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ABSTRACT: We describe a strategy for aminating pyridines and other azines via phosphonium salt intermediates. Precisely tuning 
the electronic properties of the phosphonium ion was key for C–N bond formation via an SNAr-halogenation, SNAr-amination se-
quence. The process accommodates a wide range of amine classes and pyridine coupling partners and is viable for applications such 
as late-stage amination of complex pharmaceuticals and fragment-fragment coupling reactions. The capacity to rapidly modify the 
structure of the phosphine reagent was decisive and is a valuable feature in pseudohalide design.

Practitioners in the pharmaceutical and agrochemical indus-
tries frequently couple azines and amines due to the prevalence 
of aminated heterocycles in candidate compounds and marketed 
products.1-8 Metal-catalyzed cross-couplings and SNAr reac-
tions are the two most common processes for these C–N cou-
plings and significant progress has occurred using these reac-
tion classes.9-12 A remaining challenge is to develop approaches 
that commence from azine C–H precursors and allow the amine 
component to vary substantially  (Scheme 1). Practitioner could 
then sample from vast collections of azines and amines in phar-
maceutical compound collections to construct aminoazine li-
braries as well as other endeavors in drug development, such as 
late-stage amination and convergent coupling reactions.13-15 For 
pyridines, there are approaches that can aminate the 2-posi-
tion,16-23 however, 4-amination strategies are less common, par-
ticularly under the above constraints. Recent two-step processes 
exploiting azine C–H pyridination reactions are an advance, alt-
hough the scope of complex azines is narrow, and they cannot 
subsequently couple with aliphatic amines.24-28 Here, we present 
an approach using an electronically tuned phosphine reagent 
(1), and intermediate phosphonium salts. The capacity to alter 
the reagent structure in response to deleterious reaction path-
ways was crucial for C–N coupling and is a valuable attribute 
of phosphonium ion intermediates compared to other pseudo-
halides. 

Previously, we have shown examples of pyridine C4-amina-
tion reactions with PPh3-derived azine phosphonium salts and 
encountered several restrictions.29, 30 C–N coupling requires an-
ionic nucleophiles that limit the process to certain anilines, az-
oles, and azides as partners and narrows the range of applicable 
azine salts. Furthermore, aliphatic amines were uniformly un-
successful as coupling partners, and decomposed the phospho-
nium salts to the parent C–H compound. Therefore, we turned 
our attention to an SNAr-halogenation, SNAr-amination se-
quence as an alternative strategy (Scheme 2). We reported that 
designed phosphines bearing CF3-substituted pyridines could 
form azine phosphonium salts (2) and facilitate selective SNAr 
reactions with halides via Int-I under acidic conditions (3).31 

Scheme 1. Challenges for Azine Amination Reactions and 
an Approach via Designed Phosphonium Salts. 

Bis protonated salt Int-I, enables the reaction with halides, and 
is selective for the pyridine of interest. Here, we propose that a 
second SNAr reaction will occur in the presence of amines, re-
sulting in 4-aminated products 4. However, when we tested 
salts 5 or 6 with morpholine as a nucleophile, we did not ob-
serve the desired product 7 and observed significant amounts of 
parent pyridine 8. 
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Scheme 2. Design Plan for a Phosphine-Mediated Amination and Initial Results.  

aReaction outcome determined by 1H NMR analysis of the crude reaction mixtures.

Scheme 3 shows our rationale for a new phosphine design 
that led to a successful amination process. We propose that 
salts 5 and 6 decompose via the mechanism described in 
Scheme 3A. The amine attacks the phosphonium ion Int-II to 
form P(V)-aminophosphorane intermediate Int-III and under-
goes protiodephosphination resulting in protonated 2 phe-
nylpyridine (8·HCl) and 9.32-34 To address this problem, we rea-
soned that reducing the electrophilicity of the phosphonium ion 
while still maintaining the capacity for SNAr halogenation, 
would mitigate this unwanted reaction pathway. Therefore, we 
maintained a second pyridine ring to ensure bis protonation but 
replaced the trifluoromethyl group with an amine (10, Scheme 
3B). While the amine substituent should decrease reactivity, 
this alteration introduces a potential complication during phos-
phonium salt formation. 2-CF3 pyridines do not form salts due 
to poor reactivity with Tf2O; however, 2-aminopyridines are 
competent substrates, and C–P bond-formation could poten-
tially occur on this heterocycle.35 To prevent this outcome, we 
made an isomeric adjustment to  
Scheme 3. Revised Phosphine Design. 

block the 4-position of the aminopyridine group (11). Although 
C–P bond-formation can occur at the 2-position of pyridines if 
the 4-position is blocked, this site is significantly less reactive, 
particularly when electron-donating groups are present. Selec-
tive SNAr reactions between the two pyridines in salt 11 should 
occur based on the relative difference in the electronics of each 
ring. 

We tested the hypothesis in Scheme 3B, via a scalable syn-
thesis of phosphine 1 (Scheme 4). Using a 2,4-dichloro-
pyridine as an abundant and inexpensive starting material, we 
synthesized pyridylphosphine 1 via a one-pot process (Scheme 
4A). Diphenylphosphine selectively adds to the 4-position 
when conducted in DMSO with K2CO3. Piperidine then reacts 
at the 2-chloro site forming 1 in good yield on a multigram 
scale. We then used 1 to form phosphonium salt 12 from 2-phe-
nylpyridine and did not observe any evidence of isomeric prod-
ucts. Gratifyingly, subjecting 12 to morpholine under acidic 
conditions resulted in 4-aminopyridine product 7, with only 
trace amounts of 2-phenylpyridine 8 observed in the crude re-
action mixture. 
Scheme 4. Synthesis of Phosphine 1 and It’s Application in 
Pyridine Amination. 

aIsolated yields are shown.  
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 Table 1. Scope of Amines and Nitrogen Heteroaromatics in the Azine Amination Processa 

bYields determined by analysis of the crude 1H NMR spectra. 

With a protocol in hand for pyridine C4-amination, we then 
explored the scope of amines and nitrogen-containing heterocy-
cles. Cyclic aliphatic amines with different ring sizes are com-
petent nucleophiles (13-19). The C–N coupling step tolerates 
free alcohols and more complex amines resulting in amino-
pyridines 20-22. On the other hand, acyclic primary and sec-
ondary aliphatic amines perform poorly in the amination step 
(23 & 24). We attribute this limitation to the small equilibrium 
content of free amines under the acidic conditions and the lower 
nucleophilicity of acyclic relative to cyclic aliphatic amines. 
Aminopyridine 25, derived from a cyano-substituted aminocy-
clopropane, indicates that less basic aliphatic amines can be 
competent. Similarly, the reaction tolerates hydrazines and hy-
droxylamine derivatives (26 & 27). 

We then found that a series of anilines are competent in the 
amination step. Acyclic and cyclic secondary anilines per-
formed well, as did four examples of substituted primary sys-
tems (28-35). Heteroarylanilines are also suitable substrates, re-
sulting in 36 and 37. Chemoselective aminations using amino-
phenols and sulfonamide-substituted anilines are viable under 
these conditions (38-40), and we also observed that anilines 
preferentially react over aliphatic amines (41). The latter exam-
ple indicates that a higher concentration of the free aniline por-
tion under the acidic conditions likely dictates selective C–N 
bond formation, in line with the arguments above. Finally, two 
triazoles were effective as nucleophiles forming 42 and 43 in 
moderate yields. 

14, 58%

N

N

13, 60%

Ph N

N

Ph N

N

Ph N

N

Ph

O MeMe

N

N

Ph

20, 69%

N

N

Ph

OH

21, 61%

N

N

Ph

N N
N

F3C

22, 66%

N

N

Ph

O
N

O

O

26, 41%

N

HN

Ph

NHPh

27, 75%

N

HN

Ph

OEt

N

HN

Ph

NC

23, <5%b

N

N

Ph

MeMe

24,  <5%b

N

HN

Ph

n-Bu

25, 62%

15, 40% 16, 76%

N

N

Ph

S

18, 73%

N

N

Ph

Bn
N

17, 57% 19, 63%

Ph
N

Me

28, 88%

N

N

N Ph

30, 76%

Ph

34, 80%

36, 81%

32, 91% 33, 81%

HN

N Ph

F Cl

HN

N Ph

F

Cl HN

N Ph

Br

HN

N Ph

N

35, 73%

HN

N Ph

HF2CO

31,  85%

N

N Ph

Br

CF3

37, 71% 42, 68% 43, 65%

N

N

N

N Ph

N

N

N

N Ph

HN

N Ph

S
N

Me

NH

N Ph

H
N

Me

41, 53%

NH

N Ph

Me

SO2NH2

NH

N Ph

OH

39, 81% 40, 78%

NH

N Ph

OH

38, 29%

29, 69%

N

N Ph

cyclic aliphatic amines

N

P
OTf

N

NPh
Ph

Aminated 
Pyridine

HCl (3.5 equiv)

Dioxane, 120 ºC

Phosphonium Salt, 5

N
H

N

N

Amine

aniline nucleophiles

acyclic primary and secondary aliphatic amines

triazoles

Ph
Ph

N
H

X

H2N

X

H2N
XR

N

N

N
H

aliphatic anilines
hydrazines & aromatic

hydroxylamines heterocycles

nucleophile classes

amines

This content has been retracted.
https://doi.org/10.26434/chemrxiv-2024-f2vxg ORCID: https://orcid.org/0000-0002-8651-1631 Content not peer-reviewed by ChemRxiv. License: CC BY-NC-ND 4.0

https://doi.org/10.26434/chemrxiv-2024-f2vxg
https://orcid.org/0000-0002-8651-1631
https://creativecommons.org/licenses/by-nc-nd/4.0/


 

Table 2. Scope of Azine Building Blocks, Complex Structures, and Fragment-Fragment Couplingsa 

aIsolated yields are shown. Numbers in parentheses refer to isolated yields of phosphonium salts. 
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Next, we examined the scope of azines in the amination pro-
cess (Table 2). Monosubstituted, 2,3- and 2,5-disubstituted pyr-
idines were competent for salt formation and animation using 
morpholine as a representative nucleophile (44-49). Examples 
50 and 51, derived from anilines, show that the amine class can 
also change as the pyridine varies (vide infra). The process 
functions on quinolines (52), and C–N bond formation occurs 
at C2 when the 4-position is blocked (53). Pyrimidines are also 
competent substrates, as shown by examples 54 & 55. Note in 
these last two cases, PPh3-derived phosphonium salts were suf-
ficient to promote C–N bond formation. 

We then tested the amination reaction in applications relevant 
to pharmaceutical and agrochemical discovery. First, we exam-
ined whether C–N bond formation was viable on drug-like frag-
ments and pharmaceuticals. These molecules are significantly 
more complex with multiple reactive sites and Lewis basic at-
oms. In these cases, selective amination is challenging for con-
temporary methods, particularly using C–H bond precursors as 
inputs. Nevertheless, using this two-step approach, it was 
straightforward to form aminated fragments 56-58. We also 
synthesized aminated derivatives of nicotine, chlorphenamine, 
loratadine, and the agrochemical quinoxyfen (59-63). It is also 
possible to aminate the 2-position site of the quinoline ring in a 
cinchonidine derivative (64) and execute site- and regioselec-
tive C–N bond formation on etoricoxib (65). Second, we tested 
whether fragment-fragment coupling reactions were viable. 
These reactions show that the amination strategy is viable for 
convergent couplings that are important in synthetic route de-
sign and for library construction, where it is necessary to vary 
both coupling partners considerably. As shown in Table 2, we 
produced a diverse set of aminated azines in reasonable overall 
yields from C–H precursors (66-75). 

In summary, we designed a phosphine reagent that enables a 
4-selective pyridine amination via a tandem SNAr-halogena-
tion-SNAr-amination sequence. The capacity to judiciously 
modify the electronic properties of the phosphine substituents 
was a crucial factor in promoting C–N bond formation. The re-
action tolerates a broad scope of pyridines and extends to other 
azines. Several distinct classes of amines are viable coupling 
partners, and the strategy is appropriate for late-stage amination 
of complex pharmaceuticals and fragment-fragment coupling of 
drug-like intermediates. We are currently exploring additional 
phosphine designs for reactions to facilitate other valuable cou-
pling reactions. 
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