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Abstract

We present a robust protocol for affordable learning of the electronic-state mani-

fold to accelerate photophysical and photochemical molecular simulations. The proto-

col solves several pertinent issues precluding the widespread use of machine learning

(ML) in excited-state simulations. We introduce a novel physics-informed multi-state
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ML model that can learn an arbitrary number of excited states across molecules with

accuracy better or similar to the accuracy of learning ground-state energies with estab-

lished ML potentials. We also present gap-driven dynamics for meticulous accelerated

sampling of the small-gap regions: which proves crucial for stable surface-hopping dy-

namics. Put together, multi-state learning and gap-driven dynamics enable efficient

active learning furnishing robust models for surface-hopping simulations. Our active-

learning protocol includes sampling based on physics-informed uncertainty quantifi-

cation, ensuring the quality of each adiabatic surface, low error in energy gaps, and

precise calculation of the hopping probability. The thresholds for uncertainty quantifi-

cation are automatically chosen based on statistical and physical considerations. The

protocol will be made available with the next release of the open-source MLatom as

described at https://github.com/dralgroup/al-namd.

Introduction

Electronic-structure methods offer unique insight into complex photophysical and photo-

chemical problems, helping to guide and rationalize the experimental results. Unfortunately,

these methods come with a steep computational cost which severely limits their practical ap-

plications, particularly in nonadiabatic molecular dynamics simulations.1 The latter provide

an invaluable computational tool for investigating complex photoprocesses in the real-time

domain. As of today, by far the most popular nonadiabatic dynamics simulations technique

is trajectory surface hopping (TSH). It has been successfully used to study a wide range of

photoresponsive systems.2–6

TSH simulates the excited-state dynamics of molecules by propagating a swarm of inde-

pendent classical nuclear trajectories on quantum electronic potential energy surfaces (PESs).

Nonadiabatic events are included through interstate instantenous hoppings, whose probabil-

ity is evaluated at each integration time step on the bases of coupling strength between

the starting and the target PES. The swarm of surface hopping trajectories is expected to
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approximate the quantum nuclear wavepacket. TSH does not need global knowledge of the

PESs, only of their values at the classical nuclear geometry. Thus, it is perfectly suited for

on-the-fly simulations, in which electronic structure calculations delivering energies, energy

gradients, and nonadiabatic couplings are executed as required in the course of the trajectory

propagation.

The main bottleneck of TSH simulations is their high computational cost due to the

need for performing hundreds of thousands or millions of single-point electronic-structure

calculations. Hence, a significant effort has been put into developing machine learning (ML)

protocols to accelerate the TSH simulations of photoprocesses.7–23

Indeed, ML allowed breaking through the limitations of the electronic-structure TSH

simulations by enabling large-scale computations for longer time, and with more quantum-

classical trajectories. This research helped to uncover interesting photochemical phenomena,

some of which were rather rare to be confidently quantified, or even detected, with the

pure electronic-structure calculations.24–29 Despite all this progress, the state-of-the-art ML-

accelerated TSH is still an extremely computationally expensive undertaking, with no clear

protocols, requiring intensive human-expert supervision. For these reasons, it is still often

easier to perform non-ML, pure electronic-structure TSH. This state of affairs precludes the

widespread adoption of ML TSH by the community, which is reflected by the fact that only

few expert groups reported new photochemical phenomena based on ML-accelerated TSH,

and the fraction of publications using ML in TSH studies remains relatively small compared

to the bulk of TSH simulations (circa 2%).

The fundamental issue undermining the advance of ML TSH is the challenge of predict-

ing a dense manifold of potential energy surfaces, with their complex topography and small

interstate energy gaps. The learning of this manifold, along with all the intrinsic correlations

with high precision is required for robust ML TSH. The suggested solutions include creat-

ing single-state ML models (i.e., one ML model per each electronic state, Figure 1a) and

multi-output ML models (i.e., a single neural network (NN) with the last layer containing
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as many output neurons, as there are electronic states of interest).30 Both these solutions,

unfortunately, have significant disadvantages: the single-state models do not capture cor-

relations between the states, often leading to inferior performance in ML TSH, while the

multi-output models often have larger errors compared to single-state models.30 Learning

excited-state PESs across different molecules is another grand challenge, and only a few

studies16,31 attempted to do so.

Figure 1: A comparison of different NN models that can be used for excited state properties
prediction, using a triatomic molecule with coordinates q1,q2,q3: (a) a combination of single
output NNs; (b) multi-output NN; (c) multi-state NN. The vectors Gi are the molecular
descriptors of a given atom, li are the network layers with nodes aij, and ESx is the final
predicted energy of adiabatic state x.

Having a good ML model architecture alone is insufficient: one must precisely map the

topography of the electronic-state manifold in the regions visited during TSH. This is an

arduous task. Some proposed solutions were based on extensive manual construction of the

data sets and on generating data with the pure electronic-structure TSH dynamics.8,10,32 At

the same time, for the sake of universality and efficiency, it is desirable to build data sets

from scratch using active learning (AL). However, the reported AL strategies based on ML

TSH exploration required manual adjustment of sampling criteria.11,25,26 Even then, these

strategies are often insufficient for robust ML TSH and require further interventions, such

as interpolation between critical PES points (e.g., between minima and conical intersec-
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tions).26,27,33

Another issue is the need for easy-to-use, end-to-end protocols and software enabling

routine simulations, although progress is being made in this direction too.13,14,34

In this work, we solve these daunting problems by: i) developing accurate and extendable

physics-informed multi-state models (Figure 1c), ii) proposing accelerated sampling of the

critical small-gap regions in the electronic-state manifolds with gap-driven dynamics, and iii)

implementing end-to-end, efficient and robust, active learning protocol based on physics and

automatically, statistically-determined, criteria. We show that these new developments make

the acceleration of TSH with ML affordable, as we can obtain the final simulation results

within days on commodity hardware. Remarkably, our methods also enable learning an

arbitrary number of electronic states not just for a single molecule, but also simultaneously,

across different molecules and different reference electronic-structure levels.

Results

Multi-state learning

Here we introduce a novel ML architecture which satisfies the following requirements: 1)

learning an arbitrary number of electronic states on equal footing with high accuracy; 2)

learning and making predictions for different molecules; 3) capturing the required correlations

between states and, especially, correctly reproducing energy gaps between surfaces; 4) being

fast to train and evaluate. The core idea is captured in Figure 1c.

The distinguishable feature of our model is the inclusion of information about the state

ordering number (e.g., 0 for the ground state, 1 for the first excited state, etc.) in the

model-processed features, alongside the geometric descriptors. This leads to multiple ben-

efits compared to either single-state or multi-output models reported in the literature (cf.

Figure 1 a and b). The paramount benefit is that this architecture can treat an arbitrary

number of states on equal footing. The information about all the states is passed through
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all hidden and output neurons of the NN, and these neurons differentiate between different

states. In contrast, in the single-state models, only information about one state is learned

at a time, i.e., the correlation between states is essentially lost, which might lead to the

inferior performance in ML TSH, as was observed earlier.30 In the multi-output models, on

the other hand, only the last output layer differentiates between states, but the correlation

between states is implicitly learned to some extent as the weights are shared in the preceding

layers.35 Eventually, it may lead to better performance in ML TSH, despite the larger errors

in energies.30

In addition, our multi-state models are ideally suited for incorporating crucial physics

information, such as the importance of energy gaps between states. This importance is

underappreciated in the ML TSH research, but we found that the correct, special treatment

of the small-gap regions is the key to the robust performance of ML models in TSH. As one

of the solutions to the small-gap problem, we include the special loss term Lgap for the gap

when training the multi-state models:

Lgap = ||∆EML − ∆Eref ||2, (1)

where ∆E denotes the energy gaps between adjacent adiabatic states, the superscripts ’ML’

and ’ref’ correspond to the NN prediction and reference values, respectively.

We include this loss to the total loss, L, containing the terms for energy LE and force

errors LF :

L = ωELE + ωFLF + ωgapLgap. (2)

The energy and force losses follow their usual definitions of ||EML − Eref ||2 and ||FML +

Fref ||2, respectively. Each of the loss terms comes with the corresponding weight, ω, with

ωE and ωgap equal to 1, treating the gaps and energies as equally important, and with ωF

set to the standard value of 0.1.
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This makes our multi-state model a typical representative of the physics-informed NNs,

which were shown to provide more qualitatively accurate behavior in the related quantum

dynamics context.35

The overall NN architecture is based on the established ANI-type network, which has

a good balance between cost and accuracy,36 and which we later compare with the more

accurate, yet slower equivariant networks. It means that we use the same ANI-type structural

descriptors and have separate networks for each element type. The predictions are made for

each atom separately and, then, summed up to yield the total energy for the requested state.

The self-atomic energies are computed once and shared for all states of the model. We call

this particular architecture MS-ANI (”MS” for ”multi-state”).

To demonstrate the performance of the multi-state model, firstly, we evaluate its accuracy

in the energies and energy gaps for the first eight electronic states of pyrene. For this, we

construct the data set with 4000 conformations generated from Wigner sampling around

the S0 minimum. All calculations were performed with AIQM137 using CIS38 treatment

for the excited-state properties. We trained the multi-state model on 3000 conformations

and evaluated it on the remaining 1000 test conformations. Remarkably, the model yielded

mean absolute errors (MAEs) in energies close to ca. 1 kcal/mol (0.04 eV) (Figure 2a) and

root-mean-squared errors (RMSEs) below 1.6 kcal/mol (Table S1 of the ESI). The gaps were

also described with good accuracy, with MAEs below 1.7 kcal/mol (Figure 2b), and with

the maximum root-mean-squared error (RMSE) below 2.2 kcal/mol (Table S2). Altogether

errors for energies and gaps are falling close to the chemical accuracy margin of 1 kcal/mol.

These calculations are better put in perspective when compared to the single-state ANI-

type models. We observe that for all electronic states the errors in both, energies and gaps,

are substantially higher than in the multi-state model, with differences most pronounced for

higher excited states (Figure 2, as well as Tables S1 and S2). All of the single-state models’

MAEs and RMSEs are above 1 kcal/mol. In addition to the multi-state model’s superior

performance, its training requires much less time than training eight separate single-state
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(a) (b)

Figure 2: Performance of the multi-state (black squares) and single-state (red dots) models
for predicting the energies and energy gaps of the first 8 electronic states of pyrene judged
by mean absolute errors (MAEs).

models.

We also observe for the first time that the accuracy in energies of the ground state is

improved upon the inclusion of the excited-state information. Also, our multi-state model

can learn the excited states with the same or higher accuracy than a single-state model can

learn the ground state: a previously unachievable result.

Mapping small-gap region with gap-driven dynamics

Regardless of how good the model is, sufficient amount of data to sample all relevant PESs

regions for the TSH is always a necessity. This data is usually generated based on the TSH

trajectories, either propagated with a reference electronic-structure method, or with ML in

an active learning loop. However, such data may often have insufficient representation of

the critical region in the vicinity of the conical intersections because the TSH trajectories

contain only very few points in that region. This explains why some of the previous studies,

even after training on extensive data sets (e.g., from the reference TSH trajectories), still

could not obtain robust dynamics, and needed to switch from ML to the reference electronic-

structure calculations in the region of small gaps during the ML-accelerated TSH trajectory
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propagation.8,9,32 To mitigate this issue, specially designed protocols, such as interpolation

from minimum energy conical intersection points25–27 were occasionally employed.

Here, we have developed an accelerated sampling approach to meticulously chart the

small-gap regions in the direct vicinity of a conical intersection. We use this approach to

improve the robustness, and to accelerate the active learning loop described in the next

section, but we envision that it can be used also in other contexts, such as accelerating the

search for conical intersections. Our approach samples the points relevant to the TSH via

propagating special, gap-driven molecular dynamics (gapMD) trajectories (Figure 3).

The gapMD trajectories involve the back-and-forth switching of propagation along the

energy gap gradient and energy gradients of the adiabatic surfaces. In the region of gaps,

∆E, larger than 0.03 Hartree, the trajectories are propagated along the energy gap gradient,

∇Egap, defined as the difference between energy gradients in the upper, (∇Eupper), and

lower, (∇Elower), surfaces:

∇Egap = ∇Eupper −∇Elower, (3)

with equivalent expression formulated in terms of forces:

Fgap = Fupper − Flower. (4)

These trajectories, by construction, drive the dynamics into the regions with smaller

gaps. The threshold of 0.03 Hartree is chosen because it is a typical range of gaps at which

the interstate hoppings commonly happen.39 Once the region of a smaller gaps is reached, we

switch to propagating trajectories using the energy gradients of either the upper, or lower

surface (see below). This is done for several reasons: i) propagating exclusively with the

energy gap gradients will sample many irrelevant points, e.g., to complete dissociation of a

molecule as the dissociated structures have degenerate energy levels with a zero gap, ii) in

actual TSH, trajectories are propagated either on the upper, or lower surface, and we want

to sample the relevant phase space. Hence, our trajectories propagated with the energy-gap
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Figure 3: Gap dynamics flowchart.

gradients are only for biasing dynamics to visit the small-gap region faster, to enrich the

sampling of this region.

Switching back and forth from energy gap gradients to electronic state gradients makes

the gapMD not energy conserving. To ensure energy conservation, and to avoid obtaining

dissociated and otherwise nonphysical geometries, if the excess energy Eexcess is greater than

the current kinetic energy Ek of the system, the atomic velocities v are scaled along the

momenta, i.e., according to the formula:

v′ =

√
1 − Eexcess

Ek

v. (5)

The updated velocities v′ are used in the further propagation. The excess energy, Eexcess,

is defined as a difference between the total energy at the current time step, and the initial

total energy at the time step zero. If the excess energy, Eexcess, is greater than the kinetic

energy, Ek, then there is not enough kinetic energy to compensate for this excess; hence, in

such case we switch the trajectory propagation to the electronic state surface regardless of
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the gap value.

End-to-end active learning targeting accurate hopping probabilities

Ultimately, our goal is to design a protocol for robust ML TSH through meticulous charting

of the electronic-state manifolds of new systems from scratch. The multi-state models and

gapMD provide useful tools for achieving this goal. Hence, we incorporate both tools into

the end-to-end, physics-informed active learning (AL) protocol (Figure 4). This AL protocol

ensures not only the sampling quality of the adiabatic surfaces and small-gap regions, but

also that the hopping probabilities are accurate.

Figure 4: Active learning flowchart.

The core of the AL protocol is running many trajectories to sample new points, labeling
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them (i.e., calculating the reference electronic-structure properties), training the ML model

on the data updated with the newly labeled points, and repeating the procedure until con-

verged. We used our domain knowledge to tune all its stages to obtain robust ML-TSH

results as efficiently, as possible.

We generate the initial data set using statistical considerations in the same way, as

described previously for our AL procedure for the ground-state molecular dynamics.40 In

brief, the points are sampled until the validation error does not drop too much (judged

by training the ground-state energy-only model). From a ground-state minimum geometry

of the studied molecule, 50 conformations are sampled from a harmonic-oscillator Wigner

distribution,41 and the error in energy prediction is calculated using a 5-fold cross-validation.

The procedure is repeated until the projected accuracy improvement is less than 10%, as

estimated by fitting the learning curve.

Once the initial data are sampled, we start the AL loop by training our multi-state

model on both, energies and energy gradients of all electronic states, and propagating many

(50 in this work) ML-TSH trajectories started from the Wigner-sampled initial conditions.

At each time step, we check several criteria to evaluate whether to propagate or to stop

the trajectory, and sample the geometry at this time step (Figure 4, bottom). The first

criterion is whether the ML-predicted energy gap between the current and adjacent surfaces

is negative: this check ensures correct state ordering. Then, we check whether the uncertainty

quantification (UQ) metric for the current surface is exceeding the threshold, which ensures

the quality of the relevant adiabatic surfaces on which the dynamics is propagated. Finally,

we check whether the UQ for the surfaces up and down the current surface are exceeding their

respective thresholds. This ensures that the crucial energy gaps are monitored indirectly. It

is also possible to check the UQ for the energy gaps involved in a direct way, but our tests

showed that this does not enhance the model performance, particularly when gapMD is used

(see below).

The UQ values, U , are obtained using our previous, physics-informed scheme:40 we evalu-
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ate the absolute deviations in energy predictions by main multi-state model trained on more

physical information (energies and energy gradients), and the auxiliary multi-state model

trained on less information (only on energies): U = |Eaux −Emain|. The main model is used

to propagate the nonadiabatic dynamics simulations, while the predictions of the auxiliary

model are only used to judge the quality of the predicted energies. This was shown before

to produce robust active learning for ground-state dynamics.40,42

The UQ thresholds are calculated based on statistical considerations for each state sep-

arately, in the analogous way as before in the ground-state AL.40 They are evaluated with

the UQ values calculated for the initial validation set (10% of the initial data):

UQthreshold = M(U) + 3 · MAD(U) (6)

where M is the median, and MAD is the median absolute deviation. The UQ thresholds are

calculated using the data available in the initial training set and fixed for the rest of the AL

process. This procedure has the benefit that no manual, subjective setting of the thresholds

is needed, in contrast to the adaptive sampling widely used in the field.11,21,22

None of the above sampling criteria directly addresses the key factor controlling surface

hopping: the hopping probability. This factor is very sensitive to any deviations in the

energy gap and having a model, that yields accurate probabilities, is essential for ensuring

the robust performance in TSH. To further refine the model in terms of hopping probability,

after the propagation of each TSH trajectory, we evaluate their uncertainties. The UQ

metrics are computed as absolute deviations between the hopping probabilities evaluated

using the energies predicted by the main, and auxiliary models at each time step before the

UQ threshold was exceeded. We use the same formula as in the Landau–Zener–Belyaev–

Lebedev (LZBL) formulation of TSH:43–47

Pj→k = exp

(
−π

2h̄

√
Z3

jk

Z̈jk

)
, (7)
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where Zjk is the energy gap between adiabatic states, j and k, and Z̈jk is the second-order

time derivative of that gap. The LZBL formalism is also used for all TSH propagations in this

work as implemented in MLatom47,48 due to its simplicity, and because it does not require the

evaluation of the nonadiabatic couplings. We identify all time steps in all trajectories where

the main and auxiliary hopping probabilities deviate by more than 10% (if higher fidelity is

needed, the threshold can be reduced). In the end, no more than 15 probability-uncertain

points are randomly sampled per AL iteration to ensure a balanced training set.

To better sample points in the direct vicinity of the conical intersection, we spawn ML-

gapMD trajectories starting from a random time step of each ML-TSH trajectory (see the

section on gap-driven dynamics). Starting initial conditions for gapMD are only selected from

the TSH trajectory before the first uncertain time step (as judged by the negative gap and

uncertainty quantification for surfaces). The ML-gapMD are subject to the same sampling

and stopping criteria, i.e., UQ of the surface energies, negative gap checks, and hopping

probability uncertainty. In each iteration of the active learning procedure, a given number

of trajectories, usually equal to the number of ML-TSH trajectories, are spawned, following

the gradient difference of two randomly selected adjacent potential energy surfaces. Half of

these trajectories are selected to follow the upper potential energy surface in the small-gap

region, and half of them follow the lower surface.

The convergence rate of AL is evaluated as the ratio of certain trajectories to the total

number of ML-TSH trajectories. Trajectories are considered certain, if they are propagated

without exceeding the surface UQ thresholds, nor having negative gaps. Hopping probability

UQ is not taken into account, as it is an exponential function of the energy gap, which is very

sensitive to any deviations. If the convergence rate is greater than the desired value (95% in

this work), the AL procedure is stopped, and the current model is considered converged.

At an AL iteration, the number of sampled points usually exceeds the number of trajec-

tories because we select them from additional ML-gapMD trajectories and hopping proba-

bility conditions. However, all the points sampled in a given AL iteration are included in the
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training set. Alternatively, to speed up convergence, each AL iteration can proceed until a

pre-selected number of sampled points is achieved, after which the models are re-trained.

How efficient is the physics-informed AL?

To asses the efficiency of the physics-informed AL protocol, we test it by generating the

training data and multi-state model for a fulvene molecule from scratch.

For fulvene, the AL convergence has been achieved in three days on a single RTX 4090

GPU and 16 Intel Xeon Gold 6226R CPUs, only with 19 iterations: an unprecedented ef-

ficiency, not reported before. The final training data set contained relatively few (5950)

points. This labeling cost is equivalent to computing only ten quantum mechanical tra-

jectories. The performance of the model in ML-TSH shows excellent agreement with the

reference quantum-chemical results but in terms of the populations and the distribution of

the geometric parameters at the S1 −→ S0 hopping points (Figure 5a, c, and d, as well as

Table 1). The latter are classified into three groups, following the Refs. 49,50 based on the

C=CH2 bond length, and the mean dihedral angle ϕC=CH2 between the 5-membered ring

and the methylene group:

ϕC=CH2 =
1

4

(
|ϕcis1

C=CH2
| + |ϕcis2

C=CH2
| + |ϕtrans1

C=CH2
| + ϕtrans2

|C=CH2
|
)
. (8)

The planar group is defined with ϕC=CH2 < 30◦, twisted-stretched — ϕC=CH2 > 30◦ and

C=CH2 > 1.55 Å, and twisted shrunk — ϕC=CH2 > 30◦, and C=CH2 < 1.55 Å.

The obtained data is also in good agreement with previous works,49,50 reporting CASSCF

dynamics of fulvene with the Baeck–An couplings.

Do we need all these complications?

The important question is: do we truly need all these complications for a high-quality ML-

TSH dynamics? Indeed, we tried many different settings over eight years of research, and
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(a) (b)

(c) (d)

Figure 5: Summary of the nonadiabatic molecular dynamics simulations of fulvene. Panel
(a) shows the electronic state population evolution during the dynamics conducted with the
MS-ANI model (full lines), single-state ANI models (dashed lines), and reference CASSCF
dynamics (dotted line). Panel (b) shows the electronic state population evolution during the
dynamics conducted with the MACE models at iteration 7 (full line), iteration 12 (dashed
line), and reference CASSCF populations (dotted line). Panels (c) and (d) show correlation
plots of the C=CH2 distance and the mean dihedral angle at the S1 → S0 hopping points in
ML-TSH dynamics (c) and reference CASSCF dynamics (d).

Table 1: Mean value and error bars (95% confidence interval) of observables describing
the deactivation channels and kinetics of fulvene for ML dynamics and reference CASSCF
dynamics.

Observable CASSCF dynamics ML dynamics
Population at 20 fs (%) 16.3 ± 2.9 16.9 ± 2.3
Population at 40 fs (%) 3.7 ± 1.5 3.9 ± 1.2
Planar hopping (%) 94.0 ± 1.8 93.8 ± 1.5
Twisted-stretched hopping (%) 3.7 ± 1.5 4.1 ± 1.2
Twisted-shrunk hopping 2.3 ± 1.2 2.15 ± 0.90
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none showed the satisfactory performance in terms of computational efficiency and robustness

of the protocol. For example, a common robustness problem observed with less elaborate

protocols was that the populations may deteriorate with more AL iterations. Small changes

in the AL settings would sometimes lead to completely different results, too. Another issue

is that, often, obtaining trajectories with reference electronic-structure method turns out

less troublesome than fighting with all the instabilities of ML-TSH. As evidenced by many

publications on ML-TSH, these issues can be tolerated and mitigated by experts to solve the

problems that are beyond the reach of electronic-structure TSH, but they definitely hamper

the wider adoption of the technique.

For example, when we use our physics-informed AL developed for the ground state with

single-state ANI-type ML model and without gapMD and probability uncertainty evaluation,

we can also obtain a good population plot for fulvene (Figures 5a, no checks for negative gaps

were performed either). The problem is, however, that the procedure converged only after a

whopping 104 days, 159 iterations, and 15000 training points (using NVIDIA GeForce RTX

3080 for model training and 8 CPU nodes for labeling and MD propagation). Admittedly,

the populations started to look good with as few as dozens of iterations but, in general, it

should be considered risky to take such non-converged models, if one does not know the

reference population in advance.

One can also question, whether a better ML model can remove the need for some of our

special techniques. To address this, we repeated the above-simplified protocol but with the

state-of-the-art, single-state MACE ML model.51 The model is very slow, which resulted in

28 days of AL to produce 13 iterations and 3850 training points, and it eventually crashed due

to memory issues. The AL was not converged either (only 77% trajectories were converged),

and the last iteration’s model yielded a population that was worse than some of the previous

iterations (Figures 5, panel (b)). The major problem of the MACE model is its high cost,

which might be only worth paying in special cases that we have not identified so far.

All of the above anecdotal examples illustrate that the special techniques of our final
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end-to-end protocol are not bells and whistles, but the result of an 8-year-long struggle to

obtain efficient and robust protocol. These examples are just the tip of the iceberg of the

thousands of thrown-away experiments, and several generations of students and postdocs

efforts.

Does the protocol work for big systems and more states?

Fulvene is a simple system of small size, and of only two-state driven photodynamics. To go

beyond such simple picture, we tested our end-to-end protocol on a molecular ferro-wire made

of 80 atoms, and featuring four electronic states in its regular photorelaxation dynamics. The

chosen molecule characterizes with a complicated electronic structure due to charge transfer

between its three structural units. Amazingly, our AL procedure converged after only three

iterations and produced 1150 training points. The final obtained multi-state model agrees

well with the reference populations determined at the AIQM1/CIS level (Figure 6). Testing

of the model was performed using 200 ML-TSH trajectories and compared to 100 reference

AIQM1/CIS trajectories.

In this case, propagating one ML-TSH trajectory takes about 5 minutes on a single Intel

Xeon Platinum 8268 CPU, which is a significant speed-up even with respect to fast methods

such as AIQM1/CIS (having the speed of a semi-empirical method), where one trajectory

takes about 1.5 CPU-hours on average.

Can the multi-state model work across different systems?

Since, by construction, our multi-state model must be able to learn systems of arbitrary

composition, we trained it on a data set combining the AL-produced data sets of fulvene

and the molecular ferro-wire. These data sets were labeled with different electronic-structure

methods, CASSCF and AIQM1/CIS, respectively. They also had different numbers of elec-

tronic states (two in fulvene, and four in the ferro-wire). Regardless these differences, the

model was able to learn from this new data set, and the populations produced with this
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Figure 6: Electronic state population evolution during the dynamics of the molecular
ferro-wire, as predicted with the ML model (full lines), and reference AIQM1/CIS calcu-
lations (dashed lines).
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single multi-state model for each of the molecules are as good as the populations produced

with the separate, dedicated multi-state models (Figure 7).

(a) (b)

Figure 7: Electronic state population evolution during the dynamics conducted with a com-
bined fulvene plus molecular ferro-wire model for (a) fulvene and (b) molecular ferro-wire.
Full lines represent the populations from ML-TSH dynamics, while dashed lines are reference
populations.

Can the protocol learn photoreactions?

Finally, we would like to see whether the proposed end-to-end protocol works for a more

complicated case of a photochemical transformation. For this, we take as a test case the

well-known photoisomerization of azobenzene.52–54

To do this efficiently, we introduce a slight modification to the AL procedure in this

case. Namely, at each iteration, an equal number of trajectories is started from both, the cis

and trans isomers of azobenzene. This ensures that we sample both, the product and the

starting material of each photoprocess, greatly accelerating the model-training convergence

(as is known40 from the AL-based search of conformers in their ground state). After running

for 3 days of wall-clock time, with 33 iterations (about 6000 training points), the model is

26% converged – the best convergence rate at the time of writing (we are still running the

AL for this system and will update the results). This non-converged model can still predict

the photochemistry with reasonable accuracy and below we show the preliminary analysis.
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Analyzing the electronic state populations during the dynamics (depicted in Figure 8),

we see acceptable agreement between the ML model and reference AIQM1/MR-CISD tra-

jectories in the trans → cis isomerization reaction. The excited-state lifetimes can be ex-

tracted by fitting an exponential function to the ground-state population rise, with P (t) =

A(1 − exp(−t/τ)), where τ is the photoprocess timescale, and A is associated with the

infinite-time population limit. After fitting, we obtain: 492 ± 10 fs for the ML-TSH dy-

namics, and 705 ± 22 fs for reference AIQM1/MRCI-SD, showing that, at the current AL

convergence rate, the ML model overestimates the speed of this photoprocess. While we do

not have yet the reference trajectories for the cis → trans process, the overall shape of the

decay curves is in reasonable agreement with literature data,52 showing faster deactivation

of the cis isomer. Particularly, the fitted timescale of 79 ± 1 fs is in good agreement with

Ref. 52, reporting a timescale of 74 fs at the CASSCF level.

(a) (b)

Figure 8: Electronic state population evolution during the isomerization dynamics of azoben-
zene. Trajectories shown in panel (a) started from the trans isomer, while trajectories start-
ing from the cis isomer are shown in panel (b). ML-TSH are represented by full lines, while
reference AIQM1/MRCI-SD trajectories are dashed. Note that these results are shown for
26% convergence rate of AL and we will update them later.

As the next point in the analysis, we can look at the predicted quantum yields of the

photoisomerization processes. The dihedral angle C1–N2–N3–C4 (as shown in Figure 9) can

be used as a convenient descriptor of the formed product, taking the value of approximately
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0 degree for cis-azobenzene, and 180 degrees for trans-azobenzene. The distribution of the

final dihedral angles can be found in Figure 9. Taking a dihedral angle of fewer than 60

degrees as a fingerprint of the cis isomer, and attributing the rest of the population to the

trans isomer (no other photoproducts were observed), the simulated quantum yields Φ are

calculated as the fraction of the trajectories relaxing to form the photoproduct (the other

isomer), Nreactive, to the total number of trajectories Ntraj: Φ = Nreactive/Ntraj.

Here, the model shows excellent agreement with results obtained by the reference method,

as well as the experimental results.55,56The ML-TSH dynamics predict the quantum yields

as ΦML
trans→cis = 0.19 ± 0.08 and ΦML

trans→cis = 0.19 ± 0.08. The uncertainties of the quan-

tum yields were estimated using the normal approximation interval for a binomial process,

assuming a confidence interval of 95%. These values agree with the predictions of the ref-

erence method, AIQM1/MRCI-SD (0.24 ± 0.09), as well as experimental results, predicting

a quantum yield of 0.2 to 0.36 for the trans to cis isomerization, and 0.42 to 0.55 for the

reverse process. This remarkable accuracy in the vicinity of the conical intersection can be

attributed to the inclusion of the gap-driven trajectories in the sampling process.

Conclusions and outlook

Using ML methods for simulating nonadiabatic molecular dynamics is a formidable chal-

lenge due to the necessity to train ML potentials for several electronic states across a wide

range of geometries, as well as due to the intrinsic complexity of photoprocesses, requiring

accurate predictions in many different regions of the PES. Owing to this, state-of-the-art

ML-accelerated protocols for TSH still require extensive human expertise, as well as extreme

computational resources.

Herein, we present an end-to-end protocol for active learning of TSH dynamics that

requires minimal user input, delivering results of unprecedented quality for different photo-

chemical and photophysical processes. The heart of this protocol is a new MS-ANI model
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Figure 9: Distribution of the C–N–N–C dihedral angle of azobenzene at the trajectories final
points. Points from trajectories starting from the trans isomer of azobenzene are marked in
black, while geometries starting from the cis isomer of azobenzene are marked in red.
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able to make predictions for any number of excited states with unprecedented quality. We

leverage the idea of physics-informed active learning combined with accelerated sampling

using gap-driven trajectories to explore the vicinity of the conical intersections and sam-

pling based on hopping probability. The thresholds for uncertainty quantification in the

AL procedure are based on rigorous statistical considerations, minimizing arbitrary, user

decisions.

This all yields a robust protocol able to conduct nonadiabatic dynamics investigation of

photophysical and photochemical processes using affordable time and resources. Addition-

ally, the presented models can simultaneously predict accurate dynamics across very different

chemical species, with no noticeable decrease in accuracy, making them extendable across

chemical space.

Computational details

All computations were performed with the development version of MLatom47,48 and addi-

tional scripts which will be integrated in the next release of MLatom. Wigner sampling

performed with MLatom routines adapted47 from Newton-X.41 Major bulk of computations

and implementations reported here were performed on the cloud computing service of the Xi-

amen Atomistic Computing Suite at http://XACScloud.com supporting collaborative work.

MS-ANI and ANI models are based on MLatom’s interface to the TorchANI57 package.

AIQM1 calculations were performed with the help of MLatom’s interfaces to the MNDO58

(providing the semi-empirical part59 of AIQM1 and CIS), TorchANI (providing ANI-type

NN), and dftd460 programs. CASSCF calculations were performed through the interface to

the COLUMBUS quantum chemistry package.61
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Fulvene

For the active learning of fulvene, initial points were sampled from a harmonic approximation

Wigner distribution, with a total of 250 points. The maximum propagation time was set to

60 fs with a time step of 0.1 fs. Velocities after hopping were rescaled in the direction of the

momentum vector, using a reduced kinetic energy reservoir.50 In each iteration of the AL

procedure, 50 ML-TSH trajectories were run, with an additional 50 ML-gap-driven trajecto-

ries (25 on each electronic surface). From this set, 15 additional points were sampled based

on hopping probability uncertainty. Points were sampled in this manner until a threshold of

300 points was reached in each iteration, after which the new models were trained.

Reference calculations were performed using the CASSCF method, with an active space

of 6 electrons in 6 orbitals. The same settings were used for AL loops with the single-state

ANI model and the MACE model. However, these runs did not include accelerated sampling

with gap-driven trajectories, or sampling based on hopping probability.

Testing of the model was performed using 1000 trajectories for the MS-ANI model, as

well as the single-state ANI models, and 300 trajectories for the MACE models (due to

extensive computational costs). 623 CASSCF(6,6) trajectories were used as reference.

Ferro-wire

In the active learning procedure of the ferro-wire, initial points were sampled from a Wigner

distribution using the standard procedure, with a total of 250 points. The maximum prop-

agation time was set to 200 fs with a time step of 0.5 fs. The velocities after hopping were

rescaled in the direction of the momentum vector, using a reduced kinetic energy reser-

voir. Points were sampled using the same procedure as for fulvene. Reference calculations

were performed using the AIQM1/CIS method, with default settings. All trajectories were

initialized in the third excited state, S3, without filtering. 100 ML TSH trajectories were

propagated with the model trained on the combined fulvene/ferro-wire dataset.

25

https://doi.org/10.26434/chemrxiv-2024-dtc1w ORCID: https://orcid.org/0000-0002-2975-9876 Content not peer-reviewed by ChemRxiv. License: CC BY-NC-ND 4.0

https://doi.org/10.26434/chemrxiv-2024-dtc1w
https://orcid.org/0000-0002-2975-9876
https://creativecommons.org/licenses/by-nc-nd/4.0/


Azobenzene

In the active learning procedure of azobenzene, initial points were sampled from the Wigner

distribution using the standard procedure, with a total of 250 points. The maximum prop-

agation time was set to 1000 fs with a time step of 0.1 fs. The velocities after hopping were

rescaled in the direction of the momentum vector, using a reduced kinetic energy reservoir.

In each iteration two sets of trajectories were propagated, one starting from the cis isomer,

and the other starting from the trans isomer. Model training was performed after sampling

all points resulting from these trajectories, as well as a set of 50 gap-driven trajectories (25

on each active surface), with 15 points added from probability-based sampling, without a

maximum number of sampled points. In the active learning procedure, all trajectories were

initialized in the first excited state, without filtering.

Reference calculations were performed using the AIQM1/MR-CISD method.62 In the

initial, semi-empirical part of AIQM1, the half-electron restricted open-shell Hartree-Fock

formalism63 was used in the SCF step, with the HOMO and LUMO orbitals singly-occupied.

Two additional closed-shell references were added in the MRCI procedure, a HOMO–HOMO

configuration, and a doubly excited, LUMO–LUMO configuration. The active space con-

sisted of 8 electrons in 10 orbitals (four occupied orbitals, six unoccupied). Single and double

excitations within a such-defined active space were allowed.

For Wigner sampling of initial conditions, all frequencies smaller than 100 cm−1 were set

to 100 cm−1, to avoid sampling unphysical structures.47 Testing of the model was performed

on a set of initial conditions filtered to an excitation window of 2.53 ± 0.3 eV for trans-

azobenzene, and 2.89 ± 0.3 eV for cis-azobenzene, which corresponds to the S0 → S1

transition energies at the AIQM1 optimized ground-state minima.

Data availability

The data (training sets and ML models) will be made available under the open-source MIT

license as described at https://github.com/dralgroup/al-namd.
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Code availability

The code will be made available with the next release of the open-source MLatom under the

MIT license as described at https://github.com/dralgroup/al-namd.
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S1 Performance of MS-ANI

Table S1: Performance of the MS-ANI and single-state ANI models for predicting the energies of

the first eight electronic states of pyrene, kcal/mol.

State Single-state RMSE Multi-state RMSE Single-state MAE Multi-state MAE

S0 1.32538 0.96832 1.01809 0.74647

S1 1.33954 1.00046 1.04498 0.77016

S2 1.29239 1.02189 1.01633 0.80134

S3 2.1493 1.47939 1.6647 1.15242

S4 1.92178 1.49865 1.48902 1.18519

S5 1.72372 1.23457 1.35766 0.98109

S6 1.96994 1.28371 1.52209 1.0147

S7 1.64697 1.33066 1.28604 1.05033

Table S2: Performance of the MS-ANI and single-state ANI models for predicting the energy gaps

of the first eight electronic states of pyrene, kcal/mol.

States Single-state RMSE Multi-state RMSE Single-state MAE Multi-state MAE

S0 - S1 1.72368 1.32452 1.30568 1.02068

S1 - S2 1.54319 1.23684 1.1957 0.94517

S2 - S3 2.38496 1.89723 1.83622 1.47973

S3 - S4 2.73568 2.09397 2.13051 1.68351

S4 - S5 2.47677 1.93942 1.91491 1.54836

S5 - S6 2.19074 1.42764 1.69054 1.15271

S6 - S7 2.1447 1.22756 1.63729 0.97736
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