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Abstract

Molecular fragmentation is an effective suite of approaches to reduce the formal computational com-
plexity of quantum chemistry calculations while enhancing their algorithmic parallelisability. However,
the practical applicability of fragmentation techniques remains hindered by a dearth of automation and
effective metrics to assess the quality of a fragmentation scheme. In this article, we present the Quick
Fragmentation via Automated Genetic Search (QFRAGS), a novel automated fragmentation algo-
rithm that uses a genetic optimisation procedure to generate molecular fragments that yield low energy
errors when adopted in Many Body Expansions (MBEs). Benchmark testing of QFRAGS on protein
systems with less than 500 atoms, using two-body (MBE2) and three-body (MBE3) MBE calculations
at the HF/6-31G* level, reveals mean absolute energy errors (MAEE) of 20.6 and 2.2 kJ mol−1, respec-
tively. For larger protein systems exceeding 500 atoms, MAEEs are 181.5 kJ mol−1 for MBE2 and
24.3 kJ mol−1 for MBE3. Furthermore, when compared to three manual fragmentation schemes on a
40-protein dataset, using both MBE and Fragment Molecular Orbital techniques, QFRAGS achieves
comparable or often lower MAEEs. When applied to a 10-lipoglycan/glycolipid dataset, MAEs of 7.9
and 0.3 kJ mol−1 were observed at the MBE2 and MBE3 levels, respectively.

Scientific Contribution This Article presents the Quick Fragmentation via Automated Genetic
Search (QFRAGS), an innovative molecular fragmentation algorithm that significantly improves upon
existing molecular fragmentation approaches by specifically addressing their lack of automation and
effective fragmentation quality metrics. With an evolutionary optimisation strategy, QFRAGS actively
pursues high quality fragments, generating fragmentation schemes that exhibit minimal energy errors
on systems with hundreds to thousands of atoms. The advent of QFRAGS represents a signifi-
cant advancement in molecular fragmentation, greatly improving the accessibility and computational
feasibility of accurate quantum chemistry calculations.

Keywords: Molecular Fragmentation, Quantum chemical calculations, Many Body Expansion, Fragment
Molecular Orbital, Molecular Graph Theory
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1 Introduction

In contemporary research within the fields of drug
discovery, synthetic biology, chemistry, and mate-
rials science, a significant challenge is the limited
ability to accurately model large-scale molecular
processes using computational methods. Notable
examples of this include the computational study
of carbon capture and sequestration using porous
materials [21, 62], the accurate modelling of inter-
actions between ligands and proteins for effective
drug design [1, 12, 56], and the simulation of the
degradation or removal of organic waste materials,
such as pesticides, using novel catalysts [25, 40].
These problems, along with many others, necessi-
tate chemically accurate models of molecular sys-
tems including explicitly hundreds to thousands
of atoms.

Quantum chemistry (QC) calculations have
the potential to provide such models. However, the
computational time required by accurate ab initio
QC methods increases extremely fast—formally
faster than O(N4) [6, 36, 61]—with the size of
the system. This rapid growth in computational
demand severely limits the applicability of these
methods to large molecular systems. Additionally,
the algorithms fundamental to QC calculations
are generally not optimised to leverage the exten-
sive parallelism inherent in contemporary super-
computer architectures, which further complicates
this challenge.

Molecular fragmentation is an effective strat-
egy for tackling scalability and parallelisation
issues in quantum chemical modelling. This suite
of methodologies is based on the premise that
quantum chemical interactions are sufficiently
localised, allowing a chemical system to be divided
into smaller segments known as monomers. To
approximate the energy of the entire, unfrag-
mented system, fragmentation approaches incre-
mentally include the effects of larger fragments.
These fragments, which encompass interactions
among monomers, range from dimers and trimers
to larger n-mers.

For example, in fragmentation methods based
on the Many Body Expansion (MBE) [53], the
energy of the system is obtained as the following

sum over fragments

EMBE =
∑
I

EI +
∑
I<J

∆EIJ +
∑

I<J<K

∆EIJK + ...

(1)
where EI is the energy of monomer I, ∆EIJ and
∆EIJK are dimer and trimer energy corrections
defined as follows

∆EIJ = EIJ − EI − EJ , (2)

∆EIJK =EIJK −∆EIJ −∆EIK −∆EJK

− EI − EJ − EK (3)

where EIJ is the energy of a dimer system
obtained as the union of monomers I and J , and
EIJK is the energy of a trimer system obtained as
the union of monomers I, J , K.

The calculations of two-body and higher order
terms (∆EIJ , ∆EIJK , etc.) are only performed on
fragments that are spatially close together, yield-
ing an asymptotic scaling of O(N) with system
size [16, 44].

The hierarchical nature of the MBE allows it to
approximate the total energy to greater accuracy
through the systematic inclusion of higher order
terms [57]. In addition, the energy calculations
of the many-body fragments (monomers, dimers,
etc.) can be performed independently, thereby
exposing significant opportunities for exploiting
large-scale parallelism [16].

Although fragmentation methods offer consid-
erable advantages, they are usually not applicable
in a general black-box fashion to medium and
large molecular systems. This can be primarily
attributed to a dearth of automated fragmentation
procedures. Currently, the design of fragments
that yield accurate results is typically performed
manually, requiring a laborious iterative combi-
nation of chemical intuition and trial and error.
This not only limits the size of systems that
can be accurately fragmented and studied, but
also renders the resulting fragmentation schemes
largely nontransferable across molecular systems
and application studies.

Automated bond-breaking fragmentation algo-
rithms have been developed in conjunction with
the Molecular Tailoring Approach [26, 37], Sys-
tematic Molecular Fragmentation [14, 15, 20],
and the Generalised Energy Based Fragmentation
[31, 32, 42]. These techniques create fragments
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from small units like functional groups or non-
hydrogen atoms, selecting a specific size based on
distance criteria (either the number of bonds or
spatial distance). However, these fragmentation
algorithms generally do not explicitly consider the
surrounding chemical environment nor the ener-
getic effects of the bond breaking, as fragment
generation is primarily guided by basic distance
and connectivity factors.

The main challenge in constructing a high
quality fragmentation scheme is the generation of
an optimal set of fragments that minimises the
fragmentation energy error while retaining a user-
defined fragment size. This goal is elusive and
remains largely unaccomplished, primarily due to
the absence of fragmentation strategies focused
on generating high-quality fragments. A key issue
with current schemes is their lack of explicit con-
sideration for the types of bonds being broken.
It is well-recognised that different sets of frag-
ments, resulting from breaking various bonds, can
lead to varied approximations of the final energy
value. The severance of different bonds, yielding
unique sets of fragments, results in the loss of dis-
tinct chemical interactions. This, in turn, leads
to different estimates of the final energy of the
unfragmented system.

The significance of the nature of bond break-
ing in molecular fragmentation was highlighted,
for example, in a previous study which focused
on the application of the Fragment Molecular
Orbital (FMO) [22, 38] method to DNAmolecules.
In this study, DNA was fragmented by cutting
either the carbon-carbon (C C) or carbon-oxygen
(C O) bond between the five-carbon sugar and
phosphate group, as shown in Fig. 1. Consid-
ering the close proximity of these bonds, one
might anticipate similar energy estimations for the
intact system using both fragmentation schemes.
However, the calculated energies for the two
approaches showed a significant difference, exceed-
ing 18 kJ mol−1 [48]. It is noteworthy that these
fragmentation errors scale linearly with the frag-
ment count.

Thus, the issue at hand raises an important
question: How can we measure the effectiveness of
a molecular fragmentation scheme?

In current methodologies, the efficiency of
these schemes is not known beforehand. Instead,
their effectiveness is only determined retrospec-
tively. This is done by calculating the system

Fig. 1 The two alternative fragmentation schemes for
fragmenting DNA used in [48]. Fragments are formed by
either a) breaking the C C bond or b) breaking the C O
bond.

energy with and without fragmentation and com-
paring the results. However, for large molecu-
lar systems comprising hundreds to thousands
of atoms, calculating the unfragmented system
energy with traditional QC approaches is imprac-
tically demanding. The primary aim of fragmen-
tation methods is, in fact, to circumvent this very
challenge. Consequently, employing such a metric
for evaluation is neither practical nor reasonable,
and we necessitate the development of a more
feasible alternative approach.

In this Article, we present a novel automatic
fragmentation scheme that aims to obtain the
optimal sets of fragments for a molecular system.
This new approach, named the Quick Fragmenta-
tion via Automated Genetic Search (QFRAGS),
employs a specialised scoring function to assess
fragmentation quality. The scoring function is
designed and parameterised to obtain a strong
correlation with the energy error of the result-
ing fragmentation scheme, thereby circumventing
the usage of an expensive and generally unusable
direct energy error metric. This enables recast-
ing the fragmentation problem as an evolutionary
optimisation of the scoring function, which is a
rapid, cost-efficient and accurate process.

We begin in Section 2 with describing the
datasets of molecular systems QFRAGS was
applied to. This is followed by a description of the
methodology of the fragmentation scheme, par-
ticularly, the scoring function used to describe
the quality of fragmentation and the mathemat-
ical representation of the molecular system and
its fragmentation. Then, we detail the approach
used for the optimisation of weights in the scoring
function. Next, in Section 3, we discuss the algo-
rithms utilised for the optimisation of the scoring
function. The optimised weights are reported in
Section 4 and these were used in the application
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of QFRAGS to over 1,000 protein systems. The
corresponding fragment sizes generated and their
corresponding energetic accuracy are discussed in
Section 4. To further exemplify the accuracy of
QFRAGS, a comparison to three manual fragmen-
tation schemes is presented in Section 4. Section
5 concludes.

2 Materials and Methods

2.1 Datasets

The automatic fragmentation algorithm will be
applied across a range of biologically significant
protein systems. These systems hold special rel-
evance in the fields of drug design and synthetic
biology, which are prominent areas of application
for molecular fragmentation techniques.

Full dataset
1,100 protein structures

between 108 and 1396 atoms

1000 protein structures
between 108 and 455 atoms

Optimisation set
800 structures

(Dataset 1)

Test set
200 structures

(Dataset 2)

Test set
100 structures

(Dataset 3)

< 500 atoms > 500 atoms

Fig. 2 Classification of datasets used in this study.

Figure 2 shows the classification of the three
protein datasets used in this study. Cumulatively,
the datasets comprise 1,100 protein structures
obtained from two different sources. A subset of
100 protein structures, included in Dataset 3 as
indicated in Fig. 2, was extracted from the PDB-
Bind database [64]. These structures are char-
acterised by having more than 500 atoms each.
Notably, protein systems with less than 500 atoms
are rare in the PDB-Bind dataset. To address the
shortage of such systems, we took existing protein
structures in the PDB-Bind dataset and frag-
mented these to generate 1,000 additional systems
with less than 500 atoms. This involved sever-
ing single Cα N or Cα C bonds and valence is
restored by appending hydrogens along the axis of
the bond cut. Specifically, the coordinates of the

hydrogen cap x(H) is given by

x(H) = x(i) +
r(i) + r(H)

r(i) + r(j)
(x(j)− x(i)) (4)

where x denotes a Cartesian coordinate, r is
the standard covalent radius given by Cordero et
al [18], and i, j denote the atoms belonging to the
severed bond.

None of the resulting 1,000 systems were
derived from structures present in Dataset 3. All
datasets are mutually exclusive.

All protein structures were hydrogenated using
the PDBFixer software at the default pH of
7.0. All protein structures herein comprise one
polypeptide chain and no metal-dependent struc-
tures are present within the dataset.

As illustrated in Fig. 2, the classification of the
datasets involves an initial split of the full dataset
based on the size where 500 atoms is the threshold.
This threshold distinguishes between structures
taken directly from the PDB-Bind dataset as
opposed to the generated structures. The dataset
of 1,000 generated systems is further divided in
two datasets with a 80:20 split. Here, 80% of the
structures are used for the optimisation of hyper-
parameters within the fragmentation algorithm
(Dataset 1) and 20% is used to test the application
of QFRAGS with the optimised hyperparameters
(Dataset 2). The optimisation of the hyperpa-
rameters is presented in Section 2.4. Similar to
Dataset 2, Dataset 3 is also a test dataset but for
protein systems with more than 500 atoms. The
size distributions of the three datasets are shown
in Fig. 3.

Structures used for the optimisation of hyper-
parameters (Dataset 1) comprise a diverse set
of protein sequences; 90.4% and 3.3% of protein
pairs exhibited pairwise sequence identity (PID)
scores below 20% and between 20% and 30%. On
the other hand, 6.3% of structure pairs exhibit
PID values greater than 30%. Furthermore, these
structures also exhibit a wide range of functional-
ities including: signalling proteins, structural pro-
teins, toxins, viral proteins, enzymes, DNA/RNA
binding proteins, transcription and transport pro-
teins.

In addition, we also applied QFRAGS to 10
glycolipid or lipoglycans systems ranging between
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Fig. 3 Size distribution of systems belonging to the three datasets: Dataset 1, 2 and 3. Averages are indicated by vertical
lines and the corresponding values are reported.

368 and 727 atoms to demonstrate its appli-
cability to systems beyond proteins. All struc-
tures were taken from the Human Metabolome
Database (HMDB) directly. These structures were
selected on the basis of size. Specifically, struc-
tures within HMDB were sorted against size and
we randomly selected 10 systems belonging in the
top 20 largest glycolipids/lipoglycans. We selected
glycolipids and lipoglycans structures to apply
QFRAGS to for two main reasons. Firstly, such
systems are of particular biological significance
as they include structures that form part of cell
membranes responsible for structural integrity or
modulating signal transduction events, as well as
serving as intermediates in the synthesis path-
way of glycans where disruptions can lead to
congenital disorders of glycosylation. Secondly,
unlike proteins which have an intuitive monomeric
unit (amino acids), lipoglycans/glycolipids do not
and we endeavour to examine the performance of
QFRAGS on such systems.

2.2 Single Point Hartree-Fock
Energy Calculations

In this study, single point energy calculations
on molecular systems are conducted to evaluate
the effectiveness of the proposed fragmentation
algorithm and to fine-tune the hyperparameters
utilised in the process. These calculations were
consistently carried out at the Hartree-Fock the-
oretical level, employing the 6-31G* basis set.
Unless specifically indicated, all computations
were executed using the Extreme-scale Electronic
Structure System (EXESS) quantum chemical
software package [7–9, 27, 50, 59, 60].

To assess the accuracy of the proposed frag-
mentation scheme, we use the difference between
the energy of the unfragmented system (Etot) and
the energy obtained via fragmentation (Ef ):

∆E = Etot − Ef . (5)

Evaluating ∆E requires performing full system
energy calculations (Etot) on datasets of protein
systems, each containing hundreds or thousands
of atoms. Prior research has underscored the limi-
tations of the traditional Superposition of Atomic
Densities (SAD) as an initial guess approach [5].
Notably, SAD initial guesses often face conver-
gence challenges in systems comprising hundreds
of atoms [29]. Additionally, SAD density matrices
are typically charge neutral [41], which is usu-
ally not compatible with protein systems, as they
frequently contain charged chemical groups. Con-
sequently, due to the convergence issues encoun-
tered when applying SAD to large systems with
charged groups, this study adopts an alternative
initial guess strategy for full system calculations.

Specifically, our initial guess starts by divid-
ing the molecular system into monomers, each
containing approximately 30 atoms. Only single
bonds are severed here. Ab initio calculations are
then performed on each monomer where SAD is
used. Once the monomer densities converge, they
are combined to form a block-diagonal density
matrix, which is used as the initial guess for the
full system calculation.

The fragmentation-based single point energy
calculations (Ef ) were performed using two meth-
ods: the Many Body Expansion (MBE) (Eq. (1))
and the Fragment Molecular Orbital (FMO)
approach, both at the dimer (MBE2 and FMO2)
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and trimer (MBE3 and FMO3) levels. FMO is
similar to MBE in that it utilises Eq. (1) to recom-
bine fragment energies. However, rather than per-
forming fragment energy calculations in vacuo
as in MBE, in FMO these are performed in a
self-consistent manner with respect to an electro-
static embedding, known also as Coulomb bath or
ESP (electrostatic potential), of the surrounding
monomers [38]. Furthermore, in the MBE imple-
mentation, hydrogen capping is used to restore
valence at the sites of bond breaking. Hydrogen
atoms are appended to fragments along the axis
of the broken bond. On the other hand for FMO,
the adaptive frozen orbital (AFO) approach was
employed for the treatment of broken bonds. This
involves freezing the molecular orbital of the bro-
ken bond [23, 24]. All FMO calculations were
performed using the GAMESS quantum chemical
software package [10].

In dimer calculations, all possible dimers were
included and for trimer calculations, all possible
dimers and trimers were included.

2.3 Methods for Automatic
Fragmentation

In this section, we delineate the methods
underpinning our proposed automatic fragmen-
tation algorithm. We detail the representation
of a molecular system, elucidate the metrics
employed to evaluate the quality of fragmentation,
and explain the representation of fragmentation
involving bond breaking.

2.3.1 Molecular graph characterisation

As illustrated in Fig. 4, in our fragmentation
algorithm, a molecular system is represented as
a graph where the nodes and edges correspond
to atoms and covalent bonds, respectively. Sim-
ilar representations have been employed across
multiple studies that use graphs to capture the
connectivity of molecular systems [3, 4, 11].

In the molecular graph representation, nodes
and edges are assigned distinct attributes to accu-
rately map the molecular system. Each node,
representing an atom, is characterised by sev-
eral attributes: the atomic number, formal charge,
number of π electrons, hybridisation state, and its
Cartesian coordinates. The attribute for the num-
ber of π electrons holds a non-zero value only for

atoms that are components of a conjugated sys-
tem. In such cases, this value corresponds to the
number of π electrons that the atom contributes
to the system. For instance, the nitrogen atom in
a pyrrole molecule possesses two π electrons.

In contrast, bond order represents the sole
attribute of an edge. Edges, or bonds, along
with their respective bond orders, are determined
based on the distances found in the Compu-
tational Chemistry Comparison and Benchmark
DataBase, which includes experimental bond
lengths [54].

The program not only characterises the nodes
and edges in the molecular graph but also identi-
fies regions of conjugation and hyperconjugation.
This identification is crucial for understanding
how fragmentation might disrupt these molecu-
lar features. However, aromatic regions are not
considered in this context, as the current imple-
mentation is limited to the breaking of single
bonds. The rationale behind this limitation is
discussed in greater detail in Section 3.1.1.

Conjugated regions identified as part of the
molecular graph refer to groups of atoms exhibit-
ing π-conjugation. This effect occurs when there
are alternating single and double/triple bonds
along a chain of the structure [46], and π-electrons
across the atoms becoming delocalised. To repre-
sent this, in the program, a conjugated group is
defined as a group of connected nodes where every
node has a hybridisation state of either sp2 or sp.

Hyperconjugation involves the interaction
between polarised σ-bonds and nearby π-orbitals
[2]. π-orbitals are found in various forms, includ-
ing conjugated systems, double or triple bonds,
and lone pairs on atoms. Polarised σ-bonds are
typically of the form C X, where X is a hydrogen
or a halogen. In a hyperconjugated pair, there are
donor and acceptor groups, which can be either π-
systems or σ-systems, or a combination of both.
However, for a pair to be considered hypercon-
jugated, it must include one σ-system and one
π-system. In the current software implementa-
tion, the donor and acceptor groups are limited to
being at most three bonds apart. Table 1 outlines
the specific hyperconjugation donor and acceptor
groups identified in this scheme. The conjugated
groups that are identified serve as potential donors
and acceptors for hyperconjugation.
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Fig. 4 Graph representation of an input molecular system. Hydrogen atoms are omitted for clarity. Loner nodes in
hyperconjugated regions correspond to hyperconjugated donor/acceptor C H.

Table 1 Classification of
hyperconjugated groups.
Corresponding σ/π nature that the
program identifies. Hybridisation
states and charges are shown on
relevant atoms.

Group Type Classification
C C π donor/acceptor
C C π donor/acceptor
C H σ donor/acceptor
C O π acceptor
C F σ acceptor
C Cl σ acceptor
C Br σ acceptor
C I σ acceptor

C+(sp2) π acceptor
C–(sp2) π donor
N(sp3) π donor
O(sp3) π donor

2.3.2 Scoring Function

In pursuit of an alternative non-energy-based met-
ric to describe the quality of fragmentation, we
employ the following scoring function

s =β1ppe + β2pconj + β3phyper + β4pvol

+ β5pcomp + β6pvrange (6)

where the penalty factors pi are designed to
account for various chemical and implementation
factors. Broadly, these penalty factors fall into two
categories. The first category encompasses penal-
ties related to potential energy, conjugation, and
hyperconjugation, with the primary objective of
maintaining the chemical environment’s integrity.
The second category focuses on managing frag-
ment size. This includes penalties based on the

volume of fragments, the number of fragments,
and the range of their volumes, ensuring that
the fragments produced closely match the desired
target size.

Each penalty pi is a function that takes a set
of broken bonds as input and produces a corre-
sponding penalty value associated with the factor
i. The parameters βi serve as the weights for
these penalties pi. The subsequent text outlines
the formulation of each penalty term.

Potential Energy Penalty

The ppe penalty is a measure of the change in the
potential energy of the system induced by the frag-
mentation scheme. This is evaluated according to
the formula:

ppe =
1

1 + exp (−λ
γ (∆pe − γd))

+
1

1 + exp (−λ
γ (−∆pe − γd))

. (7)

The formula for ppe comprises two logistic sig-
moid functions that are mirror images of each
other and handle positive and negative ∆pe values.
The ∆pe term is the difference between the energy
of the total unfragmented system (Etot) and the
total energy (EMBE1) obtained at the one-body
MBE level (MBE1)

∆pe = Etot − EMBE1. (8)
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Here, both the Etot and EMBE1 energies are
calculated using the universal force field (UFF)
[43, 52]. This was selected due to its accessibil-
ity with parameters available for all atoms in the
periodic table [35] as well as its low computational
evaluation time.

The values of the parameters λ and d in Eq. (7)
are 1.963 and 6, respectively. These are defined
based on where the sigmoid function has suffi-
ciently approached the lower and upper asymp-
totes. The definition of “sufficiently approached”
used is that reported by McDowall and co-workers
[45] where the function is considered to have suf-
ficiently approached the asymptote when it is 5%
above or below it. Thus, λ and d were selected
by setting the lower and upper threshold values
of the positive sigmoid function to correspond to
∆pe = 10 and ∆pe = 40 kJ mol−1, respectively.
We call these ∆pe values the boundary points.

The γ parameter in Eq. (7) is a scaling function
and is defined as follows

γ =

√
Nf ·Nmin

A

nt
(9)

where Nf is the number of fragments, Nmin
A is

the number of atoms in the smallest fragment, and
nt is the target fragment size. The role of this scal-
ing factor is to modulate the range between the
boundary points. If γ is small, the range becomes
narrower and the opposite is true for larger γ
values.

The UFF employed in the computation of ppe
implements simple functional forms, and may face
difficulty in accounting for effects such as conjuga-
tion and electronic effects including hyperconjuga-
tion [13, 66]. Thus, the effects of the fragmentation
on conjugation and hyperconjugation are included
as separate penalties in the scoring function.

Conjugation Penalty

The conjugation penalty (pconj) is defined as

pconj =
1

Ncs

Ncs∑
k

S
(
∆k

conj

)
(10)

where k indexes the conjugated systems that
have been disrupted by fragmentation, Ncs is
the total number of affected conjugated systems,
S is a normalisation function, ∆k

conj factors for
conjugated system k and is defined as follows

∆conj =
1

cs

(
1

NA

NA∑
i

N i
e

N i
A

− cs

)
. (11)

Here, NA is the number of atoms within the
conjugated system, with each atom being indexed
by i. The term N i

e denotes the number of π elec-
trons contributed by atom i to the conjugated
system. Additionally, N i

A refers to the aggre-
gate count of atoms in the conjugated system
that remains interconnected after fragmentation,
specifically in the fragment to which atom i per-
tains. The terms cs is a conjugation score of the
system given by

cs =
1

NA

NA∑
i

N i
e

NA
(12)

For example, consider the case of pyrrole which
consists of one conjugated system (Ncs = 1).
In pyrrole, all non-hydrogen atoms participate in
conjugation (NA = 5). Each carbon atom con-
tributes one π electron and the nitrogen atom
contributes two π electrons from its lone pair.
Thus, the conjugation score of pyrrole is

cspyrrole =
1

5

(
1

5
+

1

5
+

1

5
+

1

5
+

2

5

)
=

6

25
(13)

The normalisation function S in Eq. (10) has
the form

S(∆conj) =
1− exp (−λ∆conj)

1 + exp (−λ∆conj)
(14)

Similar to the normalisation function for the
potential energy, the exponent λ is chosen by
setting a boundary value to correspond to 5%
below the upper asymptote. Specifically, we set
S(∆max

conj) = 0.95 where ∆max
conj is the maximum

possible value of ∆conj and arises when every bond
in the conjugated system is broken. The value of
∆max

conj is obtained as follows

∆max
conj = NA − 1 (15)

Hyperconjugation Penalty

The hyperconjugation penalty phyper is calculated
using the following formula
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phyper =
1

Nhs

Nhs∑
k

1

γk
S
(
∆k

hyper

)
. (16)

Here k indexes the hyperconjugated systems,
each comprising a donor and an acceptor group,
disrupted by fragmentation. The Nhs term repre-
sents the total count of these affected systems, γk
is the bond count between the donor and accep-
tor in system k, S is a normalisation function, and
∆k

hyper is defined for each hyperconjugated pair k
as follows

∆hyper =
1

Nd

Nd∑
i

N i
e

N i
A

− 1

Na

Na∑
j

N j
e

N j
A

(17)

Eq. (17) captures the change in electron distri-
bution across the donor and acceptor atoms due
to fragmentation. In the first term, Nd denotes the
number of fragments containing donor atoms from
the hyperconjugated pair. The index i identifies
these fragments.N i

e andN i
A respectively represent

the number of electrons donated and the count
of atoms in fragment i. The second term mirrors
the first, focusing on acceptor atoms. Na indicates
the count of fragments with acceptor atoms, with
j indexing these fragments. N j

e and N j
A respec-

tively represent the number of electrons accepted
and the count of atoms in fragment j.

Fig. 5 Labelled ball and stick model of 3-chloroprop-1-
ene. Green, black, white spheres correspond to chloride,
carbon and hydrogen atoms, respectively.

To illustrate the meaning of the terms within
Eq. (17), consider fragmenting the molecule shown
in Fig. 5 by cutting the bond between atoms 2
and 3. There is only one hyperconjugation pair
present, where the donor is the C C bond (atoms
1 and 2) and the acceptor is the C Cl bond
(atoms 3 and 4). After fragmentation, the two

donor atoms remain connected, therefore in the
first term of Eq. (17), Nd = 1 and N i

A = 2. Here,
N i

e = 2 as the C C bond contributes two π elec-
trons to hyperconjugation and the two atoms (1
and 2) remain connected. Conversely, for the sec-
ond term in Eq. (17), the two acceptor atoms
remain connected, leading to Na = 1 and N j

A = 2.
Since the bond bridging the donor and accep-
tor groups together has been cut (bond between
atoms 2 and 3), electrons are no longer being
donated to the acceptor, resulting in N j

e = 0.
The functional form of S in Eq. (16) is identical

to that of Eq. (14):

S(∆hyper) =
1− exp (−λ∆hyper)

1 + exp (−λ∆hyper)
(18)

The parameter λ was selected by setting
S(∆max

hyper) = 0.95, with ∆max
hyper being the maxi-

mum value of ∆hyper calculated as

∆max
hyper =

Ne

Nd
A

(19)

where Ne is the sum of all the electrons being
donated in the hyperconjugated system and Nd

A is
the total number of donor atoms in the system.

The penalty terms discussed thus far all relate
to capturing the perturbation in the chemical envi-
ronment. The following subsections provide the
formulation of the penalty terms associated with
controlling the fragment size.

Volume Penalty

The volume penalty (pvol) is defined as

pvol =
1

Nf

Nf∑
k

1

1 + exp
(
−14.654 (∆vol)

2
) (20)

Here Nf is the number of fragments, k indexes
each fragment, and

∆vol =
1

Nf

Nf∑
k

(
Vk − Vref

Vref

)
(21)

where Vk is the volume of fragment k, and
Vref is the reference volume, which is determined
from the target fragment size as discussed further
below. The exponent of -14.654 in Eq. (20) was
selected based on where the function has suffi-
ciently approached the asymptote value of pvol =

9
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1. Specifically, the exponent was selected such that
when |∆vol| = 0.5, pvol = 0.95.

The volume of a fragment is evaluated accord-
ing to the following formula

V =
∑
i

Vi −
∑
i<j

Vij (22)

Both i and j index atoms belonging the frag-
ment. The Vi term is the hard-sphere equivalent
atomic volume [28]

Vi =
4

3
πσ3

i (23)

where σi is the van der Waals radius of atom
i, and Vij is the overlapping volume between two
atoms [28, 63]

Vij = aiaj exp

(
−
αiαjr

2
ij

αi + αj

)(
π

αi + αj

) 3
2

(24)

The amplitude ai is set to a default value of
2
√
2, and rij denotes the distance between atoms i

and j. The αi term is calculated from σi as follows

αi = π

(
3ai
4πσ3

i

) 2
3

(25)

The reference volume Vref is computed using
the following equation

Vref = nt ·
1

NA

∑
s∈S

NsVs (26)

Here, nt represents the target fragment size,
while NA denotes the total number of atoms in the
molecular system. The set S includes all unique
atomic elements present in the molecular system,
for instance, Argon (Ar), Carbon (C), Nitrogen
(N), etc. The variable s is used to index these ele-
ments. Ns indicates the total count of atoms with
the symbol s, and Vs represents the characteristic
volume of an atom with symbol s in the molecular
system, defined as follows

Vs =
4

3
πσ3

s −
1

∥K∥
∑
i∈K

Vs,i (27)

In Equation (27), the first term calculates the
hard-sphere volume of an atom denoted by s.
Here, K refers to the set of atoms directly bonded
to an atom symbolised by s, with i indexing these
neighboring atoms. Vs,i represents the overlapping

volume between atom s and its neighbors in K.
Thus, the second term in Equation (27) averages
the overlapping volumes between atom s and its
adjacent atoms. As an example, consider Fig. 6
illustrating the representative volume of oxygen
VO. In this case, the overlapping volumes between
two atom pairs (designated as nO

neigh = 2) are con-
sidered: between atoms 1 and 4, and atoms 4 and
5.

Fig. 6 Labelled ball and stick model of methanol. Red,
black, white spheres correspond to oxygen, carbon and
hydrogen atoms, respectively.

Volume-Range Penalty

In the previous discussion on the volume penalty
formulation, it is evident that pvol serves as an
indicator of the average variation in fragment vol-
umes. This definition implies the possibility of
creating a set of fragments with a low pvol value,
yet these fragments may vary significantly in size.

To address this issue, we introduce the follow-
ing volume-range penalty

pvrange =
1

1 + exp (−λ(∆vrange − d))
(28)

where d is preset to -0.25, λ is adjusted to
11.78, and

∆vrange =
Vrange − Vref

Vref
(29)

with Vref defined as in Eq. (26), and Vrange

being the difference between the maximum and
minimum fragment volumes.

Number-of-Components Penalty

The final component of the scoring function is the
penalty term pcomp, defined as

pcomp =
1

Nf
(30)
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where Nf is the number of fragments the
molecular system has been divided into. This
penalty term is designed to encourage scenarios
with a higher count of fragments, while discourag-
ing situations with fewer fragments. Specifically,
pcomp seeks to mitigate cases where no fragmen-
tation occurs (i.e., Nf = 1), which is otherwise
favored due to the small pvrange value. In such
instances, ∆vrange = 0 and pvrange ≈ 0, and this
effect is counterbalanced by a high pcomp value
of 1.

The βi Weights

Each penalty in Eq. (6) is weighted by a matching
βi factor. These factors are constrained to be non-
negative (βi ≥ 0) and subject to a normalisation
constraint, ensuring their sum equals one (

∑
i βi =

1). The importance of these weights lies in mitigat-
ing the impact of double counting. For instance,
hyperconjugation and conjugation are interrelated
chemical phenomena, and their combined penal-
ties can lead to an over-representation of chemical
disturbances due to either conjugation or hyper-
conjugation. Therefore, the βi weights play a
crucial role in moderating the influence of each fac-
tor on the overall score, thereby attenuating the
effects of potential statistical correlations among
penalties. The process of determining the βi val-
ues involves an optimisation procedure detailed in
Section 2.4.

2.3.3 Representation of Fragmentation
and Solution Space

The essence of the automated fragmentation
scheme lies in minimising Eq. (6) to obtain an
optimal set of fragments, each contributing to the
best possible score.

This scheme segments a molecular system into
fragments by breaking covalent bonds, resulting
in edges being either broken (labelled as ’1’)
or unbroken (labelled as ’0’). Consequently, a
fragmented molecular system is represented as a
binary vector, where each element represents an
edge in the molecular graph. This binary vector
is then used as input for the scoring function in
Eq. (6). The resulting score reflects the quality of
the corresponding fragmentation.

The objective of the fragmentation algorithm
is to partition a molecular system in a way that
minimizes the scoring function. This involves an

optimisation process, as outlined in Section 3.1,
which minimises the scoring function and yields
the ideal set of fragments.

2.4 Optimisation of Scoring
Function Weights

In this subsection, we elaborate on the methodol-
ogy used for optimising the weights of the scoring
function, {βi}.

The optimisation of the {βi} values, as applied
in Eq. (6), is crucial for generating high-quality
fragments. These weights quantitatively represent
the importance of each penalty term in the scor-
ing function. Suboptimal weightings can lead to an
imbalanced scoring function. For instance, exces-
sively high weighting for the volume penalty (pvol)
might result in an unduly low weight for the poten-
tial energy penalty (ppe), leading to fragments
with significant potential energy variations.

To determine the optimal {βi} values, we
employed an iterative Bayesian optimisation
approach. The weights were fine-tuned using
Dataset 1, comprising 800 protein systems with
sizes ranging from 108 to 455 atoms.

The Bayesian optimisation aims to minimise
the objective function defined as

f = α
1

n

∑
i

pivol + (1− α)
1

n

∑
i

S(∆Ei) (31)

Here, pvol represents the volume penalty, and
∆E denotes the energy difference between the
total unfragmented system and the MBE2 energy,
both computed at the HF/6-31G* theory level.
The symbol S in Eq. (31) indicates a normali-
sation function, analogous to that used for ppe,
as previously discussed in Section 2.3.2, with the
exception that the boundary points of the sig-
moid function correspond to 1 and 4 kJ mol−1.
The method for evaluating pvol is also detailed in
Section 2.3.2. In the equation, i indexes each pro-
tein system in the dataset, n is the total number
of protein systems, and α is a hyperparameter.
This function, thus, represents a weighted average
of the deviations in fragment volume and energy
across the dataset. An α value of 0.5 was chosen
to balance the significance of volume and energy
equally.

The MBE fragmentation method was selected
as it forms the basis of other fragmentation

11

https://doi.org/10.26434/chemrxiv-2024-m51gh ORCID: https://orcid.org/0000-0001-5109-4279 Content not peer-reviewed by ChemRxiv. License: CC BY-NC-ND 4.0

https://doi.org/10.26434/chemrxiv-2024-m51gh
https://orcid.org/0000-0001-5109-4279
https://creativecommons.org/licenses/by-nc-nd/4.0/


methods such as electrostatically-embedded MBE,
generalised MBE and FMO.

The design of the objective function in Eq. (31)
aims to derive {βi} values that guide the scoring
function towards producing fragments with mini-
mal MBE2 energy deviations from the complete,
unfragmented system, while also maintaining frag-
ment sizes near the desired target. For the optimi-
sation procedure, the target fragment size was set
as 50 atoms.

The surrogate model of the objective func-
tion was modelled using the Gaussian Process
Regressor from the scikit-learn Python package,
employing a radial basis function kernel [51]. We
set the noise variance and length scales to 1.0.
The expected improvement acquisition function
guided the selection of subsequent {βi} values for
sampling.

Figure 7 illustrates the optimisation work-
flow. The initial stage involved data prepara-
tion to build the Gaussian Process model. This
step included computing the objective function
f (Eq. (31)) for 16 different sets of {βi} values.
These initial values were derived through a grid
search, ranging from 0.1 to 0.9 in 0.1 intervals, as
listed in Table 2. As Table 2 indicates, the min-
imum values for both βpe and βvol were set at
0.2, reflecting the anticipated higher significance
and value of these factors (energy and volume)
compared to others.

Table 2 Initial datasets of {βi} values.

βpe βconj βhyper βvol βcomp βvrange

0.2 0.1 0.1 0.2 0.1 0.3
0.2 0.1 0.1 0.2 0.2 0.2
0.2 0.1 0.1 0.3 0.1 0.2
0.2 0.1 0.1 0.4 0.1 0.1
0.2 0.1 0.2 0.2 0.1 0.2
0.2 0.1 0.2 0.3 0.1 0.1
0.2 0.1 0.3 0.2 0.1 0.1
0.2 0.2 0.1 0.2 0.1 0.2
0.2 0.2 0.1 0.3 0.1 0.1
0.2 0.2 0.2 0.2 0.1 0.1
0.2 0.3 0.1 0.2 0.1 0.1
0.3 0.1 0.1 0.2 0.1 0.2
0.3 0.1 0.1 0.3 0.1 0.1
0.3 0.1 0.2 0.2 0.1 0.1
0.3 0.2 0.1 0.2 0.1 0.1
0.4 0.1 0.1 0.2 0.1 0.1

The second stage in the optimisation of {βi}
values includes the optimisation loop where each
iteration involves updating the Gaussian Process

with the recently sampled data, generating the
next set of {βi} values to sample and using these to
fragment and calculate the corresponding MBE2
energies. The objective function is evaluated using
the MBE2 energies and volume penalties across
all 800 protein systems in Dataset 1. This process
was repeated until the minimum objective value
remained unchanged for 200 iterations. A total of
645 iterations were performed accordingly.

3 Algorithms

This section describes the algorithms employed
within QFRAGS for the optimisation of the scor-
ing function (Eq. (6)) as well as the overall
automated fragmentation algorithm.

3.1 Optimisation of Scoring
Function

3.1.1 Restriction of solution space and
allowed edges

As previously discussed, each specific solution to
the fragmentation problem is represented in the
form of a binary vector where each entry corre-
sponds to the state of a bond (1 - broken, 0 -
unbroken). However, since we are aiming for frag-
ments of a specific size, we can eschew from the
solution space edges that when severed generate
fragments that are too small.

To accomplish this, we restrict the solution
space to edges that when cut, do not generate
fragments that are smaller than 60% of the tar-
get fragment size (nt). For example, consider the
fragmentation of the protein system consisting of
MFS-bound Sans CEN2 peptide, with a PDB ID
of 2L7T (174 atoms), into fragments containing
∼20 atoms. As shown in Fig. 8 if the A-B edge
is cut, two fragments of size 6 and 168 atoms are
generated. Since 6 atoms is much smaller than the
target size of 20 atoms, we do not consider the
edge A-B part of the solution space.

In the present version of the fragmentation
code, the solution space is constrained exclusively
to single bonds. That is, only bonds with a bond
order of one are permitted to be broken. From
this point forward, we will refer to the complete
collection of edges within the solution space as
allowed edges. In this implementation, all allowed
edges are, without exception, single bonds. Note
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yes

Initial input

(16 sets of {βi} values)

Fragment systems with

each set of {βi} values

Perform MBE2 calculations

on fragmented systems

Calculate objective function

for each set of {βi} values

Fit and update Gaussian Process

with sampled data

Determine new

sampling point {βi}

Fragment systems with new {βi}

Perform MBE2 calculations

on fragmented systems

Calculate objective

function for new {βi} values

Converged? Return best {βi}

no

1 2

21 Initial data preparation Optimisation loop

Fig. 7 Workflow for the optimisation of {βi} values. The numbering corresponds to each of the phases: (1) Initial data
preparation; (2) Optimisation loop.

Fig. 8 Ball and stick model of MFS-bound Sans CEN2
peptide (PDBid 2L7T) displaying an unallowed edge
between atoms A and B. See text for more information.

that according to our definitions conjugated sys-
tems can include single bonds and consequently
be disrupted by fragmentation.

3.1.2 Initial Guess

To enhance the optimiser’s capability in identify-
ing optimal solutions, we supply a collection of
preliminary approximations. These are instances
of fragmentation that represent initial fragment
groups.

For formulating these initial guesses, we com-
mence by eliminating all permissible edges from

the molecular graph of the system, essentially
breaking all bonds within the solution space. This
process results in a group of diminutive frag-
ments, which we will call primitive monomers.
The fragments constituting the initial guess are
subsequently assembled in a recursive manner by
combining these primitive monomers, following
the methodologies outlined in Algorithms 1 and 2.

Algorithm 1 Constructing initial guess for frag-
mentation instance
Require: ref pointi
1: Initialise empty fragment container F
2: while visited nodes ̸= all nodes do
3: ref mon ⇐ unvisited primitive monomer clos-

est to ref point
4: frag ⇐ build fragment from ref mon (Algo-

rithm 2)
5: Append frag to F
6: Label frag as visited
7: end while
8: Convert F to binary vector

In Algorithm 1, we require a reference point
ref pointi as an input to select a reference prim-
itive monomer (ref mon) to begin construction
of the fragments. The computation of the set of
reference points {ref pointi} is dependent on sys-
tem size and shape. Specifically, the Euclidean
space occupied by the system is partitioned into
three-dimensional rectangular intervals along the
directions of the principal axes of inertia (the
eigenvectors of the inertia tensor), and the mid-
point of these intervals are taken as the reference
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points, as shown in Fig. 9. The inertia tensor was
used to ensure that the calculation of the set of
{ref pointi} is invariant to translations, rotations
and reflections in the geometry of the structure.
Further detail on the computation of the refer-
ence points can be found in the Supplementary
Information.

Fig. 9 Ball and stick figure of steric acid; top: displaying
the principal axes of inertia (red, green and blue arrows);
bottom: displaying the three rectangular intervals formed
using the principal axes of inertia, and the reference points
(red crosses). All rectangular interval edges are parallel to
the principal axes of inertia.

Algorithm 1 begins by initialising an empty
fragment container which will contain the initial
set of fragments obtained with ref pointi. Lines
2 to 7 describe the strategy of forming these frag-
ments. The algorithm monitors the nodes being
visited and continues to build fragments until all
nodes have been visited. The construction of each
fragment begins at the primitive monomer closest
to ref pointi that is unvisited (line 3). A frag-
ment, frag on line 4, is built from ref mon using
Algorithm 2. The frag object is a collection of
primitive monomers, and this fragment is then
appended to the fragment container F . On line 6,
the nodes within frag are marked as visited. This
process is repeated until all nodes have been vis-
ited and the algorithm outputs a binary vector as
the initial guess.

Algorithm 2 describes the procedure of con-
structing a fragment from a reference monomer
(ref mon). Two empty containers are initialised

on lines 1 and 2. Both Q and M hold primitive
monomers. However, Q represents a queue and M
is a container that will contain the set of primitive
monomers to form a fragment. Next, on lines 3 and
4 ref mon is added to both containers. Lines 5 to
16 describe the procedure of constructing the frag-
ment which is a collection of primitive monomers.
The algorithm uses a while loop and repeats until
Q is empty.

Within each iteration of the while loop, Q is
firstly dequeued and the first primitive monomer
in Q is assigned to mon v (line 6). Follow-
ing, we iterate across the neighbouring primi-
tive monomers (line 7) of mon v, where mon w
denotes the neighbours and the visitation status
of each neighbour is checked. If mon w has not
been visited, it is appended to Q and M (lines 8
to 10). Next on line 11, the algorithm checks the
size (number of atoms) of the growing fragment
container M and if the size is ≥ 90% of the tar-
get fragment size (nt), M is returned; otherwise
the while loop continues. Algorithm 2 repeats until
the fragment size condition (line 11) has been sat-
isfied or until the list of neighbouring monomers
has been exhausted and Q becomes empty.

Algorithm 2 Building fragment from reference
monomer
Require: ref mon, nt
1: Initialise empty queue container Q
2: Initialise empty primitive monomer container M
3: Enqueue ref mon to Q
4: Append ref mon to M
5: while Q ̸= empty do
6: mon v ⇐ dequeue Q
7: for each monomer neighbour w of mon v do
8: if mon w ̸= visited then
9: Enqueue mon w to Q

10: Append mon w to M
11: if M.size ≥ 0.9 · nt then
12: Return M
13: end if
14: end if
15: end for
16: end while

3.1.3 Optimiser

The minimisation of the scoring function in Eq. (6)
is performed using a genetic algorithm (GA). This
was selected as the optimiser for two main reasons.
First, it is well suited to exploiting parallel com-
puting architecture at scale, which in turn helps
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reduce execution time. Second, it is particularly
adept at identifying global minima in complex
combinatorial challenges [39], such as the fragmen-
tation problem we address, where we aim to find
the optimal combination of edges to cut and leave
intact.

Within the framework of our GA implementa-
tion, each individual within the population repre-
sents a distinct fragmentation scenario or a set of
fragments. The starting population is comprised
of initial guesses, originating from a dataset specif-
ically prepared for this purpose, as discussed in
Section 3.1.2.

In the implementation, each gene in an individ-
ual corresponds to an allowed edge. As described
in Section 3.1.1 concerning the solution space,
genes can only take on two possible values: 0 and
1. The total number of parents selected for mating
is two if the population size is less than or equal to
eight, and it is ⌊0.25×population size⌋ otherwise.
Parents are selected according to the tournament
selection technique [58]. The crossover type is a
single-point crossover [49] and mutation is random
and occurs by replacement.

Algorithm 3 Iteration of the genetic algorithm

Require: min score, best sol
1: Initialise pop scores and next generation to be

empty containers
2: Select parents from previous generation and add

to next generation
3: Create offspring and add to next generation

(crossover and mutation)
4: for each solution i in next generation do
5: Calculate score and append to pop scores
6: end for
7: local min score ⇐ min (pop scores)
8: if local min score < min score then
9: min score ⇐ local min score

10: best sol ⇐ argmin(pop scores)
11: end if

The GA approach involves an iterative proce-
dure that aims to explore the solution space by
allowing fit individuals to mate and pass its genes
to the next generation. Algorithm 3 describes the
procedure of creating the next generation in the
GA scheme implemented. The fragmentation algo-
rithm monitors the ‘global’ individual (best sol)
with the minimum score (min score). Fit indi-
viduals (parents) are chosen from the previous
generation (line 2) and are used to create the off-
spring for the next generation via crossover (line

3). The solution with the minimum fitness in the
next generation (local min score) is compared to
min score, and the global individual and mini-
mum score are updated if a solution with a lower
score is found (lines 9 to 10 of Algorithm 3). This
iterative process is repeated until either the max-
imum number of iterations has been reached or
if the minimum score has not changed for more
than 50 iterations. A maximum number of itera-
tions of 100 was adopted for all our computational
experiments.

To guide the optimiser in locating good qual-
ity solutions (low score from Eq. (6)), we utilise
the dimer energy (Eq. (32)) to further restrict
the solution space throughout the optimisation
procedure. The dimer energy correction ∆EIJ is
calculated as

∆EIJ = EIJ − EI − EJ (32)

where EIJ represents the energy of the dimer and
EI and EJ are the energies of the monomers. The
value of ∆EIJ provides a measure of the energy
perturbation when the bond(s) connecting the two
monomers in a dimer is/are broken. A force field
treatment (UFF) is used for the calculations of
the energies (EIJ , EI and EJ). As an example
consider Fig. 10, where a C C bond is broken in
the dimer (FIJ) to produce two monomers (FI and
FJ).

Fig. 10 Ball and stick figure of two separate monomers
(FI and FJ ) and the dimer (FIJ ) composing these
monomers. Atoms coloured black, blue, red and white
correspond to carbon, nitrogen, oxygen and hydrogen,
respectively. Red broken line denotes a broken bond.

If the dimer energy correction corresponding
to an edge being cut exceeds a threshold value,
this edge is blacklisted and the corresponding
bond remains unbreakable in future iterations.
The threshold value used is 10 kJ mol−1.

The evaluation of the dimer energy correction
for each edge being cut is performed within the
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scoring function calculation for each individual in
Algorithm 3. The procedure of blacklisting edges
is limited to the first ten iterations of a GA proce-
dure. Otherwise if this continues across the entire
optimisation procedure, there is the risk of poten-
tially rendering the set of blacklisted edges to be
too large and prevent the optimiser from exploring
diverse solutions. By excluding edges associated
with large dimer energies from the solution space,
we steer the optimiser towards an energetically
favourable solution that preserves the integrity of
the chemical environment.

3.2 Fragmentation algorithm

Dealing with the complex optimisation challenge
of optimally dividing a system into Nf fragments,
each with approximately nt atoms, proves ardu-
ous for the optimiser. As molecular systems grow,
the difficulty escalates. The optimiser struggles to
fragment the system in a feasible number of iter-
ations, hindered by the exponential growth in the
combinations of bonds.

To mitigate this issue, we have adopted
a recursive fragmentation approach. With this
approach, a GA optimiser instance will need to
consider a significantly lower number of potential
broken bonds at any given time. In turn, break-
ing a smaller number of bonds results in a smaller
cumulative effect on the score, enabling the opti-
miser to distinguish better between bonds that
lead to low and high energy perturbations. Fur-
thermore, the reduction in the problem size that
comes with this recursive strategy also means less
degenerate solutions for the optimiser to consider.

In the recursive procedure, the molecular sys-
tem is initially partitioned into n larger fragments
and each of these fragments is then broken up fur-
ther. This process is repeated until the fragments
are sufficiently close to the target fragment size.

This recursive procedure is exemplified in
Fig. 11, where we fragment a 174-atom protein
system (MFS-bound Sans CEN2 peptide, PDB
ID: 2L7T), aiming for fragments of approximately
20 atoms. Initially, the algorithm splits the system
into five larger fragments of 31, 35, 38, 36, and
42 atoms, respectively. These fragments are then
further subdivided to achieve fragments nearing
the desired 20-atom size. After two fragmenta-
tion stages, ten fragments emerge, each averaging
approximately 19 atoms.

Fig. 11 Example of the recursive fragmentation scheme
with MFS-bound Sans CEN2 peptide (PDBid 2L7T). Tar-
get fragment size is 20 atoms. Number of atoms listed for
fragments includes hydrogen caps.

Figure 12 graphically illustrates the final auto-
matic fragmentation algorithm. The process starts
by analysing the molecular system, which involves
categorising node and edge attributes and identi-
fying conjugated and hyperconjugated areas. Sub-
sequently, the system undergoes recursive frag-
mentation, incorporating a series of genetic algo-
rithm optimisation steps. Following each fragmen-
tation phase, the resulting fragment sizes (||s||)
are assessed against the target size (nt). If a frag-
ment exceeds the target size, it undergoes further
recursive fragmentation.

4 Results and Discussion

4.1 Optimisation of Scoring
Function Weights

Figure 13 displays the evolution of the minimum
value of the objective function f (Eq. (31)) over
the course of the Bayesian optimisation procedure
as described in Section 2.4. Within the first five
iterations, there is a drastic drop in the minimum
value from 0.38152 to 0.30799. Past this, the rate
at which the minimum value decreases slows down
considerably, indicating a relatively flat optimi-
sation surface. A duration of approximately 100
iterations were required for the occurrence of the
next three minimum values; the final minimum
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Fig. 13 Evolution of the minimum value of f (Eq. (31)).
Arrow indicates the occurrence of the final minimum value
of f at iteration number 445.

value of 0.29205 (see black arrow in Fig. 13 at iter-
ation number 445) occurred 135 iterations after
the previous. After 200 iterations of no change in
the minimum value, the optimisation procedure

was terminated and the corresponding {βi} val-
ues at iteration number 445 were employed in the
fragmentation algorithm.

Table 3 shows the set of {βi} values that min-
imise the scoring function (Eq. (6)) against the
objective function (Eq. (31)).

The term carrying the largest weight in the
scoring function is hyperconjugation (βhyper =
0.313325), which is immediately followed by the
volume range (βvrange = 0.294074). As detailed
in Section 2.3.2, the six penalty terms in the
scoring function are divided into two primary
classes: one focusing on maintaining the chemical
landscape (encompassing potential energy, con-
jugation, and hyperconjugation), and the other
on managing fragment size (including volume,
the number of fragments/components, and vol-
ume range). It is noteworthy that the two most
heavily weighted factors—hyperconjugation and
volume range—belong to these distinct classes.
Moreover, the aggregated weights of penalty terms
involved in maintaining the chemical environment
(0.595084) is greater than that of controlling the
fragment size (0.404916). This difference in weight
distribution between the two categories implies
there is a greater importance to preserving the
chemical environment. Later, we show that a good
balance between the preservation of the chemi-
cal environment and partitioning the system into
appropriately sized fragments is been achieved
with these weights.

The number of components/fragments exhibits
the lowest weight of βcomp = 0.001426. The
low weighting for βcomp is likely influenced
by the inclusion of the volume term (pvol) in
Equation (6). As discussed in Section 2.3.2, the
volume penalty term aims to penalise fragmen-
tation instances where the fragments significantly
deviate from the desired target size. Similarly,
pcomp decreases in value as the number of frag-
ments increases, serving a comparable purpose.
These factors both encourage fragmentation, but
with the presence of pvol, the impact of pcomp

diminishes. The comparative magnitudes of these
weights, where βvol = 0.109416 is larger than
βcomp = 0.001426, underscores their primary
function of reducing the extent of double-counting.

Due to the small magnitude of βcomp compared
to the other {βi} values, we performed a two-tailed
t-test on the set of 800 systems (Dataset 1) to
examine its statistical significance. This involved
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Table 3 The set of optimal {βi} values obtained from Bayesian optimisation.

βpe βconj βhyper βvol βcomp βvrange

0.135816 0.145943 0.313325 0.109416 0.001426 0.294074
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Fig. 14 left : Distribution of the average fragment size of Dataset 1; right : Distribution of absolute energy errors at the
MBE2 and MBE3 levels of Dataset 1. All energies were calculated at the HF/6-31G* level of theory. Averages are indicated
by vertical lines and the corresponding values are reported. Error bars correspond to one standard deviation.

Table 4 The set of adjusted optimal {βi} values after
removal of βcomp.

βpe βconj βhyper βvol βvrange

0.136010 0.146151 0.313773 0.109573 0.294494

comparing results obtained with βcomp = 0.001426
and βcomp = 0. For βcomp = 0, the remaining {βi}
values were normalised to ensure

∑
i βi = 1 (listed

in Table 4). In particular, the quantity compared
in the t-test is similar to Eq. (31), where each
molecular system has a fitness value given by

f =
1

2
pvol +

1

2
S(∆E) (33)

where pvol, S and ∆E are evaluated identical to
those in Eq. (31). A t-value of 0.014 is obtained
and is substantially smaller than the critical t-
value of 1.961 at the α = 0.05 level. Consequently,
due to the presence of βcomp being statistically
insignificant at the α = 0.05 level, we remove
pcomp from the scoring function altogether and
utilise the weights listed in Table 4 for the remain-
der of this Article.

Since the weights of the scoring function terms
were optimised on Dataset 1, the following text
concerns the application of QFRAGS with the
optimised {βi} values to Dataset 1.

Fig. 14 shows the distribution of the average
fragment size as well as the energy errors obtained
with MBE truncated at the two-body and three-
body levels for Dataset 1. The vast majority of
systems in Dataset 1 (81.9%) exhibited average
fragment sizes ranging between 35 and 50 atoms.
Furthermore, 83.0% of systems exhibited average
fragment sizes less than the target size of 50 atoms.
These resulting fragment sizes are encouraging for
our purposes; the standard deviation of 5.5 atoms
is relatively small (approximately 10% of the tar-
get fragment size) and the majority of the average
fragment sizes do not exceed the target fragment
size. Exceeding the target fragment size can be
problematic due to the growing size of larger frag-
ments (e.g. dimers and trimers) which can lead to
memory and convergence issues in fragmentation-
based ab initio calculations. We will show later
in Section 4.2.2 that the distribution of the aver-
age fragment size narrows with larger system sizes
(above 500 atoms).
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Regarding the accuracy of total energies,
Dataset 1 exhibits relatively low error margins.
The mean absolute errors (MAE) are 20.7 and
2.2 kJ mol−1 for MBE2 and MBE3, respectively.
At the MBE3 level, 84.5% of the systems yielded
errors smaller than 4.2 kJ mol−1, compared to
29.0% for MBE2. The significant improvement
in error rates with MBE3 is expected, as MBE3
accounts for more chemical interactions by incor-
porating trimers.

The set of {βi} values in Table 4 is used
in the current implementation of our auto-
mated fragmentation algorithm. The subsequent
section reports the results obtained from apply-
ing QFRAGS to both Dataset 2 and Dataset 3. In
the future, we endeavour to expand the applica-
tion of the fragmentation scheme beyond protein
systems, and will re-optimise the weights against
a more diverse range of chemical systems.

4.2 Application of QFRAGS

4.2.1 Datasets

In this Section, we apply QFRAGS with the opti-
mised {βi} values in Table 4 to Datasets 2 and 3.
We demonstrate the ability of the automated frag-
mentation procedure to generate fragment sizes
close to the input target fragment size and report
on its accuracy by comparison of the single point
energies obtained with and without fragmenta-
tion. The rationale for employing two distinct test
datasets is to examine the impact of system size
on energy deviations and fragment dimensions.

4.2.2 Fragment Size

Figure 3 presents the size distribution of protein
systems in Datasets 2 and 3. Dataset 2, with a
maximum of 408 atoms, features smaller systems
in comparison to Dataset 3, where the largest
structure includes 1,396 atoms.

The distributions of average fragment sizes for
Dataset 2 and Dataset 3 are shown in Fig. 15. In
Dataset 2, a predominant proportion (81.5%) of
systems display mean fragment sizes ranging from
35 to 50 atoms. Conversely, Dataset 3’s distribu-
tion is narrower, with 85.0% of its systems having
average fragment sizes within the 40 to 50 atom
range, compared to only 65.0% in Dataset 2. This
variance in distribution patterns is further evi-
dent in their standard deviations: Dataset 2 has

a higher standard deviation of 5.3 atoms, while
Dataset 3’s is 3.2 atoms. These differences are
attributable to the recursive fragmentation pro-
cess and the presence of larger molecular systems
in Dataset 3. Given that both datasets aim for
a target fragment size of 50 atoms, Dataset 3
undergoes more fragmentation recursions than
Dataset 2. Additionally, the larger systems in
Dataset 3 offer more possibilities for dividing
the system into 50-atom fragments. Consequently,
Dataset 3 exhibits a more concentrated distri-
bution, closely aligning with the target fragment
size.

For both datasets, there is a very small num-
ber of molecular systems that, when fragmented,
exhibit mean fragment sizes greater than 50
atoms; this is true for 16.0% and 0.0% of sys-
tems in Dataset 2 and Dataset 3, respectively.
This was also observed for Dataset 1 and the
favourable implications of this were discussed ear-
lier in Section 4.1.

4.2.3 Single Point Energies

Using the fragments produced by QFRAGS, the
total energy of molecular systems in Datasets 2
and 3 was calculated at the HF/6-31G* level using
the Many-Body Expansion method. The MBE
calculations were truncated at the two-body and
three-body levels. Subsequently, energies derived
from fragmentation were compared with those
obtained from full system (unfragmented) calcu-
lations at the same HF/6-31G* level.

Figure 16 presents the distributions of abso-
lute errors at the MBE2 and MBE3 levels. For
both datasets, a noticeable reduction in the abso-
lute error is observed as the MBE level increases
from dimers to trimers. This reduction is exem-
plified by the change in MAEs when transitioning
from MBE2 to MBE3. Specifically, in Dataset 2,
the MAE decreases from 20.0 to 2.2 kJ mol−1

and in Dataset 3, the MAE reduces from 181.5
to 24.3 kJ mol−1. This improvement in energy
accuracy is anticipated and can be attributed to
the inclusion of interaction energies in trimers.
These findings align with existing literature on
hierarchical fragmentation methods [5, 17, 30, 34].

Comparing the two datasets, Dataset 2
exhibits much lower errors than Dataset 3. The
MAEs of Dataset 3 are 161.5 and 22.2 kJ mol−1

greater than those of Dataset 2 at the MBE2 and
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MBE3 levels, respectively. At the MBE3 level,
84.5% and 16.0% of systems in Dataset 2 and
Dataset 3, respectively, achieved errors less than
4.2 kJ mol−1. The higher errors and lower occur-
rence of accurate results in Dataset 3 are due to
the prevalence of larger systems; the average sys-
tem size in Dataset 3 is 1,021 atoms whereas the
average system size in Dataset 2 is 277 atoms. The
same target fragment size of 50 atoms was used
to fragment systems in both datasets. With the
systems in Dataset 3 being larger than those in

Dataset 2, the number of fragments generated in
Dataset 3 will be greater than those in Dataset 2.
Correspondingly, more bonds are being broken in
the systems belonging to Dataset 3, leading to
larger absolute errors.

To better understand the system size’s impact,
we have included the relative error results in
Fig. 17. These errors are calculated by dividing the
absolute error by the total electron count in the
system. Fig. 17 shows the distribution of relative
errors for both datasets.
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The mean relative error in Dataset 3 at the
MBE2 level is 0.051 kJ mol−1 per electron com-
pared to the 0.018 kJ mol−1 of Dataset 2. Con-
versely, at the MBE3 level, both datasets exhibit
the same relative error of 0.002 kJ mol−1 per
electron.

Hence, when normalised for system size, at
both MBE2 and MBE3 levels, relative errors for
the two datasets remain within the same order
of magnitude. This contrasts with the absolute
errors, where Dataset 3’s MAEs for both MBE2
and MBE3 were consistently larger than those
of Dataset 2 by an order of magnitude. These
findings suggest that, by considering system size,
QFRAGS can achieve comparable relative errors
across a broad spectrum of system sizes, ranging
from 158 to 1,396 atoms.

4.3 Comparison to Manual
Fragmentation

To demonstrate the advantage of the proposed
fragmentation scheme, we compare the results of
QFRAGS on two samples of 20 protein systems
randomly selected from Dataset 1 and Dataset 2
to three manual fragmentation approaches specific
to protein systems.

The manual fragmentation approaches will be
called naive, semi-naive, and non-naive and corre-
sponding fragments are obtained by severing the
C N amide, Cα N, and Cα C bonds, respec-
tively. Figure 18 illustrates the three different
manual fragmentation schemes. These three frag-
mentation approaches have been explored within
literature and it has been consistently demon-
strated that the order of increasing accuracy gen-
erally follows the order of cutting the C N amide,
Cα N, and Cα C bonds [33, 55, 68].

To control for fragment size, as part of the
criteria for bond breaking a fragment size of 50
atoms was selected to match the target fragment
size used in QFRAGS.

The sample of 20 structures from Dataset 1
contain systems ranging between 170 and 396
atoms whereas from Dataset 2 the 20 structures
comprise between 193 and 400 atoms. The naming
of these structures consists of two parts, the first is
the PDB code of the original system the system of
interest was generated from (see Section 2.1). The
second part is a subscript which simply indexes
the corresponding fragment. For example, 2LTX2

refers to a structure that was obtained from frag-
menting the protein system with the PDB code of
2LTX, and the subscript of 2 indexes the second
fragment.

Figure 19 shows the distribution of average
fragment sizes for the two samples of 20 pro-
tein systems using the four distinct fragmentation
schemes. For the systems from Dataset 1, the naive
and non-naive methods yield fragments averag-
ing between 40 and 48 atoms in size. Similarly,
the semi-naive method produces fragments with
average sizes ranging from 38 to 49 atoms. In con-
trast, the QFRAGS approach results in fragments
averaging between 36 and 50 atoms. The frag-
ment sizes derived from the three manual meth-
ods (naive, semi-naive, and non-naive) are more
closely aligned with the target size of 50 atoms
compared to QFRAGS. A similar outcome can
be observed for structures of Dataset 2 where the
range of fragment sizes of QFRAGS is larger than
those of the manual schemes. Nonetheless, there is
a substantial overlap in the average fragment sizes
among protein systems across all fragmentation
schemes.

Figure 20 shows the mean absolute energy
errors calculated using two fragmentation meth-
ods (MBE and FMO) at the dimer and trimer
levels across the four fragmentation schemes for
structures of Dataset 1 and Dataset 2. Across all
40 protein systems, the MBE2 and MBE3 MAEs
across the four fragmentation schemes are all
within the same order of magnitude. The MBE2
MAEs range between 41.8 and 58.5 kJ mol−1,
and the MBE3 MAEs range between 3.2 and
9.9 kJ mol−1 for systems in Dataset 1. Whilst for
Dataset 2, MBE2 MAEs ranged between 19.4 and
42.5 kJ mol−1 and MBE3 MAEs ranged between
2.0 and 4.0 kJ mol−1.

It should be noted that since the weights of the
scoring function were trained on systems belong-
ing to Dataset 1 with MBE, there will be some bias
in the MBE results from QFRAGS. It is for this
reason that we include systems from Dataset 2.
The above results demonstrate the similarity in
the behaviour of MBE for systems belonging to
and outside of the training set (Dataset 1).

For Dataset 1 structures the FMO errors asso-
ciated with the non-naive and QFRAGS are con-
sistently an order of magnitude smaller than the
naive and semi-naive schemes. Specifically, the
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Fig. 18 Definition of the three different manual fragmen-
tation schemes employed for the 20 protein systems: naive,
semi-naive and non-naive. R1 and R2 denote arbitrary side
groups of amino acids.

FMO2 MAEs of the naive (55.1 kJ mol−1) and
semi-naive (74.9 kJ mol−1) are both an order
of magnitude larger than those of the non-naive
(3.3 kJ mol−1) and QFRAGS (8.5 kJ mol−1).
This also holds true for FMO3 where the MAEs
of the naive (2.5 kJ mol−1) and semi-naive
(1.1 kJ mol−1) fragmentation schemes are greater
than those of the non-naive (0.4 kJ mol−1) and
QFRAGS (0.4 kJ mol−1) schemes.

Compared to the FMO results of structures
belonging to Dataset 1, those of Dataset 2 con-
trast in two ways. Firstly, the FMO2 MAEs of
all three manual fragmentation schemes are an
order of magnitude larger than QFRAGS. Sec-
ondly, the FMO3 MAEs of semi-naive, non-naive
and QFRAGS are all within the same order of
magnitude (less than 1 kJ mol−1). However, these
differences only occur for the semi- and non-naive
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Fig. 19 Distribution of average fragment size obtained
from fragmenting 20 proteins randomly selected from a)
Dataset 1; and b) Dataset 2 using the various bond break-
ing schemes: naive, semi-naive, non-naive and QFRAGS.

manual fragmentation schemes; the behaviour of
QFRAGS is consistent across systems in Dataset 1
and Dataset 2.

These differing results between MBE and
FMO, specifically, the errors of FMO being gen-
erally lower than those of MBE, highlight the
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importance of the treatment of bond breaking
and inclusion of electrostatic potentials in frag-
mentation methods. MBE fragment calculations
do not employ electrostatic potentials and use
hydrogen capping to restore valence at the site
of broken bonds. The inclusion of hydrogen caps
has the potential to perturb the electronic envi-
ronment and introduce spurious steric effects [67].
Meanwhile, in FMO, fragment energy calcula-
tions are performed in the electrostatic potential
of surrounding fragments, and furthermore FMO
avoids introducing hydrogen caps, and instead the
AFO approach is used to treat the broken bonds
[38, 47]. The effects of such variability between
MBE and FMO are best exemplified through
the three-body errors of 2LTX2 fragmented with
the non-naive approach, where the MBE3 error
(94.2 kJ mol−1) is two orders of magnitude larger
than that of FMO3 (0.2 kJ mol−1).

Furthermore, the MAEs of FMO3 across all
four fragmentation schemes are consistently lower
than those of MBE3. On the other hand, the
FMO2 MAEs are either the same order of mag-
nitude or an order of magnitude less than those
of MBE2. Such observations are consistent with
the literature on fragmentation methods concern-
ing electrostatic potentials; methods that include
electrostatic potentials typically outperform those
lacking it [19, 30, 65], albeit being more computa-
tionally demanding than the latter.

Furthermore, it is important to recognise that
the three manual approaches (naive, semi-naive
and non-naive) are suited to protein systems only,
whereas QFRAGS possesses no information on
the amino acid makeup of the protein systems.
On the other hand, the naive, semi-naive and
non-naive approaches are specifically tailored to
amino acids because these schemes only consider
breaking bonds that are found in protein systems.
Yet despite this lack of amino acid information,
the proposed QFRAGS method is able to achieve
MAEs of the same order of magnitude as the three
manual fragmentation methods at both the MBE2
and MBE3 levels, outperform the naive and semi-
naive schemes with two- and three-body FMO
calculations and is comparable to the accuracy
of the non-naive scheme with both FMO2 and
FMO3.
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Fig. 20 Mean absolute energy errors of various bond
breaking schemes (naive, semi-naive, non-naive and
QFRAGS) with the fragmentation methods FMO2/3 and
MBE2/3 levels across 20 protein systems randomly selected
from a) Dataset 1; and b) Dataset 2. Error bars correspond
to one standard deviation. See text for system description
of the various bond breaking schemes.

4.4 Application to Glycolipids and
Lipoglycans

To demonstrate the applicability of QFRAGS
beyond protein systems, we applied it to a set
of 10 glycolipid and lipoglycan systems ranging
between 368 and 727 atoms, with an average of
455 atoms. Unlike proteins, which are composed of
well-defined monomeric units (amino acids), these
structures lack an intuitive monomeric unit due
to the varied lipid component and consequently
their manual fragmentation poses a challenging
task. Consequently, we selected these structures to
analyze the performance of QFRAGS.

Table 5 summarises the results of applying
QFRAGS to the glycolipid and lipoglycan systems
including the average fragment size and MBE2/3
errors. With the exception of one system, the aver-
age fragment size is consistently less than the
target fragment size of 50 atoms. In fact, the
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Table 5 Performance of QFRAGS for
glycolipid and lipoglycan systems. MBE2/3
errors are reported in kJ mol−1. System name
corresponds to the HMDB ID.

System Average MBE2 MBE3
Fragment Size error error

0011945 41.8 -14.6 -0.2
0011957 40.9 7.8 0.4
0011959 41.2 -1.3 0.0
0012117 42.3 -8.6 -0.2
0012121 47.8 3.7 -0.1
0012123 47.1 3.0 0.5
0012124 44.5 0.3 -0.1
0012125 51.8 6.4 -1.0
0012232 48.7 5.0 0.0
0013470 40.4 27.9 0.1

majority of systems (60%) exhibit average frag-
ment sizes ranging between between 40 and 45
atoms.

Concerning the energy errors, the largest
MBE2 error (27.9 kJ mol−1) belongs to largest
system (727 atoms) and this error reduces to
0.1 kJ mol−1 with the inclusion of trimer energies.
Across the 10 systems, the MAE decreases from
7.9 kJ mol−1 at the two-body level to 0.3 kJ mol−1

at the three-body level. Once again, this decrease
in the MAE is ascribed to the inclusion of inter-
action energies of trimers. Such results highlight
the accuracy of QFRAGS even on systems beyond
proteins, the systems where the weights of Eq. (6)
were trained on. With the results above, together,
these outcomes demonstrate QFRAGS’ capabil-
ity of generating fragments of a specific size,
its accuracy, and its applicability beyond protein
systems.

5 Conclusion

In this study, we introduced an innovative,
automated molecular fragmentation approach,
QFRAGS, characterised by its evolutionary opti-
misation of a scoring function. The proposed
approach hinges on three main innovations.

First, the fragmentation process is fully auto-
mated, eliminating the need for manual interven-
tion.

Second, traditional energy metrics, which
are impractical for large molecular systems, are
replaced by a multi-factor scoring function. This
function integrates chemical information and
implementation aspects, offering a more feasible

and effective alternative for fragmenting complex
systems.

Third, our approach employs evolutionary
strategies to optimise the scoring function. This
actively seeks out fragmentation schemes that
indirectly minimise energy discrepancies when
compared to the energy of the unfragmented,
reference system.

The scoring function’s weights were fine-tuned
using 800 protein systems, each comprising 108 to
455 atoms. Using the optimised weights, QFRAGS
was then applied to over 1,000 protein systems
with atom counts ranging from 108 to 1,396
atoms, targeting fragment sizes of 50 atoms. For
systems with less than 500 atoms, the mean frag-
ment sizes achieved with QFRAGS varied between
32 and 65 atoms. In larger systems (505 to 1,396
atoms), the average fragment sizes improved,
ranging between 37 and 50 atoms. These results
show QFRAGS’s efficiency in generating frag-
ments that align well with the desired target
size.

Using the fragments generated by QFRAGS,
total energies were calculated at the two-body and
three-body levels using the Many Body Expan-
sion method, with HF/6-31G* as the theory level.
The mean absolute errors for systems less than 500
atoms were 20.6 and 2.2 kJ mol−1 at the MBE2
and MBE3 levels, respectively. For larger systems
(505 to 1,396 atoms), the MAEs increased to 181.5
and 24.3 kJ mol−1 at the MBE2 and MBE3 levels,
respectively.

Then, a comparison of QFRAGS to three
manual fragmentation approaches (naive, semi-
naive and non-naive) specific to protein systems
was performed on 40 protein structures ranging
between 170 and 400 atoms. Total energies were
calculated with two fragmentation methods: the
Many Body Expansion and the Fragment Molecu-
lar Orbital, both at the two-body and three-body
levels. All fragmentation strategies generated frag-
ments with similar average sizes close to the
target fragment size of 50 atoms. With MBE,
the MAEs across QFRAGS and the three man-
ual fragmentation schemes are all within the same
order of magnitude. At the MBE2 level, MAEs
ranged between 19.4 and 58.5 kJ mol−1, mean-
while at MBE3 level, the MAEs fell between 2.0
and 9.9 kJ mol−1. On the other hand with the
fragment molecular orbital method, the accuracy
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of QFRAGS (FMO2 and FMO3 MAEs of 6.6 and
0.4 kJ mol−1, respectively) are comparable that of
the non-naive scheme (FMO2 and FMO3 MAEs
of 9.2 and 0.4 kJ mol−1, respectively) at both the
two- and three-body levels. Both of these schemes
are consistently an order of magnitude less than
the corresponding MAEs of the naive (FMO2
and FMO3 MAEs of 43.4 and 2.1 kJ mol−1,
respectively) and semi-naive (FMO2 and FMO3
MAEs of 63.0 and 1.0 kJ mol−1, respectively)
approaches.

Following, QFRAGS was applied to 10 glycol-
ipid and lipoglycan systems to demonstrate its
applicability beyond protein systems and yielded
MAEs of 7.9 and 0.3 kJ mol−1 at the two- and
three-body levels with MBE, respectively.

The results of this study demonstrate the effi-
cacy of the newly proposed automated fragmenta-
tion scheme in various aspects. QFRAGS is capa-
ble of generating fragments that closely match
the desired size. When integrated with MBE
and FMO fragmentation methods, it achieves an
approximation of the total energy that rivals that
of manual, non-naive fragmentation. Furthermore,
QFRAGS is generalisable to organic systems
beyond proteins. Finally, this study corroborates
the importance of employing high-quality frag-
ments and carefully selecting the bonds to be
broken in molecular fragmentation approaches.

6 List of Abbreviations

Table 6 List of Abbreviations

Abbreviation Definition

QFRAGS Quick Fragmentation via Automated
Genetic Search

MBE Many Body Expansion
FMO Fragment Molecular Orbital
MBE1 One-Body Many Body Expansion
MBE2 Two-Body Many Body Expansion
MBE3 Three-Body Many Body Expansion
FMO2 Two-Body Fragment Molecular

Orbital
FMO3 Three-Body Fragment Molecular

Orbital
QC Quantum Chemistry
GA Genetic Algorithm
AFO Adaptive Frozen Orbital
MAE Mean Absolute Error

Availability of data and
materials

The geometries of the structures in the datasets,
geometries of the fragments, full system energies
and MBE2/3 energies are available in the GitHub
repository.
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[18] Cordero B, Gómez V, Platero-Prats AE, et al
(2008) Covalent radii revisited. Dalton Trans-
actions (21):2832–2838. https://doi.org/10.
1039/B801115J

[19] Dahlke EE, Truhlar DG (2007) Electrostat-
ically embedded many-body expansion for
large systems, with applications to water
clusters. Journal of Chemical Theory and
Computation 3(1):46–53. https://doi.org/10.
1021/CT600253J

26

https://doi.org/10.26434/chemrxiv-2024-m51gh ORCID: https://orcid.org/0000-0001-5109-4279 Content not peer-reviewed by ChemRxiv. License: CC BY-NC-ND 4.0

https://doi.org/10.1038/s42256-021-00418-8
https://doi.org/10.1038/s42256-021-00418-8
https://arxiv.org/abs/2107.12375
https://doi.org/10.1021/ACS.JCTC.1C00765
https://doi.org/10.1021/ACS.JCTC.1C00765
https://doi.org/10.1109/SC41405.2020.00085
https://doi.org/10.1109/SC41405.2020.00085
https://doi.org/10.1063/5.0005188
https://doi.org/10.1063/5.0005188
https://doi.org/10.1063/5.0009933/1061516
https://doi.org/10.1063/5.0009933/1061516
https://doi.org/10.1007/S10822-011-9517-Y
https://doi.org/10.1007/S10822-011-9517-Y
https://doi.org/10.1021/ACS.CHEMREV.5B00584
https://doi.org/10.1021/ACS.CHEMREV.5B00584
https://doi.org/10.1039/C2CP23832B
https://doi.org/10.1063/1.4894185
https://doi.org/10.1021/CR500455B
https://doi.org/10.1021/CR500455B
https://doi.org/10.1063/1.2347710
https://doi.org/10.1063/1.2347710
https://doi.org/10.1039/B801115J
https://doi.org/10.1039/B801115J
https://doi.org/10.1021/CT600253J
https://doi.org/10.1021/CT600253J
https://doi.org/10.26434/chemrxiv-2024-m51gh
https://orcid.org/0000-0001-5109-4279
https://creativecommons.org/licenses/by-nc-nd/4.0/


[20] Deev V, Collins MA (2005) Approximate
ab initio energies by systematic molecu-
lar fragmentation. The Journal of Chemical
Physics 122(15):154102. https://doi.org/10.
1063/1.1879792

[21] Ding M, Flaig RW, Jiang HL, et al
(2019) Carbon capture and conversion
using metal–organic frameworks and MOF-
based materials. Chemical Society Reviews
48(10):2783–2828. https://doi.org/10.1039/
C8CS00829A

[22] Fedorov DG, Ishimura K, Ishida T, et al
(2007) Accuracy of the three-body frag-
ment molecular orbital method applied to
Møller–Plesset perturbation theory. Jour-
nal of Computational Chemistry 28(9):1476–
1484. https://doi.org/10.1002/JCC.20645

[23] Fedorov DG, Jensen JH, Deka RC, et al
(2008) Covalent bond fragmentation suitable
to describe solids in the fragment molec-
ular orbital method. Journal of Physical
Chemistry A 112(46):11808–11816. https://
doi.org/10.1021/JP805435N

[24] Fedorov DG, Slipchenko LV, Kitaura K
(2010) Systematic study of the embedding
potential description in the fragment molec-
ular orbital method. Journal of Physical
Chemistry A 114(33):8742–8753. https://doi.
org/10.1021/JP101724P

[25] Fu Y, Zhang Y, Fan F, et al (2022)
Degradation of pesticides diazinon and dia-
zoxon by phosphotriesterase: insight into
divergent mechanisms from QM/MM and
MD simulations. Physical Chemistry Chem-
ical Physics 24(2):687–696. https://doi.org/
10.1039/D1CP05034F

[26] Gadre SR, Shirsat RN, Limaye AC
(1994) Molecular Tailoring Approach
for Simulation of Electrostatic Prop-
erties. J Phys Chem 98:9165–9169.
https://doi.org/10.1021/j100088a013

[27] Galvez Vallejo JL, Snowdon C, Stocks R, et al
(2023) Toward an extreme-scale electronic
structure system. The Journal of Chemi-
cal Physics 159(4):44112. https://doi.org/10.

1063/5.0156399

[28] Grant JA, Pickup BT (1995) A Gaussian
description of molecular shape. Journal of
Physical Chemistry 99(11):3503–3510. https:
//doi.org/10.1021/J100011A016

[29] He X, Merz KM (2010) Divide and con-
quer hartree-fock calculations on proteins.
Journal of Chemical Theory and Computa-
tion 6(2):405–411. https://doi.org/10.1021/
CT9006635

[30] Herbert JM (2019) Fantasy versus reality
in fragment-based quantum chemistry. Jour-
nal of Chemical Physics 151(17). https://doi.
org/10.1063/1.5126216

[31] Hua S, Hua W, Li S (2010) An efficient
implementation of the generalized energy-
based fragmentation approach for general
large molecules. Journal of Physical Chem-
istry A 114(31):8126–8134. https://doi.org/
10.1021/JP103074F

[32] Hua S, Li W, Li S (2013) The Generalized
Energy-Based Fragmentation Approach with
an Improved Fragmentation Scheme: Bench-
mark Results and Illustrative Applications.
ChemPhysChem 14(1):108–115. https://doi.
org/10.1002/CPHC.201200867

[33] Isegawa M, Wang B, Truhlar DG (2013)
Electrostatically embedded molecular tailor-
ing approach and validation for peptides.
Journal of Chemical Theory and Com-
putation 9(3):1381–1393. https://doi.org/10.
1021/CT300845Q

[34] Izgorodina EI, Rigby J, Mac Farlane DR
(2012) Large-scale ab initio calculations of
archetypical ionic liquids. Chemical Commu-
nications 48(10):1493–1495. https://doi.org/
10.1039/C1CC15056A
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