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Leveraging GPT-4 to transform chemistry from paper to practice 
Wenyu Zhang, a Mason A. Guy, a Jerrica Yang, a Lucy Hao, a Junliang Liu, b Joel M. Hawkins, c Jason 
Mustakis, c Sebastian Monfette, *c and Jason E. Hein *ade 

Large Language Models (LLMs) have revolutionized numerous industries as well as accelerated scientific research. However, 
their application in planning and conducting experimental science, has been limited. In this study, we introduce an adaptable 
prompt-set with GPT-4, converting literature experimental procedures into actionable experimental steps for a Mettler 
Toledo EasyMax automated laboratory reactor. Through prompt engineering, we developed a 2-step sequential prompt: the 
first prompt converts literature synthesis procedures into step-by-step instructions for reaction planning; the second prompt 
generates an XML script to communicate these instructions to the EasyMax reactor, automating experimental design and 
execution. We successfully automated the reproduction of three distinct literature-based synthetic procedures and 
validated the reactions by monitoring and characterizing the products. This approach bridges the gap between text-to-
procedure transcription and automated execution and streamline the literature procedure reproduction.

Introduction 
Self-Driving Labs (SDLs) integrate robotic automation with 
machine learning (ML) to explore chemical space. SDLs 
accelerate research and discovery across various disciplines, 
including organic synthesis,1–3 materials chemistry,4–6 photo-7,8 
and electrochemistry.9–11 Automation liberates human 
researchers from time-consuming and repetitive tasks, while 
closed-loop optimization algorithms and/or computer vision 
further reduce the need for human oversight.7,12–14 However, 
the broader adoption of SDLs remains challenging because the 
required expertise in engineering and programming are beyond 
the scope of many chemistry laboratories. For example, 
programming an established automation system to execute a 
single, well-known chemical reaction can be a laborious 
exercise.14,15 Additionally, SDLs still require significant human 
involvement, skill, and time in the design of experiments and in 
mapping simple chemical actions to complex robot 
movements.16 The lack of standardization also poses a barrier in 
adaptability and transferability of SDLs development. 

Recognizant of this, the Cronin group introduced ChemIDE,17 
a tool that transforms common procedures written in natural 
language to a domain-specific chemical descriptive language 
(χDL).18,19 This approach generalized the vast majority of 
chemistry related tasks, with the goal of facilitating 
standardization and transfer of chemical procedures for SDLs. 
This translation used a Natural Language Processing (NLP) 
algorithm, called SynthReader, to identify text to their action 
entities and extract action details using pattern recognition. To 
support standardization, χDL is hardware-agnostic, and 
depends on SDLs to have a layer that expands the high-level χDL 
actions to basic hardware instructions or map these actions to 

programming functions. For example, χDL has enabled the 
successful transfer of synthetic protocols between different 
hardware platforms in different countries, and applied to the 
discovery of organic solid-state laser gain materials.20,21  

IBM’s RXN for Chemistry (RXN) is a cloud-based SDL platform, 
supporting remote execution of a designed procedure on the 
automation lab.22 The platform also supports text-to-RXN 
procedure, a translation tool using the transformer model that 
promotes user-friendly experimental design and reaction 
planning.23 Despite the executable commands varying from 
ChemIDE/χDL in task names and arguments, both platforms 
support transcription of natural language to their executable 
languages, demonstrating that experimental design through 
natural language is more intuitive and enabling better 
transferability between SDLs.  

Artificial Intelligence (AI) and Large Language Models (LLMs) 
have attracted significant public attention since the release of 
chat Generative Pre-trained Transformer (GPT) 3.5 from 
OpenAI.24 LLMs, trained on extensive datasets, provide 
comprehensive text responses to user requests upon various 
tasks. In chemistry particularly, LLMs have shown promise in 
reaction and molecular structure prediction owing to their 
expansive knowledge bases and complex pattern recognition 
capabilities.25–27 Embedding a chemistry-specific knowledge 
base into LLMs can noticeably improve the general performance 
in chemistry-specific queries.28–30 For example, ChemCrow is a 
LLM chemistry agent used to predict organic molecule 
structures with desirable properties and assist with the planning 
and execution of their synthesis.29 

    While LLMs can assist with interpreting experimental data 
and providing theoretical insights, they are traditionally 
incapable of conducting physical laboratory tasks, such as 
mixing reagents or operating lab equipment. This limitation can 
be overcome with their ability to assist in this text-to-procedure 
transcription with comprehensive understanding. For example, 
a comparable accuracy to transformer models can be achieved 
using GPT-3.5 with few-shot learning, by including several 
ground-truth instances in the prompt.31,32 Yoshikawa et al. 
proposed CLAIRify, which generates χDL code from 
descriptive instructions using zero-shot GPT coupled with a 
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verifier that iteratively prompts error messages in the chat.33 
This LLM-based planning tool was later implemented to 
Organa, an AI voice assistant system on an electrochemistry-
specialized SDL configuration, allowing interaction with the SDL 
in natural language.11 Additionally, Coscientist, a multi-LLM 
intelligent agent (GPT-4), used function calling with an 
embedded function pool. The system selects the most 
appropriate function according to the prompt to generate 
scripts in Emerald Cloud Lab (ECL) Symbolic Lab Language (SLL) 
and Opentrons Python application programming interface 
(API).34  

Nonetheless, the implementation of LLMs in SDLs remains 
inaccessible for most chemists due to the lack of available and 
readily usable prompt methodologies for experimental design, 
and/or the labor-intensive development involved in using open-
source LLM models. Platforms like RXN and ChemIDE, while 
available for text-to-procedure translation, require specific SDL 
configurations to execute the generated code locally due to 
their hardware-agnostic nature. Moreover, some general 
procedures often lack exact mass or volume quantities, limiting 
the efficacy of current machine-readable transcription 
techniques or services. Indeed, this is also a laborious and time-
consuming practice for human researchers. 

Recognizing these current limitations in text-to-procedure 
transcription and challenges in local SDLs execution, we aim to 
create an easy-to-use LLM prompt set for literature-to-
procedure execution on an off-the-shelf automated laboratory 
reactor (ALR; Fig 1). We selected the Mettler Toledo (MT) 
EasyMax because its software provides a user-friendly 
experimental design interface (iControl) and automatic design 
import from Extensible Markup Language (XML) (iC Data 
Center). We used ChatGPT-4 web-version to facilitate a no-code 
chemical protocol-to-procedure transcription, making it easy to 
be adopted by chemists with no coding expertise. We 
demonstrated the capability of this approach with three 
synthetic methods from the literature: 1) a detailed nucleophilic 
aromatic substitution reaction (SNAr) protocol; 2) a general 
hydrazine synthesis procedure and 3) an autonomous Curtius 

rearrangement monitoring protocol, showcasing different use 
case scenarios. Our two-prompt approach first transforms the 
literature protocol into a detailed stepwise procedure and 
subsequently to machine-executable XML scripts that 
communicated with MT EasyMax reactor. We further examined 
the generation robustness in length limits and accuracy as well 
as the code generation transferability in Python-based SDLs. 

Methods 
Selection of LLM 

We chose GPT-4 over the GPT-3.5-turbo or other open-source 
models due to public accessibility, calculation accuracy, task-
driven performance and token limit. First, OpenAI’s ChatGPT 
family is one of the most accessible generative AI systems. The 
interaction with a GPT model through a web User Interface (UI) 
has no installation or hardware requirements (unlike options 
that require an API). GPT-4 also exhibits superior performance 
in chemistry-related tasks, including its enhanced accuracy in 
reaction prediction and structure elucidation.25 Furthermore, 
GPT-4's web browsing capability and integrated Python code 
interpreter35 enabled us to leverage its analytical capabilities for 
chemical phase lookup and advanced calculation tasks, which 
cannot be achieved by previous GPT models like GPT3.5.  
 
Prompt engineering  
We developed a two-step sequential prompt to convert 
literature text into a machine-readable format using ChatGPT-
4. The first prompt transformed general experimental 
procedures/protocols from the literature to detailed, 
structured, and step-by-step procedures. The second prompt 
transcribed the output from the first prompt to machine 
readable tailored XML scripts that can communicate with 
iControl. This sequential prompt approach also allows for the 
integration of additional prompts in either step for potential 
correction in molecular weight lookup and syntax error fixing.  

Fig 1. Workflow of calculation, transcription and execution of a literature procedure on off-the-shelf synthesis workstation; and a comparison of this work 
with conventional tools or open-source software. 
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    The first prompt in Fig. 2 (“prompt 1 - input” box) focused on 
breaking the translation task into three subtasks, called 
“Instructions” in the prompt. This was inspired by how human 
researchers replicate a literature procedure, specifically 
contextualization, calculation and step organization as the 
“prelab” exercises. The first instruction requires the LLM to 
retrieve information to comprehensively understand the 
reaction before performing calculations. The second instruction 
specifically asks to find the reagent phase and calculate the 
actual addition mass or volume, significantly improving the 
mathematical accuracy of the chemical amounts in the stepwise 
procedure. Lastly, the third subtask is to rewrite the protocol to 
a step-by-step procedure with detailed chemical quantities, 
breaking down an unstructured procedure into modular and 
explicit steps. This prompt can also be highly flexible, 
accommodating more specific requests, such as searching for 
the density for all liquid chemicals and displaying results in a 
markdown table, see examples in ESI† S3.2. 

The focus of the second prompt (Fig. 2 “prompt 2 – input” 
box) is to teach GPT-4 the EasyMax domain-specific XML 
structure. Although XML format in general can be familiar to 
LLMs, this iControl tailored structure and hierarchy are unseen 
to GPT-4. A minimal experimental design over iControl can be 
divided into two elements: an operation sequence 
(<OperationSequence>) and a chemicals list 
(<Chemicals>). The XML template includes the schema and 

contains necessary operations (heat, stir, add, dose, wait and 
end) organized in the <OperationSequence> container. It 
also includes sample entries for solid and liquid chemicals in the 
<Chemicals> element, showcasing the iControl domain-
specific XML’s structure and hierarchy. The instructions in this 
prompt aim to map the operation names to the experimental 
operations, especially to differentiate solvent dosing from other 
reagent additions (solid or liquid) as the operation name may 
not be self-explanatory. The instruction also requests the 
generation of a 128-bit Universally Unique IDentifier (UUID) for 
every operation to replace the TrackingID placeholder in 
the XML template. This step is important for iControl 
experiment, as it ensures each chemical or operation is 
distinctly identifiable and traceable during execution. For 
example, the add operation identifies the chemical to be added 
from the chemical list by referencing its TrackingID.  Lastly, 
the instruction indicates that all chemicals used in the 
experiment should be defined in <Chemicals> to ensure 
correct reference in reagent addition operations. Detailed 
prompts used can be found in ESI† Table S2. 

 
ALR configuration 
Our experimental setup incorporated a Mettler Toledo EasyMax 
102 synthesis workstation, equipped with an overhead stirrer 
and a SP-50 dosing unit for liquid handling. We opted for this 
commercialized ALR over custom or prototype SDL modules for 
its reliability, availability, and well-maintained user-friendly 
software families. We utilized the MT AutoChem software 
iControl 6.2 complemented by the iC Data Center 6.2 with 
Electronic Laboratory Notebook (ELN)-enabled capacity 
(detailed setup in ESI† section S4.2) to allow experiment design 
and automatic XML import from a designated folder. Once the 
LLM-generated XML file was moved to the folder, it should 
appear to the iControl ELN session if there was no syntax error 
(ESI† Fig. S13). The experimental design interface in iControl can 
help visualize scripted operations, allowing easy fine-tuning. In 
case of any syntax error, the iC Data Center would create an 
error message file in the same folder that can be used to prompt 
the LLM for correction in the same dialogue (ESI† Fig. S6). This 
error correction approach is similar that of CLAIRify, 
enabling GPT to correct the syntax error by understanding the 
error message. 33 
 
Execution and monitoring 

The imported iControl experiment was then started without any 
modifications. Reagent addition operations were completed 
according to the pop-up window manually.  Three reactions 
taken from literature were monitored using online high-
performance liquid chromatography (HPLC) previously 
demonstrated with high reproducibility.3,36 The products were 
then characterized using nuclear magnetic resonance (NMR) 
spectroscopy. Detailed experiment and monitoring information 
are in ESI† S1. 

Fig. 2    Abstracted prompts and GPT-4 outputs for generating iControl XML scripts from 
literature. 
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Results and discussion 
Case study 1: SNAr aminolysis  

The transcription capabilities of  GPT-4 was firstly evaluated 
with a SNAr reaction that was also done on a EasyMax 102 
synthesis workstation.37 In this case, the literature protocol 
provided stir rate, temperature ramping detail and the mass 
and/or volume of the necessary reagent to carry out the 
reaction. We purposely let GPT-4 carry out the calculations 
using the standard prompt (ESI† Table S2), which matched the 
information from the literature. Following the output of the 
detailed stepwise procedure, each step is successfully mapped 
to iControl operations according to the given rules, see Fig. 3. 
The reaction was executed without modification and was 
monitored with online-HPLC (Fig. 4). We then confirmed the 
identity of 1-methyl-4-(4-nitrophenyl)piperazine via 1H NMR 
spectroscopy (ESI† Fig. S14). The complete prompt and 
response generated by GPT-4 are in ESI† Table S3. 
 
Case study 2: hydrazone synthesis 

Although the detailed experimental protocol with exact reagent 
amounts is sometimes required by the journals, which ease the 
preparation and calculation in reproducing the method, this is 
not invariably the case, especially in general procedure. 
Conventional tools, such as RXN and ChemIDE, are not capable 
of performing calculations of masses from mole or equivalence.  

The synthesis of hydrazone is a simple and straightforward 
reaction that we used to demonstrate the use case of 
performing calculation using GPT-4. In the general procedure of 
hydrazone synthesis,38 the amount of aldehyde is given in 
moles and equivalent to accommodate the various aldehyde 
species. Using 4-fluorobenzaldehyde as a test case, GPT-4 
successfully outputted the correct molecular weight and 
calculated the correct mass of 4-fluorobenzaldehyde, see Fig. 5. 
Note that the identified step 3 involves both temperature and 
stirring information as these two steps are described in one 
sentence with no additional ramping instruction, like case study 
1. Despite the identified single-step action, the output from 
second prompt successfully transcript this step to HeatCool 
and Stir operations. The complete response generated by 
GPT-4 and the experiment design XML are in ESI† Table S4. 

Following creation of the iControl protocol, the reaction was 
executed and monitored using online-HPLC and by plotting the 
peak areas of 4-fluorobenzaldehyde and (4-
fluorobenzylidene)hydrazine over time (Fig. 7). The addition of 
the hydrazine hydrate was delayed to determine the pre-
reaction composition of the benzaldehyde solution. A 
significant (4-fluorobenzylidene)hydrazine formation is 
presented at the first sampling point after the addition of 

Fig. 3   Literature procedure of SNAr aminolysis, stepwise procedure and iControl operations generated by GPT-4.
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hydrazine hydrate at 17 minutes. Formation of the intended 
product, (4-fluorobenzylidene)hydrazine, was also confirmed 
by 1H NMR spectroscopy. Acetal (1-dimethoxylmethyl)-4-
fluorobenzene is also present as an expected by-product (ESI† 
Fig. S15). 

 
Case study 3: Curtius rearrangement 

In this example of autonomous monitoring of Curtius 
rearrangement using NMR spectroscopy,39 the experimental 
protocol includes detailed documentation of monitoring 
techniques. Notably, the timing of reagent addition was 
determined by referencing the number of spectra collected. The 
complexity of the sampling technique may pose a barrier to 
proof-of-concept experimentations without autonomous 
monitoring tools. However, by prompting for calculation of 
actual reagent addition time using the sampling time interval, 
GPT-4 can comprehensively interpret the protocol and 

effectively generate a stepwise procedure as well as an iControl 
XML script with estimated reaction time (Fig. 6). The iControl 
design was executed, and the reaction was monitored with 
online-HPLC (Fig. 9, zoomed initial 7-hour data in ESI† Fig. S2). 
Note that the time course data had separate signals for 4-
fluorobenzoyl azide formation that was not reflected in 19F NMR 
in the literature.39 The addition of compound 12 was delayed to 
31 hours after an observed plateau of nitrene consumption. The 
carbamate formation after Curtius rearrangement was not 
observed with online-HPLC, but then characterized by 19F NMR 
spectroscopy with sampling before and after the addition of 
hexafluoroisopropanol (HFIPA) (ESI† Fig. S16). The complete 
prompt and response generated by GPT-4 are in ESI† Table S5. 
 
Robustness Evaluation  

The generation length limit were evaluated using the recently 
published metal-free C-N cross coupling procedure.40 This 
method, including 9 reagent additions, 4 temperature changes 
and 3 reaction time settings, transcript to a total of 18 iControl 
operations (including stir and end operations). Depending on 
the operation type, the token usage of one additional operation 
is 100 to 240.41 All solid reagents in this procedure were given 
in moles or equivalence, which may increase token usage during 
calculation steps in the first output. Assuming no additional 
prompt was used other than the base example, the resulting 
XML with the structured prompt would result in an estimated 
usage of 5140 tokens, which is beyond the ~4,000 limits in 
recent GPT models. This means that lengthy protocols need to 
be broken down into smaller portions, which could impact 
reliability of the translation. In 10 conversations during late 
April to June, 2024, we observed a higher occasion of multiple 
missing steps or unfinished scripting. For cases where 
operations or chemical elements are missing, the fix rate is 
promising when prompting for full procedure or full chemical 

Fig. 4   Online HPLC monitoring of 1-methylpiperazine and 1-methyl-4-(4-
nitrophenyl)piperazine.  

Fig. 5    Detailed textual procedure of synthesis of hydrazone and stepwise procedure and iControl operations generated by GPT-4. 
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list (ESI† Table S12). Due to the token limit, the maximum length 
of procedure is ideally within ~120 words or 15 steps.  

    The occurrence of syntax error is generally low because of 
the provided XML template, and they are often resolved 
effectively with the systematic error messages from iC Data 
Center. However, exceptions occur with missing element-
ending tag (‘>’) (example in ESI† Fig. S8). In these instances, 
manual correction in text/code editor is more effective because 
this issue pertains more to text markup formatting than to 
scripting performance. 

Using the same experimental protocol, the density lookup 
ability of GPT-4 shows 100% accuracy in 5 conversations that 
specifically requested density lookups. Although GPT-4 was 
demonstrated to have great understand of chemical 
information including molecular weight,27  the lookup results in 
prompt 1 cannot output the correct molecular weight for 5,6-
dichloropyrazine-2,3-dicarbonitrile in all 10 conversations, 
resulting the incorrect mass output even though using the 
correct equation (ESI† Table S11). This error may stem from 
incorrect formula identification and a lack of chemistry 
knowledge, as GPT-4 did not activate web browsing feature, 
possibly related to recent cases of web searching reluctancy.42 
However, this can be fixed by prompting “search the molecular 
weight” and/or providing the chemical formula to leverage 
general chemistry knowledge. Additionally, an external 
chemical database embedding can also enhance the lookup 
accuracy.  
 

Scalability and transferability 

The EasyMax domain-specific XML schema adheres to the S88 
format, a standardization of the control philosophy in hardware 
control. While hierarchy and operation parameters may vary 
between manufacturers, the fundamental philosophy remains 
consistent, aligning with the S88 baseline. Therefore, this 
prompt engineering approach should be transferable as long as 
the prompt can map experimental actions (e.g., heating, 
stirring, dosing) to operation names. Beyond the XML format, 
this approach should support scripting experimental 

Fig. 7   Online HPLC monitoring of product formation with hydrazine hydrate addition 
at 17 min.  

Fig. 6   Literature procedure of Curtius rearrangement, stepwise procedure and iControl operations generated by GPT-4. 
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procedures in any general-purpose programming languages. 
With more familiarity to the language and its function calling 
ability,43 the LLM can script series of functions to effectively plan 
and execute sequential tasks. 
    As a proof of concept, we demonstrate the translation of 
hydrazone synthesis (case study 2) on Python-based SDLs.44,45 
Methods such as heating, stirring and dosing were tailored to 
resemble the configuration of an ALR setup, with manual 
addition of reagents other than solvents. The second prompt 
was adapted using the Python method definitions with updated 
mapping instructions (Fig. 8). The resulting Python script 
accurately mapped functions for all the steps in hydrazine 
synthesis, showcasing the transferability of the prompt 
engineering approach across different instruments and 
programming languages (full conversation in ESI† Table S7&8). 
Beside direct execution with Python-based SDLs, the functions 
can also serve as a backend for scripting operations in domain-
specific XML (ESI† Table S9, example code provided in GitLab 
repo). This permits the potential transcription of more complex 
procedures with fewer token usages, as Python function calls do 
not require hierarchical templates like XML. With more 
sophisticated SDLs, potentially designed for material synthesis, 
there is the prospect of fully autonomous pipelines bridging the 
gap between literature and product.  
 
Limitations 

Although this solution can streamline the calculation and 
scripting process for replicating a literature method, it relies on 
human intervention for prompt engineering, XML file saving, 
error correction and manual reagent addition during 
experiment. Some key parameters, such as stirring rate and 
ramping rate are sometimes not addressed in the literature and 
may require users’ judgement to edit before or after importing 
XML files to iControl. The XML generation accuracy also 
depends on the operation mapping rules in prompt 2, where 

new rules need to be established for the addition of new 
workups or operations. Due to the hardware constraints, such 
as temperature range, stirring rate limit and vessel capacity, it’s 
important yet challenging for LLMs to design experiments that 
strictly adhere to these rules. Additionally, the response may 
encounter an unexpected pause due to high server load or 
token limit, potentially requiring a “continue” prompt to 
resume the generation. It's worth noting that GPT performance 
can vary across different releases, and its behaviour may evolve 
over time.   

Conclusions 
In this study, we have developed a prompt engineering solution 
to translate technical methodologies to stepwise procedures 
and machine-readable scripts in one dialogue. In the first 
prompt, GPT-4 demonstrates its proficiency in performing 
calculations, chemical phase lookup and generating steps with 
precise quantities in the procedure. With the XML template and 
mapping rules that associate solid, liquid dosing, heat and stir 
actions to the operation names in XML, GPT-4 can generate a 
complete XML script with reasonable accuracy and minimal 
human intervention. We demonstrated the execution of the 
XML script utilizing an EasyMax 102 workstation and confirmed 
the successful product formation using online HPLC and NMR. 
Overall, this approach streamlines the fundamental research 
necessity in reproducing literature methods with accessible 
hardware and services. While showcasing the possibility of 

Fig. 9   Online HPLC monitoring of 4-fluotophenyl isocyanate formation with DPPA 
addition at 42.5 min, and heat at 169.5 min. 

Fig. 8   Example prompt 2 and GPT-4 output using Python SDL template
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using LLMs, there are still challenges in applying LLMs to more 
complex procedures or SDLs. To deal with less common or 
complicated reagents, Retrieval Augmented Generation (RAG)46 
approach can be utilized, with an LLM such as ChemCrow,29 
which can aid in increasing chemical accuracy and correctness. 
Finally, future work can also focus on developing a fully 
autonomous literature to product pipeline across various 
disciplines and SDLs configurations. 
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