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Summary 

The functional properties of crystalline inorganic materials in a variety of applications including, 
but not limited to, catalysts, batteries, solar cells, electronics, fundamentally depend on their crystal 
structures. Discovery of novel materials could be transformative for these fields.1 In the past few 
decades, the computational science community has developed crystal structure prediction (CSP) 
methods with the goal to find the exact symmetry-constrained atomic arrangements in the periodic 
unit cell, which are globally and/or locally energetically favorable: finding the globally minimal or 
locally minimal crystal structure for a given chemical formula. The implementation of CSP typically 
involves an iteration procedure with at least two components: the sampling of the potential energy 
surface (PES) for generating raw/unrelaxed crystal structures, and the subsequent local energy 
minimization of generated structures. The latter part is typically carried out through computationally 
expensive density functional (DFT) calculations. A non-exhaustive but representative list of 
available CSP codes includes USPEX2, CALYPSO3, AIRSS4, XtalOpt5,6, IM2ODE7; due to the 
nature of DFT calculations, this CSP process can be very time-consuming. Recent rapid advances 
of pre-trained machine-learning interatomic potentials (ML-IAPs) based on data from DFT 
calculations, such as, M3GNet8, CHGNet9 and MACE10 (amongst others) have significantly 
accelerated the process of local energy minimization but have not thoroughly been tested on CSP 
tasks. The realization of local energy minimization using ML-IAPs, referred to as pre-relaxation 
when compared with using DFT calculations, plays a critical role in the CSP implementation. We 
present here, CrySPR, which stands for Crystal Structure Pre-Relaxation and PRediction, which is 
specifically designed to serve as a Python package that provides user-friendly application 
programming interfaces (APIs), functionalities and utilities for crystal structure generation, pre-
relaxation of structures using ML-IAPs and structure prediction. The codes are open-source and 
have been released to the Python Package Index (PyPI). 
 

Statement of need 

As far as we are aware, there is no available and/or easily accessible Python code tailored for “all-
in-one” structure generation, pre-relaxation and prediction using contemporary ML-IAPs. CrySPR 
provides three key features: 

1. Crystal structure generation for a given chemical formula, which crystallographically 
follows the space group symmetry of crystals, either by performing random match between 
Wyckoff positions (along with multiplicities) and the allowed elements and corresponding 
numbers of atoms, or by enumerating all possible matched cases. The match in this context 
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is also known as compatibility check.11 
2. Automatic workflow for stepwise structure pre-relaxation using ML-IAPs. 
3. Obtaining (a) the formation energy and (b) energy above the convex hull, from a given 

reference materials database (illustrated here with the Materials Project), and plotting the 
phase diagram for predicted materials. 

These features are built mainly based on PyXtal11, ASE12 and pymatgen13. There are also a set of 
utilities for result visualization and analysis (formation energy calculation, energy data plotting). In 
this context, CrySPR can play a vital role by providing an efficient framework for structure 
optimization, prediction and validation, especially in the era of generative algorithms such as 
variational autoencoders (VAEs)14,15, generative adversarial networks (GANs)16, diffusion 
models17,18, transformers19,20, flow-based approaches21, producing a large number of possible crystal 
structures that need to be tested for stability and relaxation rapidly. 
 

CrySPR 

CrySPR is a modular Python package, which includes three main submodules: calculators, 
optimization, and utils. Figure 1 demonstrates the workflow for the CSP task in CrySPR, users are 
allowed to input several constraints for search space, including chemical formula, the number of 
formulae per conventional unit cell (Z), space groups (SPG), and some extra constraints including 
the number of sample structures per SPG for each Z, and Wyckoff positions, etc. The input 
information then is then processed by CrySPR then used by PyXtal to generate initial unrelaxed 
crystal structures, which subsequently encounter local structure optimization using a local 
optimization algorithm and ML-IAP in the ASE framework, from which the final total energies (E) 
are determined. The package has a built-in function for a developed stepwise strategy. It is specially 
designed for ML-IAPs and includes two fully symmetry-compliant steps for structure relaxation 
with an improved accuracy: firstly cell-fixed relaxation and subsequently cell-varying relaxation. 
The package can easily adopt any ML-IAP that is formulated in the form of ASE calculator class. 
CrySPR is expandable with more features and functionalities as it evolves, e.g., adapting more 
advanced and accurate ML-IAPs, comprehensive static reference data of the potential energies, 
optimization algorithms for efficient PES sampling, and multi-objective oriented CSP, etc. 
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Figure 1: Schematic illustration of the workflow in CrySPR. An example of data types is given. 
 
Figure 2 shows the prediction results that employ one of the ML-IAPs, CHGNet, as the inter-atomic 
potentials. This demo uses a built-in function, `random_predict`, to perform CSP for chemical 
spaces with reduced formulae of (A) CaTiO3 and (B) MgAl2O4, respectively. For CaTiO3, the SPGs 
are constrained from No. 16 to 230, and Z values from 1 to 4, while for MgAl2O4, cubic space 
groups (No. 195 to 230) and Z values from 1 to 10 are set. In Figure 2A some representative crystal 
structures are illustrated with the energy above the hull labeled, and those experimental phases are 
underscored, while in Figure 2B the total energy per atom is shown. In this demo, the ground-state 
structure of CaTiO3 in tetragonal perovskite phase and MgAl2O4 in cubic spinel phase are 
successfully predicted. 
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Figure 2: Crystal structure prediction for (A) the perovskite CaTiO3 and (B) the spinel MgAl2O4. 
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