvent used, type of cosolvent (by scoring) etc. Therefore, Detailed 522 

explanation regarding the obtained numerical output is unnecessary here since a toy data sample 523 

with the standard (Temperature, Pressure and Density) parameters has been studied. The 524 

notebook includes the best of the available plot commands and features (errors, functions, tables 525 

etc) from standard python libraries for ease of use and assessment. The numerical data 526 

predictions and analysis are also saved and exported to popular file formats (.xlsx). Importantly, 527 
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users are cautioned against the usage of this notebook for actual experimental purposes as it can 528 

be dangerous when used directly in a laboratory setting without proper consultation and 529 

reasoning. The provided notebook is an efficient exploratory tool for data analysis and is very 530 

useful for theoretical research, modeling (fitting), understanding and comparison. Overall, This 531 

Jupyter notebook is a state-of-the-art predictive modeling and analysis tool using standard 532 

Machine learning algorithms for obtaining prediction values of solute solubility mole fraction 533 

from input parameter data.  534 

 535 

Conclusions 536 

 537 

This work describes software program scripts and presents their workflow as a comprehensive, 538 

state of the art parameter estimation and predictive modeling tool for evaluating density based 539 

semi empirical models (equations) and its associated data. Parameter estimation has been 540 

implemented in a MATLAB based script using a customized version of the popular Ordinary 541 

least squares estimation method. Further in this work, Visualization of phase behaviours 542 

projected by preselected (sampled) model equations using a MATLAB based script has been 543 

described. This visualization script produces three-dimensional surface plots in interactive 544 

MATLAB windows based on the parameter estimates (computed from ordinary least squares 545 

estimation). An approach for gleaning theoretical information regarding phase behaviour using 546 

the surface plots is provided. Importantly, even subtle variations among model equations 547 

acutely manifests in the shapes and color gradients of the projected surface plots and this makes 548 

designing newer, robust, data specific/generalized equations easier. Standardized error and 549 

scoring metrics have been computed at each appropriate stage in the workflow and is presented 550 

in the form of plot illustrations. Importantly, the maximum solubility window is predicted to lie 551 

somewhere around the red regions (probably between 320K-340K and 30-32 MPa) by the tenth 552 

model equation (and is predicted for all the remaining input equations). The visualization 553 

program is stand alone in that it fully functions when parameter estimates and parameter 554 

boundaries for input equations are externally sourced. A Python based programming script is 555 

also presented for predictive modeling of the associated input empirical data using three 556 

Machine learning algorithms. Also, this notebook has been written to accommodate ‘n’ number 557 

of other variables for improving the accuracy of the solute solubility predictions. This allows 558 

users with diverse forms of data to easily make predictions, interpretations and reach 559 

scientifically sound conclusions about the maximum/optimal solubility window. Further, user 560 

defined hyperparameter tuning has been implemented for all three algorithms and has not been 561 
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entirely focused towards fitting the toy data sample (However, the presented error metrics are 562 

desirably low). Therefore, it is strongly advised to use these program scripts for theoretical and 563 

academic purposes since these scripts are under continuous development, refinement and 564 

modification. The surfaces, plots and tables present in this article are the standard predictions 565 

and analysis of outputs from these scripts based on a toy data and model equation(s) sample 566 

(mined randomly from literature) and are not regarding any particular density based semi 567 

empirical equation or published data. Hence, again, strong caution is advised against the usage 568 

of any aspect of this work directly in an experimental setting without appropriate supervision 569 

or reasoning. Importantly, a properly worded guide is provided for using this repository. Future 570 

goals include deploying and testing this work on a GUI, established datasets, on temporal 571 

variation, similar computational tools, and DBSE model equations. In summary, this work 572 

postures a first of its kind, efficient computational tool in the form of program scripts for 573 

evaluating/designing Density based semi empirical equations associated with super/sub critical 574 

extraction process and data.  575 

 576 
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 589 

Symbols 590 

 591 

T Temperature K 592 

P Pressure MPa 593 

D Density Kg/m3 
594 

R Residual Sum of Squares 595 

y Solute Solubility Mole Fraction 596 

 597 

Greek Letters 598 

 599 

ε Error 600 

σ Standard Deviation 601 

ρ Density Kg/m3  602 

  603 

 604 
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