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Abstract
Accurate prediction of toluene/water partition coefficients of neutral species is crucial in drug discovery
and separation processes; however, data-driven modeling of these coefficients remains challenging due to
limited available experimental data. To address the limitation of available data, we apply multi-fidelity
learning approaches leveraging a quantum chemical dataset (low fidelity) of approximately 9000 entries
generated by COSMO-RS and an experimental dataset (high fidelity) of about 250 entries collected
from the literature. We explore the transfer learning, feature-augmented learning, and multi-target learn-
ing approaches in combination with graph neural networks, validating them on two external datasets:
one with molecules similar to training data (EXT-Zamora) and one with more challenging molecules
(EXT-SAMPL9). Our results show that multi-target learning significantly improves predictive accuracy,
achieving a Root-Mean-Square Error (RMSE) of 0.44 logP units for the EXT-Zamora, compared to an
RMSE of 0.63 logP units for single-task models. For the EXT-SAMPL9 dataset, multi-target learn-
ing achieves an RMSE of 1.02 logP units, indicating reasonable performance even for more complex
molecular structures. These findings highlight the potential of multi-fidelity learning approaches that
leverage quantum chemical data to improve toluene/water partition coefficient predictions and address
challenges posed by limited experimental data. We expect applicability of the methods used beyond just
toluene/water partition coefficients.

1 Introduction
The partition coefficient logP of neutral species between water and an organic species is an important
physical property, playing a significant role in various fields such as drug discovery (Testa et al., 2000;
Klopman and Zhu, 2005; Mannhold et al., 2009; Andrés et al., 2015) and separation processes (Hostrup
et al., 1999; Paes et al., 2022). This property captures the ratio of concentrations of a chemical species
in two immiscible solvents. For pharmaceutical applications, the partition coefficient of an Active Phar-
maceutical Ingredient (API) indicates its hydrophobicity/hydrophilicity and is thus a critical indicator
for its pharmacokinetics and physical properties of potential drug candidates (Arnott and Planey, 2012;
Johnson et al., 2018). In separation processes, the partition coefficient between water and an organic
solvent is key for determining the most effective methods for separating species impacting both the
yield and purity (Dunn et al., 1986; Otsuka, 2005; Polte et al., 2022). While water/octanol partition
coefficients of neutral species are widely available, data for water and other organic solvents, such as
toluene/water are limited. Toluene/water partition coefficients offer better physiological relevance com-
pared to water/octanol (Caron and Ermondi, 2005; David et al., 2021). Consequently, models that predict
toluene/water partition coefficients for a wide spectrum of neutral species are highly desired.

Existing computational methods, such as the COnductor like Screening MOdel for Real Solvents
(COSMO-RS) (Klamt, 1995; Klamt et al., 1998), Group Contribution (GC), and Molecular Dynamics
(MD) have been employed to predict toluene/water logP of neutral species (Platts et al., 1999; Lin
and Sandler, 2000; Buggert et al., 2009; Loschen and Klamt, 2014; Ince et al., 2015; Bannan et al.,
2016; Müller et al., 2024). Recently, the SAMPL9 blind challenge (Amezcua et al., 2023) allowed dif-
ferent groups to compare such predictive methods against a set of 16 drug-like molecules for predicting
toluene/water logP . We also participated in the challenge using the COSMO-RS, a semi-empirical model
that is partially physics-based and allows application to a variety of systems. Among 18 contributions,
we ranked second with an Root-Mean-Square Error (RMSE) of 1.24 logP units (Nevolianis et al., 2023).
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2 DATASET 2

The best-performing method in the SAMPL9 blind challenge (Amezcua et al., 2023) achieved an RMSE
of 1.12 logP units (Amezcua et al., 2023). Thus, for predicting toluene/water partition coefficients,
COSMO-RS has been shown to be more accurate than the GC and MD approaches (Klamt, 2018). Ma-
chine Learning (ML) offers new possibilities for predicting toluene/water logP by utilizing experimental
data. Recent advances in ML such as Graph Neural Networks (GNN) models and transformers enable
end-to-end learning of molecular properties directly from the structure and have demonstrated success
across various applications (Gilmer et al., 2017; Schweidtmann et al., 2020; Rong et al., 2020; Vermeire
and Green, 2021; Winter et al., 2022; Sanchez Medina et al., 2022; Felton et al., 2021; Rittig et al.,
2023c; Sun et al., 2023). The general idea is to find a representation of molecules, e.g., in the form of
descriptors, strings, or graphs, which can be mapped to properties of interest by applying regressions
methods. For instance, in predicting the toluene/water partition coefficient of APIs as a post-SAMPL9
study, Zamora et al. (2023) used a variety of molecular descriptors – related to the topological structure
and properties such as the Ghose–Crippen water/octanol partition coefficient – on which they fitted a
multiple linear regression model for the 250 experimental logP values from their collected dataset. These
250 experimental toluene/water logP of neutral species (Zamora et al., 2023) are currently the largest
available dataset in the literature. This multiple linear regression model achieved an RMSE of 1.05 logP
units on the test dataset and an RMSE of 0.86 logP units on the SAMPL9 dataset (Zamora et al., 2023).
These promising results are constrained by the limited amount of training data, which may restrict the
model’s broader applicability and potentially its effectiveness across diverse solutes and logP ranges.
The direct prediction of toluene/water logP of neutral species using ML therefore remains limited due
to data scarcity, necessitating the exploration of alternative approaches.

To address scarcity of molecular property data, previous literature studies (Vermeire and Green, 2021;
Greenman et al., 2022; Fare et al., 2022; Buterez et al., 2024) have employed various multi-fidelity learn-
ing approaches. A recent review by Qian et al. (2024) summarizes the different multi-fidelity methods,
suggesting that pretraining models on low fidelity data such as a large dataset derived from Quantum
Chemical (QC) calculations and semi-empirical models, followed by fine-tuning with high fidelity data
such as experimental data, can significantly enhance their applicability and reliability in predicting molec-
ular properties. In particular, three multi-fidelity approaches are promising in molecular ML: transfer
learning, feature-augmented learning, and multi-target learning (Qian et al., 2024). Transfer learning
leverages pretrained models to improve predictions, feature-augmented learning integrates predictions as
additional features, and multi-target learning simultaneously predicts multiple related properties. To this
end, to overcome the challenges posed by limited experimental data in predicting toluene/water logP
of neutral species, we investigate these three multi-fidelity learning approaches that leverage QC and
experimental data to increase the effectiveness of GNN models.

We apply various ML models and multi-fidelity learning approaches to predict the toluene/water
logP of neutral species. Initially, we generate a low fidelity QC dataset consisting of approximately 9,000
toluene/water logP values of neutral species using the COSMO-RS approach, which we chose due to its
balance of accuracy and computational efficiency. We use this dataset to pretrain GNN models, so they
encompass a wide range of chemical classes and atom types. We then fine-tune and test the pretrained
GNN models with different multi-fidelity learning approaches using the high fidelity datasets of Zamora
et al. (2023) and the SAMPL9 blind challenge. Specifically, a part of the Zamora dataset, comprising 250
experimental logP values, is used for fine-tuning while the remaining part is reserved for testing, similar
to the approach taken with the SAMPL9 dataset, which includes 16 experimental logP values. Next,
we compare the GNN models with a GNN trained only on the experimental data and additional semi-
empirical and data-driven approaches for the prediction of toluene/water logP . Finally, we discuss the
strengths and limitations of the different approaches. Thereby, we address how multi-fidelity strategies
leveraging both QC and experimental values can play a crucial role in ML for accurately predicting
molecular properties, especially when only a limited amount of experimental data is available.

2 Dataset
We first present the low and high fidelity datasets of toluene/water partition coefficients and describe the
data splitting process for training and testing of the computational methods. An overview of the datasets
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2.1 Low fidelity - Quantum chemical dataset 3

is shown in Table 1. The SMILES from all molecules used in this study are provided in the supporting
information as a CSV file.

Tab. 1. Overview of logPtol/w datasets used for model (pre-)training and testing. † The LF-QC set
is generated in this work and is not publicly available due to licensing restrictions. We describe how to
generate the LF-QC set in the text.

Name #data points origin

LF-QC† 8,891 QC
HF-Exp (Zamora et al., 2023) 213 Exp.
EXT-Zamora (Zamora et al., 2023) 38 Exp.
EXT-SAMPL9 (Amezcua et al., 2023) 16 Exp.

2.1 Low fidelity - Quantum chemical dataset
To generate the Low fidelity - Quantum chemical (LF-QC) dataset of logP values, we initially collect
molecules represented by SMILES strings from the iBonD database (Cheng et al., 2023), covering a
diverse range of chemical classes and atom types. The iBonD database is chosen because it contains
many drug-like molecules similar to those in the experimental datasets investigated in this work while
also covering a broad spectrum of chemical diversity. The molecules are selected on the basis of standard
ranges of acid dissociation constants. The final selection consists of molecules, predominantly featuring
substituted benzoic and phenolic acids, alkyl carboxylic acids, alkylamines, and derivatives of pyridine
and aniline. We then use these SMILES strings as input to obtain the 3D geometric structures using the
software RDKit (Ebejer et al., 2012; Landrum et al., 2020). Next, we optimize the molecular structures
obtained from RDKit at the GFN2-xTB level of theory (Bannwarth et al., 2019). We further refine the
geometries of each molecule in the COSMO state using COSMOconf 23 (Dassault Systèmes, 2023a), with
the BP86/TZVPD parametrization and FINE COSMO cavity (Becke, 1988; Perdew, 1986; Rappoport
and Furche, 2010). Finally, we calculate the logPtol/w values for each molecule at 25 °C and at low finite
dilution (0.0002 mol%) using COSMOtherm 23 (Dassault Systèmes, 2023b), based on the difference in
chemical potential between the water and toluene phases. We utilize small finite fractions of the molecules
in both the aqueous phase and toluene to match the solute concentration range used in the experimental
studies, which is 2.0–0.5 mM (Ruiz et al., 2022). The error of logP in the LF-QC dataset is determined
by propagating the uncertainties of the solvation free energies in water and toluene using Equation 2.
Given the uncertainty of 0.45 kcal/mol (Letcher, 2007) for the solvation free energy, the resulting error in
logP is 0.47 logP units. The LF-QC dataset consists of 8,891 molecules (see Table 1). The LF-QC set
is not publicly available due to licensing restrictions. However, the logPtol/w values for each molecule in
the LF-QC can be generated by applying the described approach to the provided SMILES strings, which
are available in the supporting information as a CSV file.

2.2 High fidelity - Experimental dataset
The High fidelity - Experimental (HF-Exp) dataset is obtained from Zamora et al. (2023) who determined
the partition coefficients logPtol/w through sample titrations, following a procedure similar to that used
for aqueous acid dissociation constants determination but in the presence of varying amounts of the
partitioning solvent. All measurements were conducted at 25 °C under an inert gas atmosphere, with
at least three titrations performed for each compound to ensure accuracy. The solute concentration
range estimations are based on the details provided in the experimental study (Ruiz et al., 2022; Zamora
et al., 2023). While these studies do not report the uncertainty of the toluene/water partition coefficient
measurements, similar methods used for octanol/water partition coefficients typically report uncertainties
around 0.04 logP units (Işık et al., 2019). Therefore, it is reasonable to expect a similar level of uncertainty
for the toluene/water measurements. An additional uncertainty arises from the fact that experimental
concentrations are not provided for individual molecules, resulting in the calculations potentially being at
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2.3 External Zamora and SAMPL9 datasets 4

slightly different concentrations. For most molecules, this difference will be negligible, but for molecules
forming dimers in the toluene phase, the discrepancy can be in the order of 2 logP units (Nevolianis
et al., 2023). The HF-Exp dataset consists of 213 molecules (see Table 1).

2.3 External Zamora and SAMPL9 datasets
The External - Zamora (EXT-Zamora) and External - SAMPL9 (EXT-SAMPL9) datasets are taken from
previous studies (Amezcua et al., 2023; Zamora et al., 2023). The experiments conducted to measure
the logPtol/w values in these datasets follow similar protocols to those used for obtaining the HF-Exp
dataset. The EXT-Zamora and EXT-SAMPL9 datasets consist of 38 and 16 molecules, respectively (see
Table 1).

2.4 Dataset comparison and analysis

(a) (b)

(c)

Fig. 1. Comparison of chemical properties across four datasets: • LF-QC, • HF-Exp, • EXT-Zamora,
and • EXT-SAMPL9. The subfigures show (a) density plots of logP values, (b) density distribution of
molar masses, and (c) analysis of atom type distributions.

Figure 1a shows the density distributions of logP values for the LF-QC, HF-Exp, EXT-Zamora,
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and EXT-SAMPL9 datasets. The LF-QC dataset (red) shows a wide distribution range from -10 to
7, reflecting the extensive chemical diversity captured by the Quantum Mechanics (QM) dataset. The
HF-Exp dataset (green) and EXT-Zamora dataset (cyan) have a more narrow and peaked distribution
centered around -1 to 3 logP values, indicating that the experimental measurements are focused on a more
homogenous set of species. The EXT-SAMPL9 dataset (purple) peaks around -1 to 3 logP values and 3
to 6 logP values, indicating differences in the molecules compared to the other datasets. The broad range
of the LF-QC dataset shows the variability in computational predictions, while the narrower distributions
of the experimental datasets (HF-Exp, EXT-Zamora, EXT-SAMPL9) reflect controlled conditions and
specific chemical spaces. This variation is crucial for evaluating the performance and generalizability of
predictive models across different types of data.

Figure 1b depicts the density distributions of solute molar masses for the LF-QC, HF-Exp, EXT-
Zamora, and EXT-SAMPL9 datasets. The LF-QC dataset (red) shows a peak around 170 g/mol, indi-
cating a relatively uniform distribution of molecules. The HF-Exp dataset (green) and the EXT-Zamora
dataset (cyan) have a peak around 110 g/mol, suggesting a range of smaller molecule sizes. The EXT-
SAMPL9 dataset (purple) displays a peak at higher molar masses, around 300 g/mol, indicating a ten-
dency towards larger molecules.

Figure 1c shows the normalized distribution of different atom types across the LF-QC, HF-Exp, EXT-
Zamora, and EXT-SAMPL9 datasets. This distribution is defined as the frequency of each atom type
appearing in the datasets, adjusted so that the total frequency adds up to one. The LF-QC dataset
(red) exhibits a broad distribution with significant representation across various atom types, highlighting
its diverse chemical composition. The HF-Exp dataset (green) shows a more constrained distribution,
indicating a focus on a narrower range of chemical species. The EXT-Zamora (cyan) and EXT-SAMPL9
(purple) datasets display even more distinct distributions, with the EXT-SAMPL9 dataset showing signif-
icant representation of specific atom types. This comparison highlights the diverse chemical compositions
and focuses of the datasets, with LF-QC covering a wide array of atom types, while the experimental
datasets (HF-Exp, EXT-Zamora, EXT-SAMPL9) are more specialized.

3 Methodology
Next, we present the different computational methods, both semi-empirical and data-driven that we
explore for predicting toluene/water partition coefficients. We choose COSMO-RS, a physics-based model,
to generate low fidelity data because it performs better than the other available methods like GC and
MD. Based on this low fidelity data, we develop several multi-fidelity ML approaches to address the issue
of limited high fidelity experimental data.

3.1 COSMO-RS
COSMO-RS is a computational model utilized for predicting thermodynamic properties and solvation
behavior of molecules in solution. It combines quantum chemistry and statistical thermodynamics to
estimate the chemical potentials of components in a system (Klamt, 1995; Klamt et al., 1998). Molecules
are represented by surface segments, with segment interactions approximated as independent entities. The
model relies on the σ-profile calculated from quantum chemical calculations, to predict the properties of
interest. For a detailed description of COSMO-RS, we refer the interested reader to Refs. (Eckert and
Klamt, 2002; Klamt and Eckert, 2000; Klamt et al., 2002; Loschen et al., 2020; Warnau et al., 2021).

The logarithm of the toluene/water partition coefficient logP can be calculated according to

logPtol/w = log

(
[S]tol
[S]w

)
, (1)

where [S]tol and [S]wat are the concentrations of a solute [S] in toluene and water, respectively. In the
COSMO-RS framework, the toluene/water logP is calculated according to (Lipinski et al., 2001; Warnau
et al., 2021)

logPtol/w =
∆GTransfer

RT ln 10
=

∆Gsolv
w −∆Gsolv

tol

RT ln 10
, (2)
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3.2 Graph neural networks 6

where ∆GTransfer is the transfer free energy of a solute from the pure aqueous phase to toluene. R is
the gas constant and T is the temperature. ∆Gsolv

w and ∆Gsolv
tol are the solvation free energies of a solute

in water and toluene, respectively. For all calculations, the temperature of 25 °C and the reference state
of 1 mol/L in the liquid and the gas is used.

Alternatively, the partition coefficient at infinite dilution can be calculated from infinite dilution
activity coefficients γ∞ and liquid molar volumes ν of toluene and water:

logP∞
tol/w = log

γ∞,s
w

γ∞,s
tol

νw
νtol

(3)

3.2 Graph neural networks

(a) Transfer learning (b) Feature-augmented learning

(c) Multi-target learning

Fig. 2. Overview of different multi-fidelity approaches for training the graph neural network models.

GNN models learn properties directly from the molecular structure and have shown high prediction
accuracies for a variety of both pure component (Coley et al., 2017; Schweidtmann et al., 2020; Brozos
et al., 2024) and mixture properties (Vermeire and Green, 2021; Sanchez Medina et al., 2022; Rittig
et al., 2023a; Qin et al., 2023). Each molecule is represented as a graph with atoms as nodes and bonds
as edges with corresponding feature vectors that contain atom and bond information, respectively. GNN
models learn to extract local structural information about the molecular graph in graph convolutions that
are then encoded into a vector representation. This molecular vector is then mapped to the property
of interest by using a feedforward neural network. For a detailed description of GNN models, we refer
the interested reader to overviews in Refs. (Gilmer et al., 2017; Rittig et al., 2023c; Reiser et al., 2022;
Schweidtmann et al., 2023).

We use the Directed-Message Passing Neural Network (D-MPNN) model implemented in python li-
brary chemprop v1.7, which has achieved high accuracies in a variety of molecular property prediction
tasks (Heid et al., 2023). We use the default molecular features (Heid et al., 2023) and we tune the model
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hyperparameters of the chemprop library using 100 iterations of Bayesian optimization for hyperparam-
eter search (see supporting information for more detail). The best set of parameters is chosen based on
the validation error to train the final model, which is provided in the supporting information. We then
explore different training approaches.

We utilize three multi-fidelity approaches (Qian et al., 2024) to enhance the prediction of molecular
properties: transfer learning, feature-augmented learning, and multi-target learning (see Figure 2). Trans-
fer learning (cf. Refs. (Pan and Yang, 2009; Torrey and Shavlik, 2010)) leverages pretrained models on
LF-QC dataset to fine-tune predictions on the HF-Exp dataset. The idea is to use the low fidelity QC
data (LF-QC) to develop a broadly applicable model and then employ the high fidelity experimental data
(HF-Exp) to increase model’s accuracy, thus enhancing the model’s predictive capability with limited
high fidelity data. Feature-augmented learning (cf. Ref. (Buterez et al., 2024)) combines the HF-Exp
dataset and LF-QC dataset: first a model is trained on the LF-QC dataset and then the predictions are
used as an additional feature to existing ones for training a new model on the HF-Exp dataset. The
purpose of feature-augmented learning is to integrate data of varying fidelities with high correlation to
improve the predictive accuracy. Multi-target learning or multi-task learning (cf. Refs. (Ruder, 2017;
Zhang and Yang, 2017)) simultaneously predicts both experimental (HF-Exp dataset) and synthetic (LF-
QC dataset) properties using a single model, aiming to exploit the interdependencies between different
properties. This approach therefore aims to utilize information from multiple related tasks (predicted
and experimental data) to improve the overall learning process and model robustness.

4 Results & Discussion
We now present a comparison of the D-MPNN prediction performance, focusing on the different multi-
fidelity learning approaches, to conclude if one is more suitable than the others. We then compare
these models with other existing models from the literature that can be used for toluene/water partition
coefficient prediction to evaluate the multi-fidelity learning approaches overall.

4.1 Comparison of multi-fidelity learning approaches
Table 2 first shows the performance of the D-MPNN models on the EXT-Zamora and EXT-SAMPL9
datasets. As described in Section “Dataset”, the EXT-Zamora contains molecules that are similar to the
training sets (LF-QC and HF-Exp) in terms of molecular weight and logP range, thereby providing insight
into the predictive capability within a similar molecular space. In contrast, the EXT-SAMPL9 dataset
consists of relatively larger molecules, allowing us to evaluate the models’ generalization capabilities. We
report the performance of various D-MPNN models, including single-task, transfer learning, multi-target
learning, and feature-augmented learning.

Tab. 2. D-MPNN models performance comparison for EXT-Zamora (Zamora et al., 2023) and EXT-
SAMPL9 (Amezcua et al., 2023) datasets.

Model Mode dataset split
EXT-Zamora (Zamora et al., 2023) EXT-SAMPL9 (Amezcua et al., 2023)
RMSE R2 RMSE R2

D-MPNN (this work) single HF-Exp random 0.63 0.86 1.32 0.65
D-MPNN (this work) single LF-QC random 0.71 0.83 1.34 0.64
D-MPNN Transfer Learning (this work) sequential LF-QC + HF-Exp random 0.51 0.91 1.14 0.74
D-MPNN Multi-target (this work) simultaneous LF-QC + HF-Exp random 0.44 0.93 1.02 0.79
D-MPNN Feature-augmented (this work) sequential LF-QC + HF-Exp random 0.81 0.78 1.16 0.73

The single-task D-MPNN model is trained on HF-Exp only and thus serves as a baseline to evaluate
whether the inclusion of LF-QC data in the different multi-fidelity approaches can improve prediction
accuracy. The single-task model achieves an RMSE of 0.63 logP units and R2 of 0.86 on the EXT-
Zamora and an RMSE of 1.32 logP units and R2 of 0.65 on the EXT-SAMPL9 dataset. The lower
accuracy observed on EXT-SAMPL9 dataset is expected, as this dataset tests the generalization to
larger molecules. For completeness, we train also a single-task D-MPNN model on the LF-QC and the
models shows comparable performance, with slight differences in RMSE and R2 values (Table 2).
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Now considering the multi-fidelity approaches, we find that transfer learning, where the model is
sequentially trained on the LF-QC dataset and HF-Exp dataset, shows an improvement over single-task
training with an RMSE of 0.51 logP units and R2 of 0.91 on the EXT-Zamora and an RMSE of 1.14
logP units and R2 of 0.74 on the EXT-SAMPL9 dataset. The multi-target learning approach, which
simultaneously trains on both LF-QC and HF-Exp datasets, performs even better, achieving an RMSE
of 0.44 logP units and R2 of 0.93 on the EXT-Zamora and an RMSE of 1.02 logP units and R2 of 0.79
on the EXT-SAMPL9 dataset. The feature-augmented learning approach, which sequentially trains on
LF-QC and HF-Exp datasets, does not perform as well as the multi-target learning approach, with an
RMSE of 0.81 logP units and R2 of 0.78 on the EXT-Zamora and an RMSE of 1.16 logP units and
R2 of 0.73 on the EXT-SAMPL9 dataset. It thus does not improve the predictive quality compared
to the single-task model on the EXT-Zamora, but only on the EXT-SAMPL9 dataset. For the overall
predictive quality in terms of RMSE and R2, multi-target learning thus yields the highest improvement
over single-task learning and is therefore most effective, see Table 2.

4.2 Impact of molar mass
Figures 3 and 4 further show the parity plots, i.e., predicted against the experimental data, of EXT-
Zamora and EXT-SAMPL9 datasets for the different multi-fidelity approaches. The dashed lines indicate
an error of ± 1 logP units. To analyze the impact of the molar mass on the performance of the models,
we also indicate different weight ranges with colors.

For the EXT-Zamora dataset, the multi-target learning approach consistently shows the best perfor-
mance across all molar masses. Only one molecule of 400 g/mol to 500 g/mol is out of the range of ±
1 logP units (see Figure 3b). The transfer learning approach also performs well, though slightly less
effectively for larger molecules >300 g/mol. The feature-augmented learning approach, however, shows
higher variability, particularly for the middle-weight range (100 g/mol to 200 g/mol and 200 g/mol to
300 g/mol).

Similarly, for the EXT-SAMPL9 dataset, the multi-target learning approach maintains the best perfor-
mance across most weight categories (see Figure 4). It shows particularly strong results for light molecules
and less strong results for heavier molecules. Transfer learning remains competitive but again shows slight
performance degradation for heavier molecules. The feature-augmented learning approach continues to
exhibit higher variability, especially for molecules in the 200 g/mol to 300 g/mol and >500 g/mol.

Overall, the multi-target learning approach shows the highest predictive robustness across different
molar masses.

(a) (b) (c)

Fig. 3. Comparison of the multi-fidelity learning approaches on EXT-Zamora dataset colored by molar
mass range for (a) feature-augmented learning, (b) multi-target learning, and (c) transfer learning. Dashed
lines indicate an error margin of ± 1 logP units.
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(a) (b) (c)

Fig. 4. Comparison of the multi-fidelity learning approaches on EXT-SAMPL9 dataset colored by molar
mass range for (a) feature-augmented learning, (b) multi-target learning, and (c) transfer learning. Dashed
lines indicate an error margin of ± 1 logP units.

4.3 Impact of chemical classes
We also investigate the model performance across different chemical classes, and illustrate the results
in Figure 5. To analyze the impact of chemical classes on model performance, we categorize molecules
based on their chemical structures using SMARTS patterns and substructure matching. It is important
to note that the overall number of molecules per class is very low (sometimes as few as one), indicating
that additional data and further evaluations will be needed to confirm these findings. In Figure 5,
the boxes represent the interquartile range with lines indicating the median values and the whiskers
extend to 1.5 times the interquartile range. The EXT-Zamora dataset features a diverse set of chemical
classes, including 11 phenols, 5 ketones, 3 quinoline, 3 ethers, 3 alcohols, 2 benzoic acids, 2 alkyl halides,
and one each of aminophenol, aniline, benzene derivative, and cycloalkane (5 molecules classified as
other). The EXT-SAMPL9 dataset, in contrast, is less diverse compared to EXT-Zamora dataset. It
is a smaller dataset comprising a limited range of chemical classes, containing 4 pyridine derivatives, 2
benzene derivatives, 2 anilines, and one each of phenol, ureide, ketone, aminophenol, and sulfonamide (3
molecules classified as other). An overview of the chemical class distributions in the LF-QC and HF-Exp
datasets can be found in the supporting information.

The multi-target learning approach demonstrates the most consistent and lowest absolute differences
in logP predictions across various chemical classes. For example, in the classes of alcohols, ethers, and
alkyl halides, it shows significantly lower errors compared to feature-augmented learning and transfer
learning approaches. Interestingly, multi-target learning shows a great agreement between predictions
and experiments with a mean absolute lower lower than 0.5 logP units for the chemical classes aniline,
ketone, and aminophenol for the EXT-SAMPL9 dataset and keeps the same consistency for the EXT-
Zamora dataset except for the chemical class aminophenol. This indicates multi-target learning effectively
captures the distinct characteristics of different chemical structures by leveraging both LF-QC and HF-
Exp datasets during training.

Transfer learning also performs well across various chemical classes but shows higher variability in
classes such as benzene derivatives and amides. This variability suggests that while transfer learning can
improve model accuracy by integrating different data types, it may still face challenges in fully capturing
the intricate properties of more complex molecules. For instance, the errors are more pronounced in
the benzene derivatives class in the EXT-Zamora dataset, indicating a potential limitation in handling
aromatic systems. This might be due to the fact that not enough data are available for the fine-tuning
step, as Vermeire and Green (2021) have shown that transfer learning can achieve a great agreement
between predictions and experiments if enough high fidelity data are available.

The feature-augmented learning approach shows the highest absolute differences in several chemical
classes, including ketones and benzene derivatives. This performance suggests that the method’s sequen-
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(a)

(b)

Fig. 5. Predictive performance of the different multi-fidelity learning approaches accross various chemical
classes in the (a) EXT-Zamora and (b) EXT-SAMPL9 datasets.

tial training on LF-QC and HF-Exp datasets may not be as effective in capturing the detailed chemical
properties required for accurate logP predictions. The higher errors in the ketone class, particularly in
the SAMPL9 dataset, highlight the approach’s difficulty in balancing data contributions from different
fidelities, especially for complex chemical structures. This indicates that feature-augmented learning re-
quires careful handling to avoid poor performance in chemically diverse datasets, especially when few
data is available for fine-tuning.

4.4 Comparison to other models
We further compare the best performing D-MPNN model, multi-target learning, to other semi-empirical
and data-driven models from the literature, as shown in Table 3. Specifically, we consider two GNN models
that provide infinite dilution activity coefficient (AC) predictions, namely Gibbs-Duhem-informed (GDI)-
GNNs trained on COSMO-RS activity coefficient data from our previous work (Rittig et al., 2023b) and
the Gibbs-Helmholtz (GH)-GNN (Sanchez Medina et al., 2023) trained on experimental infinite dilution
activity coefficient (IDAC) data from the DECHEMA Chemistry Data Series (Gmehling et al., 2008). To
predict the partition coefficients, we employ the already trained models from Ref. (Rittig et al., 2023b)
and Ref. (Sanchez Medina et al., 2023), using Equation 3. We calculate the molar volumes with densities
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Tab. 3. Model performance comparison for EXT-Zamora (Zamora et al., 2023) and EXT-
SAMPL9 (Amezcua et al., 2023) datasets.

Model Mode dataset split
EXT-Zamora (Zamora et al., 2023) EXT-SAMPL9 (Amezcua et al., 2023)
RMSE R2 RMSE R2

D-MPNN Multi-target (this work) simultaneous LF-QC + HF-Exp random 0.44 0.93 1.02 0.79

GDI-GNN† by Rittig et al. (2023b) ensemble COSMO-AC - 0.77 0.80 1.56 0.51
GH-GNN† by Sanchez Medina et al. (2023) ensemble DECHEMA IDAC - 1.23 0.48 1.69 0.43
Solvation GNN† by Vermeire and Green (2021) ensemble COSMO & exp. G - 0.27 0.97 1.07 0.77
DirectML† by Chung et al. (2022) ensemble COSMO & exp. G - 0.37 0.95 1.04 0.78
MLR by Zamora et al. (2023) single exp - 1.05 - 0.86 0.85
RFR by Zamora et al. (2023) single exp - 1.13 - 0.84 0.86
COSMO-RS† by Nevolianis et al. (2023) - COSMO - 0.60 0.88 1.23 0.70
MM/PBSA† by Amezcua et al. (2023) - - - - - 1.12 0.75
†Models are not trained on partition coefficients.
Some molecules of the test set are included in the training set.
Some molecules of the test set might be included in the training set (the training set is not publicly available).

and molecular weights for toluene and water from the National Institute of Standards and Technology
(NIST) Chemistry webbook (Linstrom and Mallard, 2001). We further include two GNN models based on
the D-MPNN architecture trained on diverse datasets of COSMO-RS and experimental solvation Gibbs
free energies, namely Solvation GNN (Vermeire and Green, 2021) and DirectML (Chung et al., 2022).
Here, the partition coefficients are calculated using the already trained models from Ref. (Chung et al.,
2022) and Ref. (Vermeire and Green, 2021) along with Equation 2. All GNN models use an ensemble
approach, i.e., the prediction of multiple models trained on different data splits are averaged to obtain a
final prediction. In addition, we consider the Multi-Linear Regression (MLR) and Random Forest Regres-
sion (RFR) from Zamora et al. (2023) that were fitted on the HF-Exp set. The partition coefficient values
are taken directly from the original publication (Zamora et al., 2023). These two regression models use 11
input descriptors, including AlogP (octanol/water partition coefficient using Ghose–Crippen atomic con-
tributions (Ghose et al., 1998)), which shows a 58% correlation to the toluene-water partition coefficient,
cf. (Zamora et al., 2023). Lastly, we compare to two semi-empirical models: COSMO-RS and Molecular
Mechanics Poisson–Boltzmann Surface Area (MM/PBSA) (Amezcua et al., 2023). In the COSMO-RS
approach (Nevolianis et al., 2023), the geometry of each molecule is optimized at GFN2-xTB (Bannwarth
et al., 2019) level and further in the COSMO state using COSMOconf (Dassault Systèmes, 2022a). Next,
the solvation free energies of the molecules are calculated in water and toluene at infinite dilution using
COSMOtherm (Dassault Systèmes, 2022b). In the MM/PBSA approach, each molecule is optimized
using QM, followed by molecular dynamics geometry optimization, and solvation free energies in water
and toluene are calculated. In this case, the partition coefficient values are obtained directly from the
original publication (Amezcua et al., 2023).

The GDI-GNN model shows strong performance on EXT-Zamora dataset; however, its prediction
accuracy is likely overestimated due to 16 of the 38 test set molecules being included in the training.
In contrast, its performance on the EXT-SAMPL9 set, which has no overlap with the training data,
is lower. The GH-GNN model generally shows lower performance, and since its training data is not
publicly available, we could not identify potential overlaps of training and test data. Interestingly, activity
coefficient GNN models are performing at level comparable to the top five models from the SAMPL9
challenge (Amezcua et al., 2023). Yet, the activity coefficient GNN models show lower accuracy than the
D-MPNNs directly trained on partition coefficients.

The Solvation GNN and DirectML models show high predictive quality; however, their accuracy is
likely overestimated due to significant overlap between training and test molecules. For example, the
experimental training data of Solvation GNN and DirectML contain, respectively, 29 (34 for pretraining)
and 35 of the 38 molecules of EXT-Zamora, and, respectively, 4 (7 for pretraining) and 14 of the 16
molecules of EXT-SAMPL9. In fact, we observe a similar accuracy of the Solvation GNN and DirectML
on EXT-SAMPL9 compared to the multi-target D-MPNN, although some molecules are already included
in training, thus indicating at most comparable generalization capabilities.

The MLR and RFR models from Zamora et al. (2023) show varying performance. Both models achieve
higher accuracy on the EXT-SAMPL9 dataset compared to the EXT-Zamora dataset. The high predictive
accuracy on the EXT-SAMPL9 indicates the effectiveness of using molecular descriptors when available
training data is limited, which has also been reported in recent comparisons of ML/GNN models with
and without using QC descriptors (Li et al., 2024). However, these models are typically limited in their
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generalizability to molecules dissimilar from the training data. The higher accuracy on the presumably
more distinct EXT-SAMPL9 set compared to EXT-Zamora (cf. Section “Dataset”) is thus unexpected. In
fact, we find that the experimental data used for fitting contains a duplicate entry with EXT-SAMPL9,
indexed as entries 79 (Aflukin) and 266 (Quinine) (Zamora et al., 2023). This duplication might explain
the better performance observed on the EXT-SAMPL9 dataset compared to the EXT-Zamora dataset.
We thus find lower accuracy of the MLR and RFR compared to the ML models for EXT-Zamora and
slightly reduced accuracy for EXT-SAMPL9.

Last, the COSMO-RS and MM/PBSA models from the SAMPL9 challenge show moderate perfor-
mance on the EXT-SAMPL9 dataset but perform better on the EXT-Zamora dataset. Despite their
performance, they are outperformed by the D-MPNNs with multi-fidelity learning. It is important to
note that the SAMPL9 challenge reports different r2 values, which are not coefficients of determination
R2; therefore, the R2 values here have been recalculated for consistency.

5 Conclusion
In this work, we investigated multi-fidelity learning approaches with GNN models for predicting
toluene/water partition coefficients for which experimental data are only readily available in the order of a
few hundred values. First, we used COSMO-RS to create a low fidelity dataset of partition coefficients for
about 9,000 molecules. The low fidelity data in combination with the available high fidelity experimental
data was then utilized for training GNN models. Our results showed that multi-target learning, i.e., pre-
dicting low fidelity and high fidelity target properties with one GNN model, yields substantial accuracy
increases to training a GNN model on the experimental data only and is superior to transfer learning and
feature-augmented learning. We further found competitive accuracy of the multi-target GNN model com-
pared to other predictive models, e.g., based on activity coefficients and solvation free energies, and other
methods such as COSMO-RS. Overall, the comparison of the different approaches for partition coefficient
predictions shows that direct training on logP data is most effective. Here, multi-fidelity learning in the
form of multi-target learning substantially increases the predictive accuracy. This is particularly inter-
esting as the multi-target learning approach presumably requires the least training and model changes,
i.e., just an additional model output, and is thus straightforward to implement. Generating additional
molecular property data through QC calculations for training predictive ML models like GNN models is
thus highly promising to enhance the predictive quality when available experimental data is limited, such
as for toluene/water partition coefficients. However, it is important to acknowledge that the availability
of high fidelity data remains a significant challenge and the extrapolation to new chemical classes cannot
be fully resolved with multi-fidelity learning approaches leveraging large low fidelity datasets.

Future work could consider multi-target learning with low and high fidelity datasets for multiple
molecular properties, e.g., combining activity coefficients, solvation free energies, and partition coeffi-
cients. For this, also thermodynamics relationships between the properties could be integrated into the
model training and architecture, as, e.g., in (Rittig and Mitsos, 2024; Specht et al., 2024), aiming at more
general predictive models.

Data Availability
The datasets supporting the conclusions of this article are available in the Zenodo repository under
DOI: 10.5281/zenodo.13236218. The SMILES for all molecules used in this study are provided in the
supporting information as a CSV file, except for the LF-QC dataset, which is not publicly available due
to licensing restrictions. The trained models are also not publicly available for the same reason. However,
a python notebook containing all the scripts and code to reproduce the results of this work is provided.
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Appendix

5.1 Chemical class distribution in the LF-QC and HF-Exp datasets

Tab. 4. Overview of the chemical classes in the LF-QC dataset.

Chemical Class Count
Ketone 2165
Other 1308
Phenol 1006
Pyridine Derivative 788
Aniline 744
Benzene Derivative 474
Benzoic Acid 399
Alcohol 345
Quinoline 285
Alkyl Halide 272
Sulfonamide 246
Pyrimidine Derivative 201
Aminophenol 175
Phenylbutylamine 102
Ether 93
Thiophene Derivative 92
Ureide 84
Phenylethanolamine 43
Cycloalkane 42
Indole 15
Piperazine Derivative 12
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Tab. 5. Overview of the chemical classes in the HF-Exp dataset.

Chemical Class Count
Phenol 47
Other 37
Ketone 29
Alkyl Halide 14
Benzene Derivative 13
Quinoline 11
Alcohol 10
Ether 10
Aniline 9
Phenylbutylamine 8
Pyridine Derivative 7
Benzoic Acid 7
Ureide 2
Aminophenol 2
Pyrimidine Derivative 2
Phenylethanolamine 2
Cycloalkane 2
Sulfonamide 1
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5.2 Hyperparameters

Tab. 6. Searchable hyperparameters using chemprop_hyperopt taken from (Heid et al., 2023).

Keyword Description

activation The activation function used after each linear layer, when necessary.
aggregation The aggregation function used when constructing a molecule-level repre-

sentation from node-level representations.
aggregation_norm The normalization factor if using norm aggregation.
batch_size The minibatch size.
depth The number of message-passing iterations.
dropout The dropout probability after each layer in both the D-MPNN encoder

and FFN.
ffn_hidden_size The size of each hidden layer in the FFN.
ffn_num_layers The number of layers in the FFN.
hidden_size The message size in the D-MPNN encoder.
max_lr The maximum learning rate used in the learning rate scheduler.
init_lr The initial learning rate expressed as the ratio of init_lr to max_lr.
final_lr The final learning rate expressed as the ratio of final_lr to max_lr.
warmup_epochs The number of epochs over which to ramp up the learning rate from

init_lr to max_lr, expressed as a fraction of the total training epochs.
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5.3 Hyperparameter results

Tab. 7. Hyperparameter results for the multi-target learning method.

Hyperparameter Value

activation ReLU
aggregation sum
aggregation_norm 76.0
batch_size 140
depth 4
dropout 0.05
ffn_hidden_size 300
ffn_num_layers 3
final_lr 7.88154413271554e-05
hidden_size 800
init_lr 6.193713383888547e-06
max_lr 0.004155920461904726
warmup_epochs 15

Tab. 8. Hyperparameter results for the transfer learning method.

Hyperparameter Value

activation ReLU
aggregation norm
aggregation_norm 192.0
batch_size 50
depth 6
dropout 0.2
ffn_hidden_size 700
ffn_num_layers 3
final_lr 0.0026602019364376866
hidden_size 900
init_lr 5.3010992525841e-05
max_lr 0.004540534678184651
warmup_epochs 5
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Tab. 9. Hyperparameter results for the feature-augmented learning method.

Hyperparameter Value

activation LeakyReLU
aggregation mean
aggregation_norm 99.0
batch_size 30
depth 3
dropout 0.1
ffn_hidden_size 2400
ffn_num_layers 1
final_lr 0.00022766782311393923
hidden_size 2300
init_lr 1.145260591279654e-06
max_lr 0.00354533150456784
warmup_epochs 10
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