
1 

 

MOFs with the Stability for Practical Gas 

Adsorption Applications Require New Design Rules 

Changhwan Oh1,2, Aditya Nandy1,3, Shuwen Yue1, and Heather J. Kulik1,3*  

1Department of Chemical Engineering, Massachusetts Institute of Technology, Cambridge, 

MA 02139, USA 

2Department of Materials Science and Engineering, Massachusetts Institute of Technology, 

Cambridge, MA 02139, USA 

3Department of Chemistry, Massachusetts Institute of Technology, Cambridge, MA 02139, USA 

*email: hjkulik@mit.edu 

 

ABSTRACT: Metal-organic frameworks (MOFs) have been widely studied for their ability to 
capture and store greenhouse gases. However, most chemical discovery efforts use computational 
study of hypothetical MOFs without consideration of their stability, limiting the practical 
application of novel materials. We overcome this limitation by screening hypothetical ultrastable 
MOFs that have predicted high thermal and activation stability, as judged by machine learning 
(ML) models trained on experimental measures of stability. We enhance this set by computing the 
bulk modulus as a measure of mechanical stability and filter 1,102 mechanically robust 
hypothetical MOFs from a database of ultrastable MOFs (USMOF DB). Grand Canonical Monte 
Carlo simulations are then employed to examine the gas adsorption properties of these hypothetical 
MOFs, alongside a database of experimental MOFs. We identify privileged building blocks that 
allow MOFs in USMOF DB to show exceptional working capacities compared to the experimental 
MOFs. We interpret these differences by training ML models on CO2 and CH4 adsorption in these 
databases, showing how poor model transferability between datasets indicates that novel design 
rules can be derived from USMOF DB that would not have been gathered through assessment of 
structurally characterized MOFs. We identify geometric features and node chemistry that will 
enable the rational design of MOFs with enhanced gas adsorption properties in synthetically 
realizable MOFs. 
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1. Introduction. 

In recent years, carbon emissions have been on the rise, with 35.8 Gt emitted globally in 

2023.1,2 These escalating levels of greenhouse gases in the atmosphere demand immediate 

attention as they contribute significantly to climate change.3 To mitigate these effects, adsorption 

strategies for capturing and storing greenhouse gases are being studied.4 Pressure or temperature 

swing adsorption using porous adsorbents capable of capturing and releasing gases has been 

proposed as a solution. Metal-organic frameworks5,6 (MOFs) are an exemplary class of porous 

materials that have demonstrated promise not just for gas storage7-14 but also for separation15-19 

and catalysis,20-24 due to their unique porous structures25 and tunable properties.26,27 With their 

high surface areas and customizable pore sizes, MOFs offer excellent potential for adsorbing and 

storing greenhouse gases such as methane (CH4) and carbon dioxide (CO2). The reticular nature 

of these MOF materials, consisting of inorganic secondary building units (SBUs) and organic 

linkers, leads to a large combinatorial space. However, a major limitation hindering the widespread 

application of MOFs is their poor stability,28-30 particularly under working conditions for gas 

adsorption applications, such as high pressure and temperature. Addressing this stability issue is 

crucial for ensuring the practical viability of MOFs in greenhouse gas capture and other 

environmental remediation efforts.31-33 

The large space of candidate MOFs makes experimental identification of highly stable 

MOFs with target properties challenging and time-consuming. Therefore, computational screening 

methods have gained prominence as efficient tools for discovering novel MOFs.34-36 Several 

databases (DBs) of MOFs exist for computational screening, providing a diverse pool of MOF 

structures for exploration. Experimental MOFs37 have been curated by sanitizing single crystal 

structures of MOFs available from the Cambridge Structural Database (CSD)38, whereas 
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hypothetical MOFs35,36,39-41 are constructed by exhaustively enumerating combinations of building 

blocks. Some hypothetical DBs include the over 130,000 structures in the pioneering hMOF set,35 

300,000 structures in BW-DB,36 ~13,000 diverse structures in ToBaCCo,39 and around 280,000 

structures in ARC-MOF, which aims to unify these disparate sets40. Researchers have also curated 

and screened experimentally characterized MOFs in the roughly 10,000 MOFs identified in the 

computation-ready experimental MOF 2019 (CoRE MOF 2019) DB37. In comparison to 

experimental MOFs, hypothetical MOFs tend to lack diversity42 as well as stability.43  

The ultrastable MOF database (USMOF DB) is a hypothetical database curated by Nandy 

et al.,43 which fills this stability gap by virtue of its construction process. The building blocks from 

the experimental CoRE MOF 2019 DB were extracted and recombined to make a new hypothetical 

dataset of 54,139 MOFs that comprised of an order of magnitude more topologies and SBUs than 

any prior hypothetical set. Among these MOFs, 9,524 MOFs were predicted to be “ultrastable” 

(i.e., activation stable and >1 standard deviation above the average thermal degradation 

temperature of 359 ℃) according to previously trained ML models for thermal and activation 

stability.30 The USMOF DB exhibits a 10-fold increase in the number of “ultrastable” MOF 

structures compared to existing hypothetical databases, while retaining metal diversity compared 

to the experimental CoRE MOF 2019 DB, making the USMOF DB a valuable resource for 

computational screening. In addition to thermal and activation stability, mechanical stability is also 

crucial for MOFs,44-51 as hydrostatic pressure can lead to amorphization, affecting their porosity 

and performance. Despite its importance, mechanical stability is one of several crucial measures 

rarely considered52 in computational screening efforts. 

Previous computational studies have extensively explored the gas adsorption properties of 

MOFs. Molecular simulations, particularly Grand Canonical Monte Carlo (GCMC) simulations, 
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have been widely used to predict gas adsorption behavior, such as adsorption isotherms,53,54 

separation,53,55-58 or working capacity59,60 with high accuracy for both experimental and 

hypothetical databases. For experimental database screening, GCMC simulations on the earlier 

CoRE MOF 2014 database have been used to study the adsorption behavior of mixtures to identify 

MOFs with high selectivities of CO2 over H2O61 as well as for CO2/N2 separation with pressure 

swing adsorption (PSA).62 Hypothetical databases are also frequently studied, including the study 

of MOFs in ToBaCCo for high H2 deliverable capacities.63 However, performing molecular 

simulations on all of the MOFs in these databases can be computationally very demanding. Even 

when it is straightforward to carry out GCMC simulations exhaustively, hypothetical databases 

often lack consideration of stability issues, with few exceptions43, limiting the validity of the 

structure–property relationship across experimentally realizable materials. Furthermore, design 

rules for gas adsorption, particularly for greenhouse gases such as CH4 and CO2, are not as well-

established as those for H2 adsorption.64,65  

As a complement to simulation, machine learning (ML) models have emerged as valuable 

tools for screening high-performance MOFs. ML-based studies using supervised learning have 

been used for quantitative structure–property relations (QSPRs),66 prediction of mechanical 

stability,52 synthesis condition predictions,67 and gas adsorption studies.68,69 Descriptor selection 

is key in ML model training for MOF adsorption predictions,69-73 and geometric descriptors have 

been identified as suitable for H2 or CH474 but the same descriptors routinely fail for CO2.75 As an 

alternative, complex black-box ML models, such as deep neural networks (DNN)76 or a crystal 

graph convolutional neural network (CGCNN)77 have demonstrated high performance for 

predicting gas adsorption properties of MOFs, albeit at the cost of interpretability of the models.78 

With recent advancements in natural language processing, transformer79 models have increasingly 
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been used in chemistry applications80. For example, MOFormer81 and MOFTransformer82 have 

been developed to predict diverse properties including gas adsorption properties based on the string 

representation of MOF (MOFid) with high precision. Deep learning has also been used for 

screening CH4 adsorption of around 247 trillion hypothetical MOFs with 1775 topologies,83 as 

well as genetic algorithms to optimize these properties.84 Choosing appropriate database and 

feature selection are also critical in ML-based studies.85 Hypothetical MOF databases are valuable 

in the sense that they can provide large amount of training data, but the lack of similarity to 

experimental MOFs42 often leads to poor transferability. That is, when ML models trained on 

hypothetical data are applied to a database of experimental MOFs to choose an existing MOF to 

deploy for a chosen task, they are likely to be error prone. 

Here, we directly address the stability challenge in screening materials for CO2 and CH4 

storage across a set of the hypothetical USMOF structures that capture the diversity of previously 

synthesized MOFs. Starting from the known subset of 9,524 ultrastable (i.e., in terms of thermal 

and activation stability) USMOF DB structures, we compute the mechanical strength and select 

the top 1,102 of these structures in terms of mechanical stability. We obtain CO2 and CH4 

adsorption properties using GCMC and compare properties of these mechanically stable USMOF 

DB MOFs to experimental CoRE MOF 2019 DB structures. By training interpretable ML models, 

we identify and explain unexpected trends in the USMOF DB compared to the experimental CoRE 

MOF 2019 DB, namely a number of MOFs preferring CH4 over CO2 in the USMOF DB. Based 

on insights gained from these ML models, we propose design rules based on geometric features 

and node chemistry for MOFs in the USMOF DB to achieve alternately high or low relative CO2 

vs. CH4 working capacity.  

2. Computational Details 
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2a. Dataset 

We screened a hypothetical MOF database referred to as the USMOF DB initially 

constructed in Ref. 43. The building blocks of MOFs used in this prior study were extracted from 

the CoRE MOF 2019 DB37 and recombined in new combinations on a large number of topologies 

to create a database of novel MOFs using PORMAKE83. In this work, we employ the subset of 

9,524 hypothetical "ultrastable" MOFs, which were predicted to possess high thermal stability and 

stability upon activation. Ultrastability is defined43 as a thermal decomposition temperature (Td) 

greater than one standard deviation (87℃) above the mean Td (359℃) in the experimental data set 

(i.e., Td of 446℃ or higher), along with a ML-predicted30 probability of the structure being stable 

exceeding 50%. As in prior work, we define edges (i.e., organic building blocks with two 

connection points) and nodes (i.e., any organic or inorganic component with more than two 

connection points) instead of linkers and SBUs to provide a clear breakdown of a MOF structure 

into mutually exclusive building blocks. The 9,524 "ultrastable" subset of USMOF DB consists of 

MOFs with different configurations of inorganic nodes, organic nodes, and organic edges: (1) one 

inorganic node and one edge (1inor-1edge, 5,213 MOFs), (2) one inorganic node, one organic 

node, and one edge (1inor-1org-1edge, 2,918 MOFs), and (3) two inorganic nodes and one edge 

(2inor-1edge, 1,393 MOFs). Calculations of mechanical properties, which were carried out with 

the LAMMPS package86 (ver. 29Sep2021) in prior work43, were further used to narrow down the 

set of structures examined in this work. For the 9,524 ultrastable MOFs, the Voigt-Reuss-Hill bulk 

modulus (KVRH), a measure of mechanical stability, was previously successfully obtained for 7,330 

materials.  In the present work, we define "ultrastable" mechanical behavior as a MOF with KVRH 

exceeding 5 GPa. The mechanically stable subset includes 1,102 MOFs, categorized by their 

connectivity and composition as follows: (1) one inorganic node and one edge (722 MOFs, 65.5%), 
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(2) one inorganic node, one organic node, and one edge (107 MOFs, 9.7%), and (3) two inorganic 

nodes and one edge (24.8%) (Figure 1 and Supporting Information Table S1).  

 

 
Figure 1. (a) Funnel showing number of hypothetical MOF structures after each screening process. 
(b) Representative MOFs in the USMOF DB with wir net and Gd-based node N43 but with 
different edges that result in different bulk moduli. C atoms are colored as gray, N atoms as blue, 
O atoms as red, H atoms as white, Gd atoms as light green, and connection points as black. (c) 
Distribution of the bulk modulus (KVRH) for MOFs in the USMOF DB. A 5 GPa threshold for 
mechanically stable structures is depicted as a red line. The bulk moduli of two representative 
MOFs in (b) are labeled. 

2b. Gas Working Capacity Simulations 

 We performed GCMC simulations using the RASPA2 simulation package87 for calculating 

CO2 and CH4 uptake in the 7,330 "ultrastable" MOF structures with computed mechanical 

properties from the USMOF DB. We measured each gas uptake at two different pressures, and the 

working capacity was obtained by subtracting the uptake at low pressure from the uptake at high 
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pressure. The pressure range for CH4 was between 5.8 bar and 65 bar and CO2 was between 0.15 

bar and 16 bar, which were chosen based on the standard CH4 and CO2 adsorption and desorption 

pressures7. The temperature was kept at 298 K and a rigid framework assumption was used for all 

gas uptake simulations. All simulations comprised 5,000 initialization cycles followed by 5,000 

equilibration cycles. From all attempted calculations, 385 calculations failed or took longer than 

48 hours, leaving 6,945 MOFs after all properties (i.e., mechanical stability, framework charge, 

and gas working capacity) calculated (Figure 1). 

In modeling both gas–gas and framework–gas interactions, Lennard-Jones interactions 

were truncated and shifted at 12.8 Å. Partial atomic charges of the hypothetical MOF frameworks 

were calculated using the EQeq method88 and saved in each MOF .CIF file. Coulombic interactions 

were computed using these charges with Ewald summation with a default real-space cutoff of 12 

Å. We used the Universal Force Field (UFF)89 and Transferable Potentials for Phase Equilibria 

(TraPPE)90 for gas–gas and framework–gas interactions, respectively. The cross-interactions were 

calculated using the Lorentz–Berthelot mixing rule.91 The single unit cell was duplicated in select 

cases to fulfill the requirements of cell lengths to exceed twice the interaction cutoffs, which was 

required only in a small subset of MOFs typically with one inorganic node and one edge needing 

up to three duplicates. A complete set of simulation input files is provided in a Zenodo repository.92 

2c. Machine Learning Model Training 

Using gas uptake data, we fit linear regression and random forest models using the scikit-

learn 1.3.0 Python package93. For all models, 20% of the data were randomly selected as a set-

aside test set. From the remaining 80% training set, an exhaustive grid search was used for 5-fold 
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cross-validation (CV) hyperparameter optimization (Supporting Information Table S2). The error 

metric for regression tasks was the mean absolute error (MAE). 

Geometric features of the MOF databases were computed using the Zeo++ package94,95. 

We used a nitrogen probe molecule with 1.86 Å radius and obtained 14 geometric features 

(Supporting Information Table S3). For chemical features, we computed revised autocorrelations 

(RACs)96 of MOFs using molSimplify97. RACs are a class of molecular descriptors that contain 

relationships of the heuristic atomic properties (i.e., nuclear charge (Z), identity (I), topology (T), 

electronegativity (χ), and covalent radius (S)). The products and differences of these atomic 

properties are calculated over a bond difference, with a maximum bond path (d) of three. The scope 

of the RACs considered include the metal (metal-centered RACs), linker coordinating atoms 

(linker-connecting RACs), functional group (functional group RACs), full linker (full-scope linker 

RACs), and full unit cell (full-scope RACs). With a maximum depth of three, there are 160 

possible RACs, and removing constant features leaves a total of 134 RACs (Supporting 

Information Table S4). 

The relative importance of each feature was calculated through impurity-based feature 

importance using scikit-learn. We used Gini importance98, which determines the significance of a 

feature by calculating the normalized overall improvement in the criterion achieved by that 

particular feature. 

3. Results and Discussion. 

3a. Gas Adsorption Properties in USMOF DB 

Along with the thermal and activation stability targeted when constructing USMOF DB, 

mechanical stability should also be considered for gas storage applications that often involve 
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applying hydrostatic pressure to the structure.45,99 From a number of possible measures of 

mechanical stabilities, such as elastic modulus, shear modulus, or hardness, we used the Voigt-

Reuss-Hill average value of bulk elastic modulus (KVRH).52 We chose KVRH as the representative 

measure after determining that the bulk modulus and shear modulus (GVRH) show linear correlation 

with Pearson’s r = 0.88 in USMOF DB (see Sec. 2 and Supporting Information Figure S1). Due 

to the high porosity and low density of MOFs, they are relatively soft materials. Although there 

exist some extreme cases such as the UiO-66 MOF with computed bulk moduli up to 40 GPa47, 

typical experimentally realized MOFs fall into the range of 4–30 GPa.100 Analyzing the structural 

features of MOFs with KVRH less than 5 GPa, we note that most are unphysically porous with cell 

volumes and pore volumes up to 10x that of the more stable (i.e., KVRH > 5 GPa) structures 

(Supporting Information Figure S2). MOFs with such large pore volumes are more prone to 

structural distortion from hydrostatic compression, leading to pressure-induced amorphization.44 

We thus classify a MOF with KVRH greater than 5 GPa as a "mechanically stable" MOF. From a 

total of 9,524 MOFs in the USMOF DB with "ultrastable" thermal and activation stability, 1,102 

MOFs remain after applying this mechanical stability criterion of KVRH > 5 GPa. Importantly, upon 

applying this threshold for mechanical stability, the metal diversity within USMOF DB remains 

relatively unchanged, with notable enrichment in Co (Figure 2). This enrichment is due to the high 

survival rate of Co-containing node N41 and N18 (57.8% and 52.5%, respectively) upon applying 

the mechanical stability criterion (see Sec. 3c).  
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Figure 2. (Top) Distribution of metal atoms in 7,330 thermal- and activation- stable MOFs in 
USMOF DB for which KVRH could be computed. (Bottom) Distribution of metal atoms in 1,102 
thermal-, activation, and mechanically-stable MOFs in USMOF DB. A representative Co-based 
node (N41) is shown. C atoms are colored as gray, N atoms as blue, H atoms as white, Co atoms 
as pink, and connection points are shown as black spheres. 

 

We next calculated the gas working capacity (i.e., difference between uptake at low and 

high pressure, see Sec. 2) of the mechanically stable USMOF DB MOFs using GCMC simulations 

for both CO2 and CH4 (Supporting Information Figure S3). We observe a number of MOFs in 

USMOF DB that have a CO2:CH4 working capacity ratio approaching 0.268 (Figure 3). Notably, 

this number is the ratio of the standard CO2 working pressure (i.e., 16 bar – 0.15 bar = 15.85 bar) 

to the CH4 standard working pressure (i.e., 65 bar – 5.8 bar = 59.2 bar). These MOFs with CO2:CH4 

ratio of approximately 0.268 have large pore volumes where gas molecules can reside without 

interactions with the framework, leading to gas uptake directly proportional to the ratio in pressure 

differences, with small deviations (i.e., an offset of 100 cm3(STP)/g framework obtained from 

fitting) from this behavior due to π-π stacking interactions between the CO2 molecule and the MOF 
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pore walls101. This trend is even more evident in USMOF DB MOFs prior to applying the high 

mechanical stability (i.e., KVRH > 5 GPa) criterion because MOFs with extremely large pores often 

have poor mechanical stabilities and are thus excluded.  

 

Figure 3. CO2 working capacity vs. CH4 working capacity (in cm3(STP)/g framework) of 1,102 
mechanically stable MOFs in USMOF DB. The data is colored by the connectivity of the building 
blocks: one inorganic node and one edge (1inor.-1edge, in red); one inorganic node, one organic 
node, and one edge (1inor.-1org.-1edge, in green); and 2 inorganic nodes and one edge (2inor.-
1edge, in blue). The dotted lines depict the CO2:CH4 ratio of 1.1 and 0.9 for classification of MOF 
gas adsorption preference. The CO2:CH4 ratio = 0.268 and offset of 100 cm3(STP)/g framework is 
depicted as a dashed orange line. The distributions of the CO2 working capacity and CH4 working 
capacity are shown as 1D unnormalized histograms as well with a bin width of 30 cm3(STP)/g 
framework. 
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The average and distribution of CO2 working capacities are similar for all three 

configurations of node and edges (average for 1inor-1edge: 414.19, 1inor-1org-1edge: 438.13, and 

2inor-1edge: 414.81 cm3(STP)/g framework, Supporting Information Figure S4). However, the 

1inor-1org-1edge configuration has a higher average CH4 working capacity (670.01 cm3(STP)/g 

framework) compared to 1inor-1edge and 2inor-1edge configurations (513.47 and 529.33 

cm3(STP)/g framework). This dependence of working capacities on the building block 

configurations can be understood in the context of geometric factors that differ between CH4 and 

CO2 (see discussion in Sec. 3c).  In particular, MOFs with 1inor-1org-1edge configuration have 

50% greater average gravimetric pore volume (4.70 cm3/g) compared to the other configurations 

(3.04 cm3/g for 1inor-1edge and 3.05 cm3/g for 2inor-1edge configuration). 

 We next compared the computed working capacities of CO2 and CH4 for the "ultrastable" 

subset of USMOF DB to those of the experimental CoRE MOF 2019 DB37. We used the adsorption 

data calculated by Moosavi et al.42 for the latter, where they successfully calculated adsorption 

properties of 9,525 MOFs. We first classify the MOFs into three groups according to their 

CO2:CH4 working capacity ratios: i) high, where the ratio is greater than 1.1, ii) low, where the 

ratio is less than 0.9, and iii) intermediate, where ratio is between 0.9 and 1.1. While most of the 

MOFs from the CoRE MOF 2019 DB (89.4%) have a high ratio (i.e., greater than 1.1), only 27.5% 

of MOFs in the mechanically stable, "ultrastable" subset of the USMOF DB fall into this category 

(Supporting Information Table S5). We also note that the working capacity ranges are different 

between the two databases. Specifically, the majority of MOFs (92.7%) in CoRE MOF 2019 have 

a CH4 working capacity below 200 cm3(STP)/g framework, while very few MOFs (3%) in 

USMOF DB have a working capacity below that threshold. A similar trend is observed for CO2 

working capacity, as 77.8% of MOFs in CoRE MOF 2019 and only 7 MOFs (0.6%) in the 
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mechanically "ultrastable" subset of the USMOF DB have a working capacity below 200 

cm3(STP)/g framework for CO2. Overall, USMOF DB contains some MOFs with exceptionally 

high CH4 working capacity, while CoRE MOF 2019 predominantly contains MOFs with 

preferentially high CO2 working capacity, albeit with lower working capacity overall than the top-

performing MOFs in USMOF DB. Thus, the hypothetical MOFs in USMOF DB can be candidate 

materials with higher working capacities than MOFs in the CoRE MOF 2019 DB for both CH4 

and CO2, but many exhibit higher CH4 working capacities than CO2. 

3b. ML Models for Gas Working Capacity  

We next sought to train interpretable machine learning (ML) models to identify essential 

features that distinguish working capacity for the two gas molecules in the two databases. In order 

to select the suitable machine learning (ML) model for our study, we performed initial comparison 

of model accuracy across models with different complexities: linear regression, random forest 

(RF), and artificial neural network (ANN) models. For the featurization, we use geometry features 

computed from Zeo++ and RACs, atomic property-centric features computed on the graph of the 

MOF (see Sec. 2). In the case of CH4 working capacity for USMOF DB, all models showed high 

train and test R2 values (i.e., exceeding 0.97, Supporting Information Table S6). Models predicting 

the mechanically stable USMOF DB CO2 working capacity, on the other hand, yielded lower test 

R2 values (linear regression: 0.77, RF: 0.83, and ANN: 0.78). Because predicting CO2 working 

capacity is the more challenging learning task, we selected an RF model due to its trade-off of 

accuracy and interpretability.  

The RF regressor model trained to predict CH4 working capacity demonstrates excellent 

performance for both the mechanically stable subset of USMOF DB and CoRE MOF 2019, 
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achieving high accuracy (test R2 = 0.99 and 0.97, respectively) and low mean absolute error (MAE) 

of test prediction (Supporting Information Figure S5). The models predicting CO2 working 

capacity for both databases exhibited somewhat lower test R2 values, 0.83 and 0.97 for USMOF 

DB and CoRE MOF 2019 DB, respectively, when compared to the models predicting CH4 working 

capacity (Supporting Information Figure S5). The lower accuracy of the CO2 model trained on 

USMOF DB than that trained on CoRE MOF 2019 is due to the mechanically stable USMOF DB 

subset being both smaller (i.e., 1,102 for mechanically stable MOFs in the USMOF DB and 9,525 

for CoRE MOF 2019) and having a much wider range of geometric properties (Supporting 

Information Figure S7).  

Next, we carried out feature importance analysis on the RF regressor model trained to 

predict the CH4 working capacity of mechanically stable MOFs in USMOF DB or the MOFs in 

CoRE MOF 2019 (Supporting Information Figure S6). The impurity-based feature importances98, 

which we calculated for both databases, underscore the significance of geometric features over 

chemical features in predicting the CH4 working capacity. Notably, the gravimetric pore volume 

emerged as the most important feature, with a feature importance of 89.9% for USMOF DB and 

94.7% for CoRE MOF 2019, highlighting how MOFs with large pore volumes can accommodate 

more CH4 gas molecules (Supporting Information Figure S6). The smaller, spherical size and 

absence of dipole and quadrupole moments in the CH4 molecule restrict its interaction with 

framework atoms, resulting in a minor contribution from chemical features. This aligns with the 

Chahine rule64,65 where hydrogen adsorption is proportional to the BET surface area. Since MOFs 

in USMOF DB have large pore volumes, CH4 adsorption is proportional to pore volume rather 

than surface area (Figure 4). For example, MOF-399 (CSD38 refcode: BAZGAM) has been 

identified previously in the literature102 for its exceptional gas uptake, but its relatively large 
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gravimetric pore volume of 7.39 cm3/g is eclipsed by a hypothetical MOF in USMOF DB with 

Mg-based inorganic node (N54) and long organic edge (E13), which is derived from [p-terphenyl]-

4,4”-dicarboxylic acid (H2TPDC, see discussion in Sec. 3c) that possesses a large gravimetric pore 

volume of 13.67 cm3/g and exceptionally high CH4 working capacity of 1141.40 cm3/g (Figure 4 

and Supporting Information Figure S8).  Thus, there is a relatively consistent emphasis on pore 

volume to predict CH4 uptake when models are trained on either dataset, but the pore sizes are 

even larger in the mechanically stable subset of USMOF DB than in previously synthesized CoRE 

MOF 2019 MOFs.  

Figure 4. Kernel density estimate (KDE) plots of CH4 and CO2 working capacity (in cm3(STP)/g 
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framework) vs. gravimetric pore volume (GPOV, in cm3/g) and top-performing MOF structures 
for the 1,102 MOFs in the mechanically stable subset of USMOF DB and 9,525 MOFs in CoRE 
MOF 2019. Higher density is colored in red, while lower density is colored in blue following inset 
color bars that have distinct ranges for the two datasets. 

In comparison to CH4, the CO2 molecule possesses a non-zero quadrupole moment and a 

larger size with a linear shape. Feature importance analysis for the model predicting CO2 working 

capacity of MOFs in CoRE MOF 2019 highlights the significance of geometric features, 

particularly gravimetric pore volume with a feature importance percentage of 89.3% for predicting 

CO2 working capacity (Supporting Information Figure S6). Conversely, for the mechanically 

stable but large-pore MOFs in USMOF DB, both the geometric features including surface area 

(40.0% importance) and chemical RACs, specifically metal-centered electronegativity RACs 

(17.3% importance), play crucial roles (Supporting Information Figure S6). Across CoRE MOF 

2019, there is a stronger correlation between CO2 working capacity and gravimetric pore volume 

(R2 = 0.66) while the mechanically stable MOFs in USMOF DB do not follow this trend as strongly 

(Figure 4). This difference between the feature importance of two databases can be attributed to 

the different ranges of gravimetric surface area values (Supporting Information Figure S9). With 

a smaller range of gravimetric surface area values in CoRE MOF 2019, specific host–guest 

interactions do not play as important a role as they do in the mechanically stable USMOF DB 

subset. In the mechanically stable MOFs in USMOF DB, large surface areas may be coupled to 

specifically favorable adsorption sites, both contributing to adsorption trends.  

To assess our expectations of generality based on feature importance commonalities and 

differences, we evaluated the transferability of the ML models between databases for CH4 and then 

for CO2. As expected, the RF model trained on the USMOF DB, which covers a broader range of 

working capacity values, exhibits high performance on CoRE MOF 2019, achieving a test R2 of 

0.76 due to the overriding importance of gravimetric pore volume in predicting CH4 working 
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capacity for both databases (Supporting Information Figure S10). However, despite the fact that 

an RF model trained on CoRE MOF 2019 demonstrated excellent performance (test R2 = 0.97) in 

predicting CH4 working capacity, the same model encountered challenges in accurately predicting 

the CH4 working capacity of mechanically stable USMOF DB MOFs, yielding a test R2 of -0.18. 

Specifically, the prediction is accurate for the working capacity range in the domain of the model's 

training data (0 to 300 cm3(STP)/g framework) but shows a systematic underestimation over the 

range greater than the training data (> 300 cm3(STP)/g framework). The limited transferability 

from CoRE MOF 2019 to the mechanically stable subset of USMOF DB stems from the absence 

of data points with high CH4 working capacity in the former database that are present in the latter 

(Supporting Information Figure S11). The nature of a RF regressor prediction, where predictions 

are produced by averaging the predictions of the decision trees in the forest, causes the model to 

fail in extrapolation, resulting in underestimations in this case. Nevertheless, few, if any, 

alternative regression models would be expected to extrapolate in a reliable fashion, highlighting 

the importance of generating data beyond the range of values in synthesized MOFs in order to 

predict properties of MOFs with exceptional characteristics beyond previously studied materials. 

 We next repeated the analysis of transferability for CO2 working capacity. The RF 

regressor models trained to predict CO2 working capacity in USMOF DB fail to make accurate 

predictions on CoRE MOF 2019, and vice versa, with test R2 values of -0.18 and 0.58, respectively. 

This outcome is expected since the models emphasized different features to predict the CO2 

working capacity for each database (i.e., pore volume in CoRE MOF 2019 versus surface area and 

full-scope atomic charge RACs in USMOF DB), as observed through the impurity-based feature 

importance. The lack of transferability between our in silico mechanically stable USMOF DB and 

CoRE MOF 2019 indicates that they have distinct chemical features despite being derived from 
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the same building blocks, highlighting opportunities to tune working capacity through continued 

discovery of novel MOFs such as those represented by the USMOF DB, especially for CO2. 

In USMOF DB, a considerable number of MOFs exhibit a preference for CH4 over CO2, 

while the majority of MOFs in CoRE MOF 2019 (89.4%) demonstrate a higher working capacity 

for CO2 over CH4. To further investigate this trend, we classified MOFs into three groups based 

on the working capacity ratio (see Sec. 3a). Then, we trained a RF regressor model on the set of 

MOFs with a high ratio of CO2:CH4 working capacity (i.e., > 1.1) and a low CO2:CH4 ratio (i.e., 

< 0.9) to analyze which features contribute the most to the different preferences on adsorbing gas 

molecules. We omitted the intermediate set with similar working capacities for both species to 

ensure that the models were learning from distinct sets of MOFs with significant preferences for 

one or the other molecule. The performance of models predicting CH4 working capacity trained 

on each set was marginally reduced (test R2 = 0.97 and 0.98 for high- and low-ratio models, 

respectively) with respect to the model trained on the whole mechanically stable subset of USMOF 

DB, but otherwise was mostly comparable (Supporting Information Table S7). The Gini impurity 

feature importance analysis reveals that both models emphasize gravimetric pore volume (i.e., the 

probe accessible volume and pore volume) and gravimetric surface area to predict the working 

capacity (Supporting Information Table S8). Despite the similarities in the feature importance 

among models predicting CH4 working capacity for each set, the transferability between MOFs 

with high ratios and low ratios is notably poor. The R2 for the model trained on MOFs with low 

ratios to predict those with high ratios is 0.18 and it is -0.70 for the reverse case. Even though these 

models share similar important features, the different range of CH4 working capacity for each set 

of MOFs limits model transferability (Supporting Information Figure S12). Along with the RF 

model, we also investigated a LASSO model in this case since linear model can perform in a 
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superior fashion in extrapolation when both models share similar important features. As expected, 

the R2 for the model trained on low ratios to predict high ratios is 0.94 and 0.45 for the reverse 

case, showing improved accuracy of LASSO compared to RF (Supporting information Table S10). 

We conducted a similar analysis on each set of MOFs for CO2 working capacities. The 

performance of CO2 models trained on high- and low-ratio subsets of the mechanically stable 

subset of USMOF DB actually improved (test R2 = 0.89 and 0.84 for high and low ratio, 

respectively) over the model trained on the entire dataset despite having smaller training set. The 

RF model trained on MOFs with a high CO2:CH4 ratio emphasizes gravimetric surface area 

(feature importance of 28.2%) and connectivity RACs (f-T-0-all and f-T-1-all, in which T 

describes the number of atoms to which an atom is bonded, with feature importance of 15.4% and 

5.4% respectively, Supporting Information Table S9). On the other hand, the model trained on 

MOFs with the low-ratio materials predominantly emphasizes the gravimetric surface area (feature 

importance of 79.2%). These models trained on each subset of the dataset highlight that different 

features contribute to the CO2 working capacities between the MOFs with high preference for CH4 

and those that prefer CO2. Therefore, it is expected that these models should fail to transfer from 

high to low ratio or vice versa. The RF model applied to the other subset (i.e., high to low) shows 

test R2 values of -30.43 (-0.12 for low to high), indicating that distinct features are employed to 

predict the CO2 working capacity of the two sets even when the distributions overlap (Supporting 

Information Table S10). The unexpected disparities in working capacities between the 

mechanically stable subset of the USMOF DB and CoRE MOF 2019 indicate that even though 

USMOF DB is derived from CoRE MOF 2019 building blocks, recombining the building blocks 

with varying connectivity can substantially alter the working capacity. This suggests there are 

opportunities to tune preferences of MOFs toward CH4 or CO2 adsorption that have not yet been 
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explored experimentally. 

3c. Distinct Trends in Working Capacities Between the Two Databases  

Even though the building blocks of the mechanically stable USMOF DB MOFs were 

obtained from CoRE MOF 2019, there are significant differences in properties of the two MOF 

databases. These differences are evident for both gas molecules but especially apparent for CO2, 

both in the distribution of gas working capacity values and in feature importances of the ML 

models trained on the two sets (see Figure 3). To elucidate the reason for these discrepancies, we 

next analyzed the MOFs in USMOF DB that exhibit exceptionally high CH4 working capacity. 

We observed that certain building blocks appeared frequently in the top 20 MOFs ranked by CH4 

working capacity in the mechanically stable subset of the USMOF DB. Specifically, inorganic 

node 41 (N41), extracted from CSD refcode: KOZSID in CoRE MOF 2019, appears 11 times in 

the top 20 MOFs, all exhibiting CH4 working capacities greater than 790 cm3/g (Supporting 

Information Table S11). Although N41 occurs frequently in the USMOF DB, being present in 

16.2% (178 out of 1,102) of MOFs, its appearance in the top 20 MOFs is still enriched with respect 

to its presence in the mechanically stable subset. Chemically, N41 is a Co-based porphyrinic node, 

the rigid nature of which103,104 allows the structures to have high mechanical stability, leading to 

its presence in combination with a number of nets and other linkers in the mechanically stable 

USMOF DB subset. This finding also aligns with previous research where N41 was frequently 

observed near the Pareto front of an optimal trade-off between mechanical stability and CH4 

working capacity43. We nevertheless note that the original MOF in CoRE MOF 2019 (CSD 

refcode: KOZSID) from which N41 was extracted has a rather low CH4 working capacity of only 

12.32 cm3/g (Figure 5). This unexpected discrepancy in CH4 adsorption arises from the diversity 

of topologies present in the mechanically stable subset of the USMOF DB, which in turn results 
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in distinct connectivity (Supporting Information Figure S13). This difference leads to larger 

variation in pore volumes, which have high importance for predicting the working capacity, when 

compared with MOFs containing the same node or edge in the mechanically stable subset of the 

USMOF DB and CoRE MOF 2019 (Supporting Information Figure S14).  

Edge 13 (E13, from CSD refcode: UVAHIK) frequently appears in MOFs with high CH4 

working capacity as well (i.e., 10 times in the top 20 MOFs). It contains 3 benzene rings, making 

it one of the longest edges (12.7 Å) in our organic edge building block set. This allows the 

structures to have larger pore volumes and higher working capacities. Although there are longer 

edge building blocks than E13, they do not appear frequently in the mechanically stable set of 

USMOF DB because they are more susceptible to instability upon application of hydrostatic 

pressure, resulting in lower mechanical stability. 
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Figure 5. (Left) Example MOFs (CSD refcodes: KOZSID and OJICUG) from CoRE MOF 2019 
and their calculated CH4 and CO2 working capacities. (Middle) Extracted nodes (N41 and N61) 
and an edge (E3, derived from benzene-1,4-dicarboxylic acid; BDC) from the CoRE MOF 2019 
structures shown at left. (Right) Hypothetical MOFs constructed from recombining extracted 
nodes and edges, along with additional nodes and edges indicated on the arrows, and their 
calculated CH4 and CO2 working capacities. 

Next, we repeated our analysis on the MOF components with high occurrence in the top 

20 MOFs in the mechanically stable subset of the USMOF DB for CO2 working capacity 

(Supporting Information Table S12). In comparison to CH4, no single inorganic node dominates 

as consistently, with node 61 (N61, CSD refcode: OJICUG, 6 times) and node 29 (N29, CSD 

refcode: TAGTUT, 5 times) each occurring about 25% of the time. Notably, N61 is consistently 

selected in structures that include other inorganic or organic nodes to form either a 2 inorganic 

node–1 edge or a 1 inorganic node–1 organic node–1 edge configuration (Figure 5). All 11 MOFs 

containing these nodes have CO2 working capacities greater than 580 cm3(STP)/g framework. The 

original CO2 working capacities of the CoRE MOF 2019 MOFs, from which N61 and N29 were 

taken, were 340.3 cm3/g and 295.9 cm3/g, respectively. Although these values are lower than the 

working capacities in USMOF DB, they still exceed one standard deviation (127.7 cm3/g) above 

the average value of CO2 working capacity (average: 133.6 cm3/g + 1 std. dev. is 261.3 cm3/g) in 

CoRE MOF 2019. The less dramatic difference for CO2 compared to the case of CH4 is expected 

because ML model feature importance indicates CO2 working capacity depends on both geometric 

features and the chemical identity of nodes (see Sec. 3b). Thus, recombining the nodes with 

alternate linkers and on new nets should result in a wide range of geometric features that could 

alter working capacities, but it has a smaller impact on CO2 working capacity compared to CH4. 

The enrichment of privileged edges to produce high CO2 working capacity is also less significant 

than for the CH4 case. Edge 8 (E8, CSD refcode: KIFKEQ), derived from biphenyl-4,4-

dicarboxylic acid, appears 8 times among the top 20 MOFs, and this edge is also the most 
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frequently appearing edge in USMOF DB (145 out of 1,102, Supporting Information Figure S8). 

Unlike the case of the preferred edge for CH4 working capacity, E8 consists of two benzene rings 

and is only 8.63 Å long, suggesting its length is not a major contributing factor to higher CO2 

uptake. 

Now we analyze the building blocks (i.e., edges and nodes) and their connectivity (i.e., 

nets) to identify their relationship with the adsorption preferences of CO2 and CH4 for MOFs in 

the USMOF DB. We first investigate the edges, examining whether their lengths are correlated 

with the adsorption preferences of gas species. Our preceding analysis revealed distinct trends 

within the USMOF DB, with MOFs exhibiting high CH4 working capacity demonstrating longer 

edge lengths, while no strong correlation was observed between CO2 working capacity and edge 

length. Now, we observe a notable difference in average edge length between MOFs with CO2:CH4 

ratios below 0.9 (10.03 ± 2.82 Å) and those above 1.1 (6.93 ± 2.02 Å,), indicating that edge length 

may serve as a useful design knob for enhancing CH4 adsorption preference over CO2 (Figure 6). 

Despite the smaller standard deviation for the average length in the high-ratio case, longer edges 

serve as a better tool for suggesting what the MOF working capacity ratio will be. That is, most of 

the MOFs (87.5%) with longer edges (> 11 Å) have a low CO2:CH4 ratio, whereas only a slight 

majority (58.7%) of MOFs with shorter edges (< 7 Å) exhibit a high ratio. Distinct building block 

configurations (i.e., 1inor-1org-1edge) contribute to this trend: large-pore MOFs that feature 

longer linkers combined with organic nodes give rise to the lowest CO2:CH4 ratios, while a short 

linker combined with other components will not necessarily lead to smaller-pore MOFs.  
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Figure 6. CO2 vs. CH4 working capacity (in cm3(STP)/g framework) colored by edge length (Å). 
The points are colored by edge length according to inset color bar, with shorter edges colored in 
yellow and longer edges colored in purple. Representative edges E3 and E13 (BDC and H2TPDC, 
respectively) are shown with their edge lengths annotated. 

We also considered the connectivity net as another factor influencing adsorption 

preferences, which is particularly necessary because the distribution of connectivity nets observed 

between the mechanically stable USMOF and CoRE MOF 2019 databases differs (Supporting 

Information Figure S13). Notably, MOFs characterized by topologies that give rise to small 

gravimetric pore volume (GPOV) and large volumetric surface areas (VSA), such as wiv and ibd, 

exhibit a preferentially high working capacity for CO2 over CH4 in the USMOF DB and the 

opposite is true for topologies such as myd and ssa (Supporting Information Figure S15). For 
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example, edge E8 (8.6 Å) on an ibd connectivity net appears in 30% of the top 20 MOFs with the 

highest CO2 working capacity in the mechanically stable subset of USMOF DB (Supporting 

Information Table S11). Therefore, shorter edges with connectivity nets that result in small pore 

volume and large surface area can be expected to lead to higher CO2 working capacity over CH4, 

but many of the USMOF DB MOFs have the converse features that instead give rise to higher CH4 

working capacity. 

Next, we investigated the influence of node identity on the high- and low-ratio gas 

adsorption preferences. There are distinct trends among different nodes, with some nodes 

exhibiting a preference for CO2 (e.g., nodes N38 and N61) while others favor CH4 (e.g., nodes 

N41 and N79). Most other nodes are present in both CO2- and CH4-favoring MOFs. The N38 and 

N61 nodes exhibit identical structures characterized by trinuclear metal clusters centered on a µ3-

oxygen [M3O(O2C-)6], albeit with distinct metals: iron for N38 and scandium for N61. These 

clusters feature strongly bound Fe3+ and Sc3+ centers coordinated by a µ3-O2- donor, resulting in 

exceptional mechanical stability. Each metal atom is coordinated by five oxygen atoms in an 

octahedral coordination environment, leaving one open metal site available for adsorption. The 

presence of these highly accessible open metal sites renders MOFs containing N38 and N61 

particularly suitable for adsorbing CO2 over CH4. In addition to the aforementioned Co-based 

porphyrinic N41, N79 is also a CH4-favoring node. N79 is a Li4(OR)4 (R = pyridine) cubane 

cluster. This large node contains eight pyridines, resulting in a high void volume conducive to CH4 

adsorption. These nodes do not exhibit open metal sites, explaining their relatively low CO2 

adsorption. Of the four highlighted nodes, N41 and N61 have the greatest apparent influence on 

gas uptake preference. For 96% of N61-containing MOFs (65 out of 68), the CO2:CH4 ratio is 

greater than 1.1, while 88% of N41-containing MOFs (135 out of 153) have a ratio less than 0.9 
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(Supporting Information Figure S16). This observation is consistent with earlier analysis where 

these nodes appeared frequently in the top 20 MOFs ranked by working capacity of CH4 and CO2, 

respectively.  

Studies have shown that some MOFs with open metal sites, such as MOF-74-Mg (CPO-

27-Mg, Mg2(dobdc))105, show enhanced CO2 adsorption properties.106-108 Therefore, we also 

examine the presence of open metal sites more broadly within the nodes of MOFs in USMOF DB 

beyond the privileged nodes we identified with high CO2:CH4 ratios (i.e., N38 and N61). While 

there are notable examples with open metal sites that prefer CO2, the presence of an open metal 

site alone is not the sole deciding factor in determining that MOFs will prefer CO2 over CH4. When 

considering only the most mechanically stable MOFs by requiring a bulk modulus (KVRH) greater 

than 10 GPa (i.e., rather than just 5 GPa), the set reduces to 340 MOFs. However, among these 

MOFs, MOFs with open metal sites do indeed show a strong preference for CO2 (Supporting 

Information Figure S17). Thus, observation of the nodes with open metal site preference for CO2 

cannot be fully decoupled from mechanical stability considerations, which removes less 

mechanically stable MOFs with large pore volumes that often exhibit high CH4 working capacities. 

 Finally, we summarize these design principles to identify strategies for enhancing the 

selectivity of MOFs for either CO2 or CH4 gas adsorption. For high-throughput screening, our RF 

models revealed that computed void volume and surface area of MOFs should serve as predictive 

indicators of gas adsorption preferences. Additionally, since trinuclear metal clusters [M3O(O2C-

)6] (i.e., N38 and N61) show a preference for CO2 over CH4, substituting these metal clusters with 

different metal atoms also in a +3 oxidation state (e.g., V, Cr, Mn, and Co) could be a strategy to 

tailor MOFs for high selectivity for CO2 while introducing metal diversity. To construct MOFs 

exhibiting a preference for high CH4 working capacity over CO2, employing longer edges and 
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connectivity nets characterized by large void volumes and small surface areas should serve as the 

most effective design strategies. As a secondary strategy, node identities are also informative:  

open metal sites are likely to enhance CO2 adsorption. Conversely, robust nodes contribute to 

mechanically stable structures even when combined with long edges in order to create large void 

volumes that contribute to CH4 adsorption enhancement. These principles cannot be observed in 

CoRE MOF 2019 due to the absence of MOFs with higher CH4 working capacities in previously 

synthesized MOFs. However, we anticipate these design principles should aid in the future 

identification of candidate MOFs as synthetic targets or for assessment of synthesized MOFs that 

have not been deposited in structural databases.  

4. Conclusions 

To advance the design of novel MOFs tailored for specific gas adsorption properties, our 

study focused on the CO2 and CH4 adsorption properties of two MOF databases: mechanically 

stable MOFs in the in silico ultrastable MOF database (USMOF DB) and CoRE MOF 2019. The 

USMOF DB differs from other in silico databases by incorporating considerations for thermal 

stability and stability upon solvent removal during its construction. In addition, to ensure 

mechanical stability, we computed the bulk moduli of MOFs in the USMOF DB and selected those 

demonstrating sufficient mechanical strength. We showed that the gas working capacities of these 

two databases showed significantly different distributions: a significantly higher fraction of MOFs 

in the mechanically stable subset of the USMOF DB exhibited preferentially high CH4 working 

capacity, while most MOFs in CoRE MOF 2019 exhibited higher CO2 working capacity. 

Furthermore, leveraging machine learning techniques, we trained random forest models on 

the gas working capacities of these databases and investigated the features that determine the 
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adsorption properties. Interestingly, while geometric features such as pore volume and surface area 

predominantly determined both CO2 and CH4 gas working capacities in CoRE MOF 2019, the CO2 

working capacity in the USMOF DB was influenced by both geometric features and the 

electronegativity of atoms near the metal centers in the secondary building units. We observed that 

these models had limited transferability across databases, except for the case of CH4 from USMOF 

to CoRE MOF 2019. The USMOF DB CH4 capacities spanned those of CoRE MOF 2019, often 

leading to good interpolative transferability, whereas the same was not true of CO2 due to different 

feature importance in the models to predict CO2 working capacity. This underscores the need for 

continued expansion of datasets to include novel experimental and hypothetical MOFs in order to 

obtain more universal design rules for tailoring MOFs for high adsorption of one gas species over 

another. 

Moreover, our investigation into the structural characteristics of MOFs provided valuable 

insights. While MOFs with longer edge lengths expectedly tended to prefer CH4 over CO2, 

topologies containing a small gravimetric pore volume and large volumetric surface area (e.g., wiv 

and ibd) exhibited a preference for CO2 over CH4, and vice versa (e.g., myd and ssa). By analyzing 

top-performing CO2 adsorbing MOFs, we observed the MOFs containing SBUs with trinuclear 

metal clusters centered on a µ3-oxygen demonstrated a high preference for CO2 adsorption due to 

the accessible open metal site of this cluster. We were able to confirm the generality of this 

observation that MOFs with open metal sites and high mechanical stability facilitate higher CO2 

adsorption. These findings contribute to the understanding of key design principles for engineering 

MOFs with tailored gas adsorption properties, thereby advancing their applications in gas 

separation and storage. 
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