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Abstract

The acid dissociation constant (pK a), which quantifies the propensity for a solute

to donate a proton to its solvent, is crucial for drug design and synthesis, environmental

fate studies, chemical manufacturing, and many other fields. Unfortunately, the termi-

nology used for describing acid-base phenomena is inconsistent, causing large potential

for misinterpretation. In this work, we examine a systematic confusion underlying the

definition of “acidic” and “basic” pK a values for zwitterionic compounds. Due to this

confusion, some pK a data is misrepresented in data repositories, including the widely-

used and highly trusted ChEMBL Database. Such datasets are widely used to supply

training data for pK a prediction models, and hence, confusion and errors in the data

makes model performance worse. Herein, we discuss the intricacies of this issue. We

make suggestions for describing acid-base phenomena, training pK a prediction models,

and stewarding pK a datasets, given the high potential for confusion and potentially

high impact of accurately describing acid-base phenomena.
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Introduction

The acid dissociation constant, or pK a, significantly affects the behavior of compounds and

is thus very important in pharmacokinetics, environmental chemistry, chemical manufactur-

ing, and numerous other applications.1–3 It is used extensively in drug design to calculate

ionizability, solubility, and partitioning between aqueous and organic phases (e.g. lipophilic-

ity), which are key heuristics in ADME screening.4,5 The pK a is defined as the equilibrium

constant of the hydrogen dissociation reaction for acid AH in arbitrary solvent,

AH + S ⇀↽ SH+ +A− (1)

where AH refers to a Brønsted acid, S is the solvent, SH+ is the protonated form of the

solvent, and A- is the conjugate base. The equilibrium constant corresponding to this reaction

is

Ka =
aA− · aSH+

aAH

(2)

and the pK a is defined as

pK a = − log 10(Ka) (3)

Although pK a values are termed “constants”, they correspond to a given temperature,

ionic strength, and solvent.6 In this work, we will assume that all values are measured at 25

°C, extrapolated to 0 molar ionic strength, in water.

Under these thermodynamic definitions, pK a strictly refers to the strength of the acidic

dissociation of the acid AH. It is widely accepted and understood that a dissociation in-

volving proton loss should be referred to as a pK a of the compound.

In contrast, terminology for describing proton gain (i.e., basicity) is significantly less

clear. It is common for chemists to describe the “pK a of a base” to refer to its basicity, when
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in reality they are speaking of the base’s conjugate acid. This term is also sometimes called

a basic pK a, and sometimes referred as pK aH or pKBH+, corresponding to the pK a of the

conjugate base of A:

AH+ ⇀↽ A+H+ (4)

Yet another term is pK b, which represents an activity scale in hydroxide (or deprotonated

form of solvent, in non-aqueous systems). This is generally less popular because it requires

another step of converting activity scales before it can be directly compared with pK a values.

Furthermore, its practical usage requires that the deprotonated solvent is stable, and that

the autoprotolysis constant of the solvent is known, which for many solvents is not fulfilled.

Despite this potential for confusion, the literature has not yet converged on terminology

that universally describes the acid dissociation constant of conjugate acids. Each of these

terms is commonly encountered in the literature. This in itself already can be problematic.

Another topic that must be clarified is the difference between “macroscopic” versus “mi-

croscopic” pK a values. A macroscopic pK a corresponds to the observed equilibrium between

different protonation states, each state corresponding to an ensemble of microstates, whereas

a microscopic pK a corresponds to the equilibrium between two specific isomers at different

charge states.7,8 For monoprotic compounds with only one dominant tautomer at each charge

state, these two values are the same. For polyprotic compounds that have few dissociation

sites, with values far different from each other, and also only one dominant tautomer at each

charge state, both types of pK a are also approximately the same. However, in all other

cases, these values are different.

Whereas most experimental efforts (and thereby most experimental data) are focused

on macroscopic pK a values, theoretical efforts are often interested in predicting microscopic

ones. Owing to the ease of synthesizing, testing, and analyzing, and simulating compounds

with few acidity centers, most effort has also focused on simpler compounds, e.g., monoprotic
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or with few acidity centers. However, in pharmaceutical discovery and design, which is among

the largest use cases for pK a values (both experimental and predicted), many (if not most)

molecules of interest are substantially more complex. Drug molecules tend to have multiple

dissociation sites, form zwitterions in water, and sometimes tautomerize. Failing to consider

the difference between “macroscopic” and “microscopic” pK a can lead to markedly incorrect

predictions.

But there is an even more insidious terminological issue that has led to a systematic mis-

interpretation of pK a data. When reporting the pK a of any compound, three fundamental

pieces of information are crucial:

1. What is the pK a value?

2. What is the species that loses the proton, and what is the species that remains after

proton loss?

3. If the above is not available, then what is the overall, macroscopic charge transition

that the pK a value corresponds to, and what is the identity of the uncharged species?

We have observed significant confusion in the literature regarding points 2 and 3, especially

for amino acids and other ampholytes that form zwitterions in solution. This confusion arises

from an unfortunate development of terminology that will be discussed in this work. This

terminology has appeared in databases including ChEMBL, a widely-trusted repository for

biochemical data. This situation has caused confusion in the development of pK a models

trained on such data, contaminating model performance and thereby affecting point 1. In

addition, due to the limited assessment of model performance on relevant benchmarks, such

contamination has largely evaded discussion in the literature.

The acid dissociation constant is used in drug design as a metric for ADME properties,

blood-brain barrier penetration,9 protein binding,10 solubility,11 purification processes,12 and

others; hence, these errors in training have the potential to affect medicine and thereby the

health and welfare of people. It also affects kinetic simulations, whether from being used to
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compute ratios of rate coefficients from the equilibrium constant, or to compute solvation

free energies of ionic reactants13,14 which are then combined with calculations of transition

state thermodynamics to compute liquid-phase rate coefficients.15 In the following sections,

we will explain the origin and depth of the problem, examine potential downstream effects

on predicting ADME properties, and discuss our perspective on how to resolve this issue for

future research efforts.

The acidity label issue

low pH
acidic conditions

basic pKa

charge: +1

high pH
basic conditions

acidic pKa 
charge: -1

neutral pH
neutral conditions

neutral form dominates
charge: 0

basic site

acidic site

Figure 1: pH scale for m-aminophenol.

An ampholyte is a molecule that can either act as an acid or base. For a given microstate

that has one acidic and one basic site, the lower pK a corresponds always to proton gain and

the higher value to a proton loss. At a low pH, the activity of protons is high; therefore, the

chemical equilibrium favors the reaction of RH + H+ to form RH+
2 , and the predominant

charge state will be +1. In this sense, RH acts a Brønsted-Lowry base. Similarly, at a high

pH, the activity of protons is low, so the reaction forming protons (i.e. the acid dissociation

of RH) is favored.

The key issue is as follows: For most molecules, the low and high macroscopic pK avalues

are termed “basic” and “acidic” pK a values, respectively. However, for compounds that

tautomerize to zwitterions (such as amino acids), the order is flipped, and the pK a labels
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are generally “acidic” and “basic”, respectively.

This is at first quite counterintuitive. From a macroscopic pK a perspective, the low pK a

corresponds to proton gain and the high pK a corresponds to proton loss. These are usual

definitions of Brønsted acidity. For example, Figure 1 depicts the amphiprotic nature of m-

aminophenol and the major microspecies at different pH regimes, as well as the corresponding

pK a types, corresponding to the usual ordering of basicity and acidity.16

But for zwitterion-forming compounds, the situation is different. Let us examine glycine

(Figure 2). The macroscopic pK a values of glycine are commonly reported to be approxi-

mately 2.4 and 9.8.

pKaH1 = 2.4

pK'aH1 = 7.6

basic site

basic site

pKa1 = 9.8

pK'a1 = 4.3

acidic site

acidic site

Figure 2: Microscopic pK a values of glycine in both the uncharged and zwitterionic tau-
tomers.

In contrast to compounds with only an alcohol and amine site such as m-aminophenol,

glycine in aqueous solution exists predominantly as a zwitterion. In fact, its tautomerization

is dictated by its uncharged form’s microscopic pK a values: pK a(-OH) = 4.3 (acidic) and

pK aH(-amino) = 7.6 (basic), respectively. From a thermodynamic perspective, it is because

the pK a of the -COOH group in the non-zwitterionic neutral form is lower than that of the

-NH3
+ group in the zwitterionic neutral form that the zwitterion can exist; and the relative
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population of each tautomer is dictated by the ratio of the corresponding equilibria.17 In

water, the zwitterionic form of glycine predominates over the non-zwitterionic neutral form

at all pH, representing more than 99.9% of microspecies for the neutral protonation state.

The zwitterionic tautomer has stronger acidic and basic sites, with microscopic pK a values

of pK aH = 2.4 (basic, proton gain) and pK a = 9.8 (acidic, proton loss).

Hence, the numerical values observed in the macroscopic pK a (2.4 and 9.8) correspond

to those of the dominant zwitterion microstate. But confusingly, the macroscopic pK a at 2.4

is called acidic and the pK a at 9.8 is called basic, because such is the case for the uncharged

microstate, even though in this case the zwitterion dominates the microstate population.

(We note that it is not always true that the zwitterion tautomer dominates - but it is often

a significant microstate.)

Hence, we arrive at this unfortunate terminology, in which the macroscopic acidity label

represents its uncharged tautomer’s microscopic pK a, but the value represents the zwitterion.

The set of information is inconsistent with either microstate, and is inverted in how “acidity”

and “basicity” are defined for other amphiprotic molecules like alkanolamines. An example

of this convention can be seen as early as 1929, shortly after the zwitterion was introduced

as a concept in the early 1920s.18–20 Later, in 1984, Harris and Serjeant suggest avoiding the

“basic” and “acidic” pK a labels unless one is sure about the presence of zwitterions, instead

naming the lower value “proton gain“ and the higher value “proton loss”.16

This terminology of “basic” and “acidic” persists today, with many sources, including

PubChem, ChEMBL, and others labeling that the numerically lower pK a is acidic for many

amino acids. Exceptions infrequently occur in the literature - several publications describe

the carbonyl group’s low pK a as basic and the aminium group as acidic.21–23 In the following

sections, we examine how this confusing terminology has led to problems in cheminformatics,

which has impacted the performance of predictive models.
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Inconsistency in the ChEMBL Database

Figure 3: Histograms comparing the distribution of pK a values for polyprotic ChEMBL
compounds; a significant portion have a listed acidic pK a less than the basic pK a.

ChEMBL is a manually curated database that includes 2.4+ million distinct compounds as

of version 34.7,8 The database includes calculations for the “most acidic” and “most basic”
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sites for each compound. Owing to the low availability of high-fidelity experimental pK a

data, the ChEMBL database has recently been used as a pretraining dataset for many recent

data-driven pK a models. The pK a values in ChEMBL are from ChemAxon’s Protonation

pK a calculator, and are consistent with predictions in the software’s macroscopic static pK a

mode. The “static” mode indicates that charged forms of input molecules are converted to

neutral forms before calculation.24 We emphasize these are macroscopic, despite many recent

efforts to treat them as microscopic.

Unfortunately, another issue manifests in the ChEMBL data due to the terminology.

ChEMBL reports only the numerically lowest acidic pK a and highest basic pK a predicted

for each compound. For non-zwitterion forming compounds, this would correspond to what

might be best understood as the “most acidic” and “most basic” pK a values. But for

these flipped-label compounds, this policy instead samples the least basic and least acidic

macroscopic values within the examined pK a range. For models that sample the ChEMBL

dataset, it is commonly assumed that these values correspond to the +1 and -1 charge states,

even though this is not the case in these circumstances.25–29 This can lead to corruption of

the training data and poor inference performance for such compounds.
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Experimental data ChEMBL

pKaH2 = 0.3

pKaH1 = 1.0

pKa2 = 2.7

pKa1 = 2.2

pKa3 = 6.2
pKa4 = 10.2

Acidic pKa = 0.33

Basic pKaH = 10.62

Figure 4: Dissociations for one of the zwitterionic forms of EDTA. Because the acidity labels
are flipped and then the most extreme values are taken, the ChEMBL data is reported the
pK a values corresponding to dissociations for the +2 and -3 charge states, rather than the
+1 and +0.

To illustrate this, let us examine ethylenediaminetetraacetic acid (EDTA), a compound

commonly used in applications including manufacturing,30 environmental remediation,31

dentistry,32,33 medicine,34 and others. The uncharged tautomer of EDTA has four car-

boxylic acid groups and two tertiary amine groups. In water, as shown in Figure 4, EDTA

can tautomerize. It has six pK a values: 0.3, 1.0, 2.2, 2.7, 6.2, and 10.2. Four correspond

to carboxylic acid groups, and two to the aminium groups.35 Two of the four carboxylic

acid pK a values correspond to proton gain. The most basic and most acidic pK a values

relative to the neutral compound (i.e., those corresponding to charge state +1 to 0 and then

from +0 to -1) are 1.0 and 2.2, respectively. But ChEMBL reports 10.62 and 0.33, which

instead represent charge transitions from -3 to -4 and from +2 to +1, respectively. Because

ChEMBL’s overall ranking of acidities and basicities has flipped, it is reporting the least

acidic and least basic pK a values among the heteroatom functional sites.

As of version 34, in ChEMBL, the acidic pK a values are lower than the basic pK a values

for 131,935 entries (see Figure 3). In total, ChEMBL includes 2,053,423 compounds with
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calculated pK a values, among which 803,972 are polyprotic (i.e., an acidic and basic pK a are

reported). Hence, about 5% of all acidic/basic entries, or 16% of all polyprotic compounds,

have potential for error. These include values for medical compounds such as levothyroxine

and ampicillin, biochemicals such as phosphocreatine and ATP, dye molecules such as Methyl

Red, and practically all amino acids found in living organisms. As these compounds are

important in biochemical applications, there is significant potential for errors in pK a data

and modeling to affect human life. We therefore suggest that these calculations are carefully

curated by ChEMBL. The solution need not be complicated: if the acidic pK a values are

lower than the basic ones, then choose the highest acidic and lowest basic values.

The largest currently existing set of pK a data with full metadata (including temperatures,

methods, original references, and critical evlauation) is the IUPAC Digitized Aqueous pK a

Dataset,36 which is a digitized version of several compilations of pK a data.37–39 Most of the

values in this dataset are macroscopic. We found a set of compounds in ChEMBL that

have acidity values lower than their basic values; from these, we downsampled to those that

also have at least an acidic or basic pK a value in the IUPAC dataset. This resulted in a

set of 171 proton gain and 195 proton loss pK a values. The parity is shown between the

ChEMBL dataset and the IUPAC data (Figure 5), standardized such that the values align to

the same change in protonation state. Although a large portion of the ChEMBL data match

closely to the experimental data, many deviate significantly. Some of the low deviations are

attributed to calculation error. The high deviations often correspond to those cases such as

EDTA, in which the “most basic” and “most acidic” pK a values are incongruent with the

proton gain/loss terminology. Proton gain values in ChEMBL are systematically too low,

and proton loss values too high, which agrees with this hypothesis that there are issues with

the pK a value sampling.
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Figure 5: Parity between the IUPAC data against the ChEMBL synthetic data.

Several recently published models use ChEMBL data for pre-training and full training,

respectively, each with varying degrees of errors. These data are thereby misinterpreted, at

which point the terminology goes from confusing to deleterious, causing model misprediction.

Model error due to ChEMBL data

In recent years, numerous models have used ChEMBL Database pK a calculations during

training.

MolGpKa is a pK a predictor published in 2021.26 The model was trained on values

from the ChEMBL database and is publicly available as a web-server with a conveniently-

accessible API. As of June 2024, the web server site has over 500,000 page views. Although

trained on macroscopic pK a values, it attempts to compute microscopic pK a values, and
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hence follows the same acidity ordering as seen in ChEMBL. The model converts zwitterions

into their uncharged tautomers, and predicts that glycine’s uncharged tautomer has an acidic

pK a of 2.1 and a basic pK a of 9.6. It has the same issues with inconsistency as discussed

previously in the ChEMBL data, and is hence not discussed further here.

Several models have involved pretraining on ChEMBL values and then fine-tuning on

experimental data. MF-SuP-pK a
28 and pkasolver,29 both released in 2022, are two such

recent examples. Unfortunately, because the models are not publicly available, we could not

assess their performance on amino acids.

Uni-pK a, published in 2024, also leverages the ChEMBL dataset to pretrain a module

that leverages 3D information and computed free energies of individual microstates to cal-

culate the overall macroscopic pK a. The model accounts for tautomerism, capturing the

microscopic pK a of both the uncharged and zwitterionic tautomers. To our knowledge,

this is the only recently-released ML model that correctly distinguishes between those mi-

crostates. While showing excellent performance, the weights of the model in the original

manuscript are not publicly available, and we do not examine it further here.25

QupKake is a recently-published machine learning model for the prediction of microscopic

pK avalues.
27 When assessed against the SAMPL6-8, Novartis, and literature datasets, the

model was shown to exhibit state-of-the-art performance, with test RMSEs between 0.5 to

0.8 pH units. The model is pre-trained on data from the ChEMBL database, whose most

acidic and most basic protonation sites are determined using a surrogate model trained on

CREST, which uses semi-empirical quantum mechanical methods to estimate the relative

stability of protomers.40 In the training process, zwitterions were not considered. Due to

the fine tuning, predictions from QupKake are not always similar to the calculations in

ChEMBL.

Because QupKake is publicly available, is considered state-of-the-art in several metrics,

and involves fine-tuning (which yields a more complicated relationship with the ChEMBL

data), we examine this model more closely here. Although QupKake attempts to predict
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microscopic pK a information, it is pre-trained on macroscopic pK a calculations. We hence

believe it more accurate to compare QupKake predictions to macroscopic pK a values in the

IUPAC digitized dataset.

As a simple test case, let us compare the model prediction for glycine to the data. Using

the uncharged tautomer as input to the model, we might expect the model to perform well;

it is the simplest amino acid, and contains two of the most common acidity centers across

all acids and bases. However, the “acidic” and “basic” pK a values (interpreted by QupKake

as proton loss and gain) predicted are 2.4 and 7.8. The different interpretations of pK a

labeling make direct comparison difficult. For the zwitterion microscopic pK a (which largely

matches the values of the macroscopic pK a), the ChEMBL values are 9.2 and 2.3, and the

experimental values are 9.4 for proton loss and 2.4 for proton gain. For the uncharged

microstate, the experimental values are instead 4.3 and 7.6. The model predictions of 2.4

and 7.8 are therefore inconsistent with both microstates: for the uncharged state, the lower

pK a is nearly 2 pH units in error, whereas for the zwitterion state, the higher pK a is almost

2 pH units in error (and the acidity ordering is flipped).

To better assess the accuracy of the model, we further examined a larger set of potentially

zwitterionic compounds. To do this, we took the subset of ChEMBL calculations whose

reported acidic pK a was lower than the basic one, and then found the intersection of that set

with the IUPAC dataset. To further simplify the comparison, we downsampled to compounds

with just one acidic center and one basic acidity center. This resulted in a subset of 52 proton

gain and 69 proton loss pK a values. Then, we compared both the ChEMBL calculation and

QupKake prediction against the IUPAC data.

We ran the calculations with the following assumptions:

1. We used uncharged tautomers, as the QupKake model was not trained on zwitterionic

species and therefore predicts values close to 7 when presented with zwitterions.

2. We assume that the “basic” pK a in ChEMBL and QupKake correspond to proton loss,

and likewise for the “acidic” pK a, reflecting the confusing nature of the acidity labels.
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Figure 6: Parity plot comparing the downsampled, simple test set of compounds from IUPAC
experimental data vs. (a) ChEMBL calculated values, and (b) QupKake machine learning
model predictions.

Figure 6 shows the comparison of both ChEMBL and QupKake predictions against the

experimental data. The ChEMBL calculations very accurately recreate the experimental

data. For QupKake, the RMSE shown is 1.2 pH units; while this is still decent, this is

greater than the test RMSEs of 0.5 to 0.8 pH units reported by QupKake for the SAMPL

and Novartis test sets, and greater than the deviation of experimental data compared to

ChEMBL. If the QupKake model were able to learn perfectly from the ChEMBL data, then

it should predict closer to the ChEMBL calculation errors, i.e., closer to 0.6 RMSE. The

parity plots also show that such errors are systematic, with many proton gain values too

high and proton loss values too low by about 1-2 pK a units. We believe that this lower

accuracy is for the most part due to inconsistency of microstate information as provided

to the model during training, and that predictions for such compounds can be learned just

as they can for other simple polyprotic species like aminophenols. The misinterpretation of

pK a labels in datasets has the potential to impair model predictions, and should be rectified

in both the dataset and modeling sides.
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This issue has not attracted significant discussion because amino acids and other zwit-

terionic compounds are not frequently seen and analyzed in benchmarking sets. We also

emphasize that this process involved prior knowledge of potential labeling issues - as we

ascribed the values predicted of the uncharged microstate to the acidity behavior of the

zwitterionic microstate.

Implications of erroneous pK a

Acid dissociation constants are widely used to predict biochemical properties. They are also

used to predict thermodynamic properties such as the free energy of ions in solution, which

can be used to estimate solubilities and rate coefficients. Here, we assess the sensitivity of

these properties to changes in pK a.

If we use pK a predictions for amino acids assuming they follow the same acidity / basicity

labels as simple ampholytes such as m-aminophenol, then we will have a flipped understand-

ing of the pK a label. Let us call this the “naive” case, in which we consistently obtain pK a1

values that are about 5 pH units too low and pK aH1 values 5 pH units too high.

In the optimistic scenario that we are correctly mapping the acidity labels, poor per-

formance is still occasionally observed. We compute pK aH1 = 2.3 and pK a1 = 7.8 using

QupKake, compared to the microscopic values of 2.4 and 9.8, respectively for the zwitterion,

and 4.3 and 7.6 for the uncharged tautomer. This corresponds to errors of 0.1 and 2.0 pH

units for the former and 2.0 and 0.2 pH units for the latter microstates.

In the remainder of this section, we will use QupKake’s predicted values for glycine to

assess the significance of pK a errors in both of these “naive” and “corrected” usage. We

emphasize, again, that QupKake is not necessarily the only model that has such errors - and

indeed, it exhibits excellent performance in other metrics - and is examined here only because

it is open-source, state-of-the-art, and utilizes the ChEMBL data in a complex manner.
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Solubility

The pK a is used directly to calculate solubility for ionizable compounds and partitioning

(e.g. in lipophilicity). A common way is to use it in the Henderson-Hasselbalch expression,

through which we obtain the following expressions for solubility for an ampholyte with one

acidic and one basic pK a:

S(pH)

S0

= 10pKaH1−pH + 10−pKa1+pH + 1 (5)

where S(pH) is the solubility of the drug at a given pH and S0 is the solubility of

the un-ionized drug (i.e. at the isoelectric point).11,41,42 The pK a and pK aH1 used are the

experimentally observed macroscopic values of solubility.43

Figure 7: Solubility predictions using the Henderson-Hasselbalch prediction with experimen-
tal data versus QupKake predictions.

Figure 7 shows that the Henderson-Hasselbalch relationship accurately depicts the re-

lationship between solubility and pH if parameterized with the IUPAC data. In the naive
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case that pK a data is used with flipped labels, the relationship predicts complete dissolution

across all pH (for instance, at pH = 5, the predicted S/S0 is 1000; its corresponding S-pH

curve is not shown in Figure 7 due to the difference in magnitudes). If using QupKake,

one must choose to use the uncharged microstate (trained on macroscopic pK a data), which

already introduces a modeling error. Using the predicted proton loss pK a of 7.8, one sees

that the solubility predictions are significantly shifted. At the pH of blood (roughly 7.4)

the effect of ionization would lead to a less than 1% increase in solubility, whereas using the

ML prediction would arrive at an estimate of 40% increased solubility. Such errors therefore

have potential to affect drug interactions in the human body.

Chemical kinetics and thermodynamics

The Gibbs free energy difference for an acid dissociation can be related from the equilibrium

constant. For equation 1, for instance, the free energy of reaction is:

∆Grxn = ln 10 · RT · pK a(AH) (6)

where R is the molar gas constant, T is the temperature, and ∆Grxn is the Gibbs free

energy of reaction for an acid dissociation. At 25 °C, the term ln 10 · RT equals 1.36 kcal

mol-1. ∆Grxn is connected to kinetics; for one, it can be used to compute the equilibrium

coefficient, allowing the reverse reaction’s rate to be determined if the forward rate is known.

It can be used via a thermodynamic cycle to compute the free energy of an ionic reactant in

solution,13,14 which can then be used (along with information about the transition state) in

kinetic simulations.44

If naively using the pK a values for glycine, mistakenly flipping their order, this would

lead to errors of 5 pH units which propagates to an error of nearly 7 kcal mol-1. This

level of inaccuracy is unacceptable in chemical kinetics - if used in either of the two kinetic

applications described above, this would correspond to a factor of≈136,500 error in computed

room-temperature rate coefficients. The errors would be even higher (closer to 6 pH units,
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or 8 kcal mol-1) if using the data from ChEMBL or models such as MolGpKa.

Using the computed values with the corrected acidity order would still result in errors

of 2 pH units for one of the pK a values for either the uncharged or zwitterion tautomers,

which corresponds to 2.7 kcal mol-1, or a factor of about 100 error in rate coefficients.

Generally, thermodynamic errors of <0.5 kcal mol-1, corresponding to rate errors of about

2, are considered to be within chemical accuracy.

Recommendations for future researchers

We are excited by recently-developed models such as QupKake and Uni-pK a which attempt

to utilize microstate information in pK a prediction. We believe that including 3D confor-

mations and energies computed using QM will lead to more accurate and less ambiguous

future models. However, future model developers must take utmost care to distinguish ex-

actly what property their model is predicting - macroscopic or microscopic - as well as the

corresponding nature of the training data.

When using ChEMBL versions ≤34, we encourage researchers to identify wherever the

acidic pK a value is less than the basic one, and consider correcting or discarding this subset

of data. Furthermore, zwitterionic tautomers should not be excluded during training by

default.

This issue is far more fundamental than just pK a and amino acids; it speaks to the diffi-

culty in representing and standardizing the tautomeric information of a molecule. Although

convenient to relate just a single tautomer of a 2D molecular graph to a macroscopic prop-

erty, it is increasingly apparent that ensembles of tautomers and conformations are critical

to accurate pK a prediction for polyprotic and zwitterionic compounds, and perhaps other

properties as well. Some standard open-source cheminformatics packages include methods

for identifying the possibility for an ampholyte to form a zwitterion a priori ; for example,

Dimorphite-DL,45 which enumerates the microstates of a compound at a given pH, and

Open Babel.46 However, there is not yet an open-source method for accurately predicting
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the relative population of zwitterionic and uncharged microstates based on molecular graphs.

This issue of macroscopic and microscopic pK a increasingly becomes important if multiple

ionizable groups are present. Efforts in microscopic pK a prediction should include quantum-

chemical computation of free energies for all relevant tautomers at given charge states, as is

being explored in recent machine-learning models.

We suggest the following guidelines to avoid future confusion:

• If known, pK a data should be labeled as macroscopic or microscopic.

• pK a should only refer to proton loss; i.e., if speaking of “the pK a of AH”, this should

always refer to AH transforming to A-, and not into AH2
+.

• If microscopic, the data point should indicate a description of the exact microstate and

ionization center.

• For a macroscopic pK a, if a chemical identifier for the compound at that charge state is

known, then it should be provided. If not, then an identifier for the neutral form, along

with the charge state transition or numerical order of the dissociation with respect to

the neutral charge state, should be provided. For instance, it is far preferable to

describe the dissociation reaction HCO3
- forming CO3

2- as the bicarbonate anion’s

pK a, but it could also be described as carbonic acid’s pK a2.

• If no information about the charge state is known because the molecule is amphiprotic,

then the pK a may simply be arranged in ascending order along with an identifier for

its neutral form. However, such cases should include some form of annotation to avoid

the impression that all such values are acidic with respect to the +0 charge state.

• The usage of “acidic” and “basic” pK a is best avoided in dataset labels.
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Conclusion

Considerable progress has been made in recent years toward prediction of pK a for monoprotic

and some polyprotic species. However, inconsistent and confusing terminology serves as an

obstacle for pK a prediction as pertains to true microscopic pK a prediction, especially for

drug compounds which tend to have many acidity centers and/or form zwitterions. The

situation is even worse for pK a data in non-aqueous solvents, for which different acidity

scales frequently appear, and solvent effects such as homoconjugation and ion pairing are

treated inconsistently. Such systematic errors in data can exceed 3 pH units.47,48

We have used glycine as a comparison case to show that errors in pK a prediction of amino

acids can lead to large errors in predicted solubility and kinetics. Many drug molecules are

simple amino acids similar to glycine, such as aminocaproic acid (a clotting promoter), pre-

gabalin (a treatment for seizures and nerve pain), and methyldopa (a drug for hypertension).

Such errors will be higher and even more difficult to correct in more complex drug molecules.

The potential for impact on life is substantial, and these errors should be corrected in existing

databases to reduce the risk of impact in drug development.

Much effort in recent years has also focused on developing, tweaking, and experimenting

with model architectures. We strongly encourage future researchers to also focus on exam-

ining datasets, understanding the data provenance, limitations, and potential issues, before

using the data for model development. Errors in data can ossify, leading to misconceptions

that could perpetuate for years to come. Improving data will naturally lead to better mod-

els. They will also lead to better benchmarks and allow for a more holistic understanding

of model performance. It is our perspective that the low quantity of high-quality, consistent

data is currently the primary issue precluding the development of AI in chemistry, and we

hence encourage further research in this domain.

21

https://doi.org/10.26434/chemrxiv-2024-msd0q-v2 ORCID: https://orcid.org/0000-0002-4863-1325 Content not peer-reviewed by ChemRxiv. License: CC BY-NC-ND 4.0

https://doi.org/10.26434/chemrxiv-2024-msd0q-v2
https://orcid.org/0000-0002-4863-1325
https://creativecommons.org/licenses/by-nc-nd/4.0/


Data and Software Availability

The full set of ChEMBL data is openly available on the ChEMBL website at: https:

//www.ebi.ac.uk/chembl/downloads/. The experimental pK a data were obtained from

the IUPAC Aqueous pK a dataset, openly available on Zenodo at: https://zenodo.org/

doi/10.5281/zenodo.7236452. The QupKake model used in this work was obtained from

the QupKake GitHub repository at: https://github.com/Shualdon/QupKake. The pK a

and solubility data used in this study are available in the Supporting Information.
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(30) Maŕın, D.; Vega, M.; Lebrero, R.; Muñoz, R. Optimization of a chemical scrubbing

process based on a Fe-EDTA-carbonate based solvent for the simultaneous removal of

CO2 and H2S from biogas. Journal of Water Process Engineering 2020, 37, 101476.
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