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Abstract: In Chemoinformatics, as in many other computational-related disciplines, it is a common practice 

to identify the “single best” approach or methodology, for instance, identify the best fingerprint 

representation, the best single virtual screening approach or protocol, the optimal representation of the 

chemical space, the best predictive model, to name a few. In molecular modeling, a typical example is 

finding the best docking program. However, it is also known that each approach has its advantages and 

limitations. There are examples of benchmark studies comparing different approaches to find the most 

appropriate solution, and it is common to find that there are no single best programs in such studies. Yet, 

searching for the “best” methods is still common. The main goal of this work is to survey hybrid 

methodologies typically used in Chemoinformatics. The list of approaches is not exhaustive, but it aims to 

cover several representative applications. One of the major outcomes of the survey is that, for various 

purposes, individual methods do not perform as well as the combination of approaches because single 

methods have inherent limitations with advantages and disadvantages. 
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Abbreviations: AI, artificial intelligence; ADMET, administration, distribution, metabolism, excretion, and 

toxicity; CADD, computer-aided drug design; ECFP, extended connectivity fingerprint; ML, machine 

learning; QSAR, quantitative structure-activity relationships; SAR, structure-activity relationships; 

SELFIES, SELF-referencIng Embedded Strings; SMARts, structure-multiple activity relationships; SP(A)R, 

structure-property (activity) relationships; SIR, structure-inactivity relationships; SPR, structure-property 

relationships. 

 

1. Introduction 

In drug discovery and many other complex endeavors, multidisciplinary approaches are essential. In 

science, it is fairly common to come across a combination of concepts, methodologies, and viewpoints that 

generate and develop novel research areas and pose novel ideas. Indeed, multidisciplinary research 

teams have been recognized as a key element to address health care problems.1 Chemoinformatics2 itself 

(also named in the literature cheminformatics, chemical informatics, etc.),3 is a good example of such a 

merge of “traditional” disciplines.4 Another good example is Bioinformatics.5 

In drug discovery, abundant examples of the synergistic combination of compounds are well known to 

exhibit a better performance than the individual isolated compounds. The combinations can be very 

complex giving rise to study areas by themselves such as polypharmacy,6 traditional medicine,7 

botanicals,8 nutraceuticals, screening, and deconvolutions of mixture combinatorial libraries.9 For example, 

polypharmacy refers to using multiple medications to treat one disease or condition, while traditional 

medicine often employs combinations of herbs or natural ingredients to treat various ailments. Botanicals 

can also contain a variety of compounds that act synergistically. Screening and deconvolution of 

combinatorial mixture libraries involves testing large numbers of compound combinations to identify those 

that show desired therapeutic activity. These are a few examples of research areas founded on the idea 

that individual and “best” single compounds, medicines, chemical libraries, methods, etc., are 

outperformed by their combination which, by itself, can be quite challenging. 

Over the years, combinations of methodologies and approaches have been emerging and evolving in 

chemoinformatics for various practical applications including, but not limited to, molecular representation, 

chemical space analysis, similarity searching, property prediction, and structure-activity relationships 

(SAR), to name a few examples. Such combinations can be influenced by the numerous attempts to 
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identify the best single approach through benchmark or comparative studies. In many instances, the 

outcome is that the most appropriate approach depends on the study case or research system. This is 

frequent in molecular docking, one of the most widely used methods in computer-aided drug design 

(CADD). It serves as a fundamental technique for predicting the binding mode of bioactive compounds and 

conducting virtual screening.10 Due to the requirement of enhancing its reliability in pose prediction and 

performance in virtual screening, new docking algorithms and scoring functions have been developed and 

optimized. However, it is unlikely to identify a single procedure that overcomes others in terms of reliability 

and precision or proves to be suitable for all types of molecular targets.11 

The goal of this manuscript is to survey various types of combinations that are commonly done in 

Chemoinformatics. In light of the current rise of machine learning (ML), we also comment on emerging 

combinations that are being developed, paving the way for original and improved research areas. When 

the information, we provide the reference and or link to code, in particular when the tools are freely 

available. As discussed, the combination of research methods can be particularly interesting, as an 

alternative to single conventional strategies in which the research objectives are seen from a unique 

perspective. The manuscript is organized into four main sections. After this Introduction, section two 

discusses sub-disciplines that have emerged or are evolving as the combination of more traditional or long-

established disciplines. Section three presents exemplary types of combinations commonly done involving 

chemoinformatics with different applications in molecular representation, property prediction, structure-

property (activity) relationships -SP(A)R-, virtual screening, chemical space, ML, and other applications 

such as chemistry and art. This section does not include all hybrid methodologies but most common ones. 

Section four presents summary conclusions. 

 

2. Combination of knowledge: Creating new disciplines 

Science has evolved towards a more holistic and multi- and transdisciplinary perspective. Now, various 

disciplines are emerging, being the product of the combination of different perspectives that have emerged 

from multidisciplinary research groups. Thus, chemoinformatics, being a relatively young discipline, has 

given rise to the creation of new disciplines and subdisciplines that combine chemical, biological, and 

biomedical science data. Figure 1 illustrates examples of data used in chemistry, biology, and biomedical 
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sciences, which lead to related disciplines. Now, disciplines related to the study of materials, polymers, 

and food chemicals have emerged, and other disciplines most related to biology and biomedical concepts 

have also benefited from methodologies, concepts, and protocols originally used in chemoinformatics 

focused on drug discovery. For example, molecular modeling, drug design, and toxicology-related 

informatics disciplines.   

  

 
Figure 1. Exemplary data types used in chemistry, biology, and biomedical sciences and their combinations to 

generate new sub-disciplines. The list is not exhaustive but exemplary sub-disciplines are listed. 

 

3. Combination of methods: the power and potential of consensus  

There are numerous examples in which the integration of research strategies offers possibilities for 

evaluating situations beyond what a single technique or methodology would allow, for example, the 

combination of metabolomics (an emerging field of omics sciences that deals with quantitative and 

https://doi.org/10.26434/chemrxiv-2024-fcwnc ORCID: https://orcid.org/0000-0003-4940-1107 Content not peer-reviewed by ChemRxiv. License: CC BY 4.0

https://doi.org/10.26434/chemrxiv-2024-fcwnc
https://orcid.org/0000-0003-4940-1107
https://creativecommons.org/licenses/by/4.0/


5 

qualitative analysis of molecules in a biological sample) and chemoinformatics, offers a powerful 

combination to annotate metabolites and identify biomarkers.12 

Combined methodologies have led to the generation of new useful approaches for different kinds of 

disciplines, like pharmacology, food chemistry, toxicology, and molecular and material design. Table 1 

presents examples of emerging combined approaches inspired by integrated methodologies and their 

utilities. The combinations in different areas, along with their representative references, are further 

discussed below and are organized by general application as outlined in Table 1. 

 

Table 1. Emerging combined approaches inspired by methods used in chemoinformatics. 

Approach Utility Combined methodologies 

Molecular representation Multiple applications Molecular modeling, molecular 
similarity 

Structure-property 
relationships (SPRs) 

Molecular design Molecular similarity, chemical spaces, 
data fusion 

Structure-multiple activity 
relationships (SMARts) 

Polypharmacology and 
multiparameter molecular 

design 

Molecular similarity, chemical spaces, 
data fusion 

ADMET prediction Side and off-target prediction AI methods, molecular similarity, 
chemical spaces, 

De novo design Exploration of chemical space, 
molecular design 

AI methods, molecular similarity, 
ligand and structure-based methods, 

data fusion 

Network-based Biomarker prediction, SPR -omics, molecular similarity, AI 
methods, chemical spaces 

Virtual screening: similarly 
searching and consensus 

similarity 

Molecular design, 
multiparameter optimization, 

SPR, side and off-target 
prediction 

-omics, molecular similarity, chemical 
spaces, SPR, SMARts  

Chemical space: 
Consensus and multiverse 

Multiparameter molecular 
optimization 

Data fusion, molecular similarity 

 

Table 2 presents free tools applicable to combined approaches in various areas of application 

described throughout the section.  
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Table 2. Free tools to conduct combined methodologies involving chemoinformatics. 

Application area Tool: combined approach Referenc
e  

Link to the free tool 

Prediction of reactivity, 
biological activity 

Molecular representations: 
Advantages of combining 
different descriptors and 
fingerprints. 

13 http://zivgitlab.uni-
muenster.de/ag-
glorius/published-paper/evompf 

Diversity analysis Consensus Diversity Plots: 
combine, in a single plot, 
diversity measures obtained 
with different representations. 

14 https://consensusdiversityplots-
difacquim-
unam.shinyapps.io/RscriptsCDPl
ots/  

Chemical space 
visualization 

Constellation Plots: combine 
fingerprint and substructure-
representations  

15,16 https://github.com/navejaromero/
analog-series  

Chemical space Multifusion Similarity Maps: 
combination of data fusion 
metrics to represent chemical 
spaces. 

17 https://forum.knime.com/t/double-
looping-to-create-multi-fusion-
similarity-maps/1887  

Chemart Chemical Art Gallery: digital 
paintings based on actual 
visualizations of chemical 
space. 

18 https://github.com/DIFACQUIM/A
rt-Driven-by-Visual-
Representations-of-Chemical-
Space-  

Medicinal chemistry Various tools focused on 
scaffolds and other 
representations of molecular 
structures. 

19–24 https://peter-
ertl.com/molecular/index.html  

 

3.1. Molecular representation 

One of the most fundamental questions in chemoinformatics and computational chemistry in general is 

how to represent molecules. Historically, molecular representations have evolved with the problems at 

hand. Indeed, the evolution of molecular representation is defined by combining methods; an example of 

which is the extended connectivity fingerprint (ECFP), nowadays a very common representation used for 

ML. The ECFPs, also called Morgan fingerprints, begin with the Morgan algorithm, which was originally 

designed to obtain a unique identifier for molecules. However, the molecules were still represented as a 

collection of tabular data.25 Combining the idea of hashed fingerprints, which were originally designed for 

substructure searches26 with the Morgan algorithm led to ECFPs.27 These fingerprints, designed for 

structure-activity modeling, proved to be useful representations in ML tasks.28 
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While exact 3D representations, such as simple xyz-files with atom-coordinates are interesting for 

theoretical chemistry, chemoinformatics deals with large and ultra-large chemical spaces, where data has 

to be read and processed fast. Simple strings have proven efficient in handling large datasets. String-

based representations (SMILES,27 SMARTS,29 InChI30) use the atom types and mathematical graphs to 

encode the molecule's connections (2D structure). With the advance of ML, string-based representations 

with fewer possibilities of generating invalid molecules were developed (DeepSMILES,31 SELFIES32). 

SELFIES are interesting because they solve the need for a 100% valid string representation by combining 

the graph-connectivity with the concept of formal grammar from theoretical computer science. This allows 

to derive every string into a valid molecule. Despite that, it is not clear whether SELFIES are not generally 

superior string representations and it is unclear whether they improve generative models.33 

Another approach to improving molecular representations moves away from general representations 

and instead focuses on domain-specific representations, mostly for ML or virtual screening. Here, ML is 

used to combine data (of a specific domain) into novel fingerprints. In contrast to standard, general-purpose 

fingerprints such as Morgan fingerprints, the fingerprints contain additional domain-specific information, for 

example about the activity on certain targets or the reactivity with certain catalysts. 

 

 
Figure 2. Domain-specific molecular fingerprints are generated by combining data using machine learning. A 

EvoMFP uses an evolutionary algorithm to combine SMARTS patterns into fingerprints for a specific dataset. B 

Neural Fingerprints generate dataset- and task-specific fingerprints by extracting the embeddings of the last 

layer of a neural network as a fingerprint. 
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The evolutionary multipattern fingerprint (EvoMFP, Figure 2A),13 a recently developed molecular 

representation, uses combination as its core design to challenge classical fingerprints on ML tasks. It is 

generated with an evolutionary algorithm by combining substructures from a large set of SMARTS queries 

for an entire dataset. These fingerprints are easier to interpret and, while they are built specifically for each 

domain defined by the dataset, they can still be used for a variety of tasks, for example, prediction of 

reactivity and biological activity. 

The neural fingerprint (Figure 2B)34,35 uses a neural network to combine structural information with 

information from the task, e.g. activity on a target. The authors showed improvement in similarity-based 

virtual screening for a kinase and a natural product dataset. The fingerprint could also be used as a natural-

product likeness score.  

With the advent of large and ultralarge chemical libraries has become the need to develop molecular 

representations that encode entire chemical libraries. One of such approaches are the database 

fingerprint36 and its natural extension, the statistical-based database fingerprint.37 Both approaches code 

in a single dimension the most significant bit present/absent in a compound database that can be of any 

size. The database fingerprints can be used with a variety of fingerprints, either general representations or 

domain-specific representations. 

 

3.2. Property prediction 

Property prediction is a common practice in many chemistry applications. In drug discovery, typical 

examples are the prediction of biological activities and binding modes of molecules with molecular 

targets.38 To this aim, it has been recognized that consensus predictions and ensemble models usually 

perform better than single predictors. As such, ensemble models have become quite common. In the realm 

of predicting binding poses and simulating protein-ligand interactions, consensus docking39 has been 

largely admitted, in general, outperforming single docking approaches.11 Similarly, several studies have 

shown that there is not a single docking protocol that is “the best” across a broad range of molecular 

targets. It often happens that a given docking protocol works well for a given receptor family and, again, 

consensus docking is a more reliable alternative to a single docking software or protocol. 
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In drug discovery it is desirable to predict, whenever possible, compounds that interfere with the assays 

but do not show actual biological activity. Anticipating such compounds before experimental screening is 

a challenging task. It has been recently reviewed that the best practice is using different models as opposed 

to using a single approach.40 

Nowadays, property predictions are rethinking, and novel methodologies based on multi-parametric 

and multi-disciplinary data have emerged. For example, novel binding affinity predictors use a combination 

of ligand- and target-based approaches, like molecular similarity and molecular dynamics techniques, 

fused with NMR spectral data to predict the putative activity of compounds.41Another key example is the 

use of chemical, in vitro, and in vivo data to anticipate future side effects of lead compounds.42 And, recent 

advances, like network pharmacology, have opened the possibility of decoding complex natural product 

mixtures to identify the compounds associated with their reported bioactivity.43 Namely, the paradigm to 

predict properties based on unique kinds of data (i.e. chemical, biological, or clinical) has been broken 

now. 

 

3.2.1. ADMETox properties 

Pharmacokinetics and pharmacodynamics approaches are key points in modern molecular design and 

development, especially for small and biotech drugs applied in medical, nutritional, agricultural, and 

industrial areas. Properties involved with the absorption, distribution, metabolism, and toxicity (ADMETox) 

of drugs could determine their success in clinical trials. There are some software and servers oriented to 

predict ADMETox properties for small molecules and peptides, however, their dataset is normally 

constructed based on the direct modulation of key targets, but their prediction in more complex systems 

(i.e., in vivo context) is limited.44 This current methodological gap points out the need to fuse different kinds 

of datasets and approaches to improve the capacity of future models to predict ADMETox endpoints. There 

are novel approaches based on consensus algorithms and data fusion techniques that have demonstrated 

a dramatic improvement when different kinds of in vitro, in vivo, and clinical data were used to decode 

complex pharmacokinetics and pharmacodynamics issues.45,46 In other words, the ADMETox properties 

predictions must be addressed by a multidisciplinary group of specialists that consider chemical, biological, 

and clinical implications related to these. 
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3.3. Structure-property (activity) relationships 

Exploring structure-property (activity) relationships - SP(A)R - is a common practice in chemistry where 

the property can be of various kinds such as reactivity, resistance (e.g., in material science), aroma (e.g., 

in food chemistry), toxicity (e.g., in drug discovery, agrochemistry), to name a few.  

In drug discovery, biological activity vs. one or multiple endpoints is one of the primary properties to be 

predicted and thus, SAR analysis is a cornerstone in medicinal chemistry.47 Moreover, predicting properties 

of pharmaceutical relevance such as those related to ADMETox are also crucial, as commented in section 

3.2.1. Recently it has been emphasized the need to explore systematically structure-inactivity relationships 

- SIR - as part of the generation of predictive models.48  

As in many areas in computational chemistry, quantitative analysis of SP(A)Rs and SIRs strongly 

depends on the molecular representation. Similar to other areas, modeling of SP(A)Rs under the concept 

of property (activity) landscape modeling49 is improved by considering multiple structure representations, 

for instance, various fingerprints of different designs. This includes the reliable detection of activity cliffs.50 

 

3.3.1. Polypharmacology perspective (SMARTs) 

Activity prediction with more than biological endpoints simultaneously (e.g., in multi-target drug discovery 

and design) and performing structure-multiple activity relationships (SMARTs) is, of course, harder than 

predicting the activity for single endpoints e.g., single-target drug design, but it is becoming more and more 

necessary to develop drugs that have clinical efficacy.51 In the last ten years, polypharmacology has 

demonstrated its valuable contribution to drug design and development campaigns, offering new 

perspectives and methodologies to exploit available biological data e.g., in vitro, in vivo, clinical, and 

postmarketing data.52 The combination of multiparametric datasets has contributed to developing an 

algorithm capable of predicting side and off-target effects and drug-drug interactions more efficiently.53 

Additionally, novel data fusion techniques have demonstrated their utility to decode complex diseases e.g., 

neurological, metabolic, and cardiovascular diseases, that allowed the identification of novel druggable 

targets, molecular pathways, and the design of polypharmacy treatments.54,55   
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3.4. Virtual screening 

Nowadays, virtual screening is used routinely to filter compound databases and select compounds for 

experimental testing. To this aim, several computational methods, traditionally divided into structure- and 

ligand-based methods,56,57 can be employed. In the current explosion of the size of chemical libraries, ML 

is being actively implemented to screen large and ultra-large libraries.58–61  

Depending on the goals of the project, the experimental information, the resources at hand, and the 

size of the compound libraries, virtual screening is usually done with more than one computational 

approach, typically starting with fast-filtering methods, followed by more refined (albeit slower) procedures. 

Thus, most common virtual screening protocols are good examples of the combination of approaches as 

opposed to using a single computational methodology to select compounds for testing.62 

 

3.4.1. Similarity searching 

One of the fastest approaches to filter compound libraries (in particular, large and ultra-large libraries) is 

similarity searching which is based on the similarity principle. With the caveat of potential activity cliffs in 

compound data sets63 similarity searching has been quite effective to rapidly filter libraries and identify 

active compounds that are further selected by more refined methods. Similarity searching depends on a 

suitable molecular or structural representation that is used as a basis to quantify the compound similarity 

(in conjunction with a similarity coefficient).  

2D fingerprints are basic and simplified molecular representations that are still in use to filter compound 

databases.64 Thus, 2D-fingerprint similarity searching is a classical approach that is still in use today. 

However, several other types of molecular representations are also used to quantify similarity giving rise 

to different types of similarity searching such as pharmacophore similarity; phenotypic similarity; -omic 

similarity, etc. depending on the criteria or focus of the study.  

Since there is not a single molecular representation that captures “all” relevant structural features for 

a given problem (see section 3.1.), multiple representations can be used. Furthermore, the results of the 

similarity searches can be combined giving rise to the so-called data fusion (and related concepts such as 

similarity fusion and group fusion) that, over the years, has proven to outperform single similarity 

searches.65–67  
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As discussed in section 3.4, similarity searching is integrated with other CADD methodologies to 

identify active compounds. For example, recently, consensus docking was combined with similarity 

searching, and de novo design to identify novel inhibitors of the epigenetic enzyme DNA methyltransferase 

1.68  

 

3.5. Chemical space 

Chemical space is a cornerstone concept in chemoinformatics.4 It has been defined as the ensemble of 

molecular descriptors that define the position of a given set of molecules.69 As such, the concept of 

chemical space strongly depends on molecular representation and the descriptors used to define the 

space. For many practical applications, chemical space is frequently used in the context of visualization. 

Since it is common to use multiple descriptors to define chemical space, the visualization involves 

dimensionality reduction techniques.70 

Identifying the “ideal” set of descriptors and chemical space representations has been a common 

subject of study. For instance, in an excellent study Casciuc et al. demonstrated that for virtual screening 

using multiple generative topographic maps, each encoding different descriptors, is better than using a 

unique topographic map.71  

In an independent study, Naveja et al. showed that constellation plots are a suitable option to visualize 

in low-dimensions the chemical space of compound data sets through the combination of molecular 

fingerprints with molecular scaffolds to represent chemical compounds and analog series. The plots can 

be the basis to map and explore SP(A)Rs.15 Constellation plots have been used to explore the SAR of 

tubulin inhibitors using cell-based inhibition data.72  

The notion of using multiple structure representations to study the chemical space of compound data 

sets has been recently called “chemical multiverse” defined as “a group of multiple chemical spaces, each 

one defined by a given set of descriptors e. g., a group of “descriptor universes”.73 In this sense, a number 

studies that use multiple descriptors to represent the chemical space of a compound data sets can be 

regarded as “chemical multiverses,” as reviewed elsewhere.73 In a different approach, Chemical Library 

Networks have been recently proposed to combine and represent the chemical space and study the 

diversity of large and ultra-large chemical libraries.74  
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Figure 3 shows examples of visualizations of chemical space using various structural representations 

for multiple purposes. For example, Figure 3A illustrates the use of constellation plots to explore the SAR 

of compounds with analgesic and sedative effects from independent datasets, and Figure 3B illustrates a 

chemical space based on ECFP4 fingerprints. Both cases remark on their utility to fuse concepts applied 

in chemoinformatics (like chemical space) to explore biological/clinical data and to generate intuitive SAR 

representations for informaticians, chemists, pharmacologists, or clinicians. 
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Figure 3. Multiple chemical space representations of compounds related to the treatment of pain and that 

generate sedative side effects. A) Constellation plot. The plot shows 130 data points, each one representing a 

scaffold. The data point’s size indicates the relative number of compounds in each analog series, and the color 

is the average activity percentage of the compound in the series. Circle points represent scaffolds related to 
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anti-pain activity, and triangle points illustrate compounds related to sedative side effects. The t-SNE 

coordinates were constructed from druglike properties. B) Classical chemical space representation based on 

ECFP4 fingerprint. The plot shows 390 data points, each one representing a unique molecule. The data points’ 

shape represents their associated activity, and the color around each data point represents their activity 

expressed in percentage; The dataset of compounds only contains activities expressed in percentage, from the 

100 queries with the higher number of reported compounds. All data was collected automatically from ChEMBL 

v.34 database,75 and the KNIME protocols used to construct the constellation plot are available in the 

supplementary material sección. The interactive visualizations were generated with DataWarrior software.76,77 

 

3.6. Machine learning in chemoinformatics 

Currently, in drug discovery, the combination of chemoinformatics methods and quantitative structure-

activity relationship (QSAR) modeling presents itself as a highly favorable duo, allowing researchers to 

incorporate a new player into the equation: the use of ML techniques for predictive molecular design and 

analysis.78 Chemoinformatics is understood as the interface between chemistry and informatics, where 

inductive learning is employed to predict chemical phenomena.79 With increasing accessibility to chemical 

data, the application of ML in chemoinformatics emerges as a significant tool for exploring, analyzing, and 

predicting the properties and activities of molecules.80 ML models undertake prediction tasks based on 

training data provided in the form of mathematical equations or numerical representations,78 with many of 

these data available in chemical datasets or databases. 

 

3.7. Other combinations: beyond chemistry 

Art and science have been intimately related, for example, in the so-called “bioart”81 defined as a “creative 

practice that adapts scientific methods and draws inspiration from the philosophical, societal, and 

environmental implications of recombinant genetics, molecular biology, and biotechnology.” By analogy, it 

can be proposed the area of “chemart.” As discussed elsewhere, “chemart” can be merged or related with 

realistic views of scientific developments attracting the general public to science.81 Exemplary 

combinations of chemoinformatics with artistic approaches such as music and painting, are commented 

briefly in this section. 

 

3.7.1. Chemoinformatics and music 

Another combination that seems unusual at first glance is between chemistry and music. Through 

sonification, non-musical information can be encoded in the high-dimensional space of music, which 
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humans have accessed with intuition and creativity for thousands of years. A recently developed, novel 

molecular representation encodes molecules as melodies.82 The Sonic Architecture for Molecule 

Production and Live-Input Encoding Software, SAMPLES, combines SELFIES with chemical descriptors 

into music. This opens the door to applying ML techniques developed for music in the chemical sciences 

and might help blind chemists to interact with molecules. The authors showed that using SAMPLES, a new 

molecule can be generated by interpolating the melodies of two SAMPLES representations, that original 

molecules can be created from a musical piece played on the piano (although this still requires some 

knowledge in chemistry and musical theory) and perceive the use of music generation methods as. Most 

importantly, similar molecules encoded with SAMPLES sound similar and can be differentiated from 

distinct molecules, showing that their representation obeys the similar property principle, the foundation 

for similarity-based virtual screening. Thus, combining music and chemistry enables the creative 

application of previously unusable techniques from different fields of research. 

 

3.7.2. Chemoinformatics and artistic painting 

Recently the combination between visual representations of the chemical space as a means to 

communicate art has been proposed.18 The underlying idea is to generate visual representations of the 

chemical space using well-known and standard methodologies but looking at the pictures from an artistic 

point of view. The visualizations of chemical spaces through artistic interpretations can serve to 

communicate emotions (like in art) and, at the same time, attract the general audience to chemistry in 

general and to chemoinformatics, in particular. Building upon this concept the first version of a Chemical 

Art Gallery has been developed and it is freely available at https://www.difacquim.com/chemical-art-

gallery/. The code to generate chemart visualizations is also freely available on GitHub (see link in Table 

2). Figure 4 shows a further example of a digital painting - art piece - based on a visualization of chemical 

space. Specifically, the figure exhibits an artistic use of the constellation plot illustrated in Figure 3A. 
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Figure 4. Chemical art example. “Dreaming without pain”. Method: Constellation plots; Dataset: anti-pain and 

sedative compounds. 

 

4. Conclusions 

Chemoinformatics is founded on the concept of combining ideas from chemistry with computational 

techniques. Advances in the field are often achieved by merging previously ignored ideas and can be 

easily published and distributed via the internet. Yet, among the many techniques available, there is often 

no clear best method. Often the best results can be achieved by combining different methods, at the cost 

of increased computational resources. While many individual methods can be used without programming 

knowledge, the automatic combination of different methods is difficult even with expert domain knowledge. 

As part of the training of students and newcomers to the fields, we encourage them to do not necessarily 

seek the single-best approach to solve a specific problem or try to identify the “one-size-fits-all” (the 

methodology that will solve all problems as these might usually be complex, as typically happens in drug 

discovery). Throughout the survey, we have seen that combining methods in different areas such as 

molecular representation, virtual screening, SP(A)Rs, and chemical space analysis usually offers superior 
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results as opposed to using only one methodology. A challenge and potential shortcoming is identifying 

the appropriate combination(s). Lastly, combinations of Chemoinformatics with other non-chemistry areas 

such as art, open up new avenues to generate novel disciplines. As such, we want to encourage combining 

chemistry with unusual and artistic fields out of simple curiosity and perhaps discover beauty and novel 

techniques along the way. 
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