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Abstract 

With the growing emphasis on sustainability, criticality, and availability in materials research, our 
study introduces a comprehensive data analytics platform to provide country-specific insights into 
global elemental production and reserves. Utilizing data from the United States Geological Survey 
(USGS), our web application incorporates the Herfindahl-Hirschman Index (HHI) to assess market 
concentration, identifying potential risks and opportunities related to resource availability. The 
platform features an AI assistant powered by a Retrieval-Augmented Generation (RAG) system, 
leveraging the past ten years of USGS mineral commodities summaries. This system employs an 
open-source large language model (LLM) to enable users to query various aspects of raw materials, 
including reserves, production, market share, usage, price, substitutes, recycling, and more. By 
retrieving relevant documents and generating accurate, comprehensive responses, our tool 
addresses a crucial gap in publicly available resources, offering a unified application for detailed 
material analysis. This platform provides valuable support for material scientists in assessing 
sustainability, criticality, and market risks, thereby aiding in the development of new materials. 
Website: https://mineral-ai.net 

Keywords: United States Geological Survey (USGS), Herfindahl-Hirschman Index (HHI), 
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1. Introduction 

Understanding the availability and risks associated with raw materials is crucial for numerous 
fields, particularly those focused on materials science, industrial ecology, and sustainability. As 
global demand for various elements increases, monitoring and analyzing their production and 
reserves becomes increasingly important. This knowledge helps researchers, policymakers, and 
industry stakeholders make informed decisions, ensuring the sustainability and security of supply 
chains. 

Raw materials are fundamental to technological advancement and economic growth. Elements 
such as lithium, cobalt, and rare earths are critical for developing low-carbon technologies and 
renewable energy systems. These materials are essential for manufacturing batteries, wind 
turbines, and electric vehicles, which play a pivotal role in reducing greenhouse gas emissions and 
combating climate change [1]. Any disruption in the supply of these materials can have significant 
ramifications, affecting everything from manufacturing processes to geopolitical stability. 
Consequently, understanding the global distribution and market concentration of these elements is 
essential for ensuring a stable supply chain. 
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To evaluate market concentration, one of the primary metrics used is the Herfindahl-Hirschman 
Index (HHI). The HHI quantifies the market share distribution among countries, providing insights 
into the level of competition and market dominance in the global landscape [2]. A high HHI value 
suggests a market dominated by a few producers, which increases the risk of supply disruption and 
price volatility. Conversely, a low HHI indicates a more competitive market with multiple 
producers, thereby reducing these risks. This metric has been applied to study the market 
concentration of the materials associated with thermoelectric and battery technologies [3, 4], 
revealing the potential risks associated with high HHI values. These studies underscore the 
vulnerabilities, such as supply risks and price volatility, that arise when a market is dominated by 
a few producers, highlighting the crucial need for selecting materials with lower HHI values to 
ensure a stable and reliable supply chain. 

Further emphasizing the significance of HHI, several studies have highlighted the importance of 
understanding raw material availability and its associated risks. For instance, recent studies on 
lithium supply highlighted the significant challenges in meeting future demand due to geopolitical 
and environmental constraints [5-7]. Another study analyzed the supply chain of cobalt, 
emphasizing the risks posed by its concentrated production in politically unstable regions [8]. 
Research on rare earth elements has underscored the criticality of these materials for green 
technologies and the potential supply risks due to limited global production [9]. Additionally, 
Tehrani et al. (2017) explored the balance between mechanical properties and sustainability in the 
search for superhard materials, highlighting the necessity for a stable supply of raw materials to 
support innovative manufacturing processes [10].  

Despite the extensive research and insights provided by these studies, there remains a significant 
gap in the availability of a comprehensive, publicly accessible resource for visualizing and 
exploring data on the reserves and production of various elements across countries and over time. 
The United States Geological Survey (USGS) Minerals Yearbook and Mineral Commodity 
Summaries provide extensive data [11], but these resources are often difficult to analyze in detail 
and lack advanced querying features for extracting specific information and performing complex 
queries. 

To bridge this gap, our study introduces a comprehensive data analytics platform that provides 
country-specific insights into global elemental production and reserves, along with AI-assisted 
querying for raw materials. At the core of this platform are Large Language Models (LLMs), which 
have revolutionized natural language processing by showcasing impressive capabilities in 
understanding and generating human-like text. These models, trained on vast amounts of data, can 
perform tasks such as translation, summarization, and question-answering. However, LLMs also 
have limitations, including generating plausible-sounding but incorrect answers (hallucinations), 
struggling with outdated knowledge, and having opaque and untraceable reasoning processes [12]. 
To address these issues, we employ a Retrieval-Augmented Generation (RAG) system. RAG 
enhances LLMs by integrating external knowledge sources into the generation process. It retrieves 
relevant documents based on the user’s query and combines this information with the LLM's 
intrinsic knowledge to produce more accurate and contextually relevant responses. The typical 
RAG workflow involves indexing documents, retrieving the top relevant chunks using semantic 
similarity, and generating a final answer using both the query and the retrieved information. This 

https://doi.org/10.26434/chemrxiv-2024-vg302 ORCID: https://orcid.org/0000-0003-4270-1430 Content not peer-reviewed by ChemRxiv. License: CC BY-NC 4.0

https://doi.org/10.26434/chemrxiv-2024-vg302
https://orcid.org/0000-0003-4270-1430
https://creativecommons.org/licenses/by-nc/4.0/


   
 

 3 

approach significantly reduces hallucinations and ensures that the generated content is up-to-date 
and traceable [13, 14]. 

To meet the needs of researchers, policymakers, and industry stakeholders, we have developed a 
web application leveraging USGS data to offer detailed insights into global mineral commodities. 
This platform incorporates the HHI to evaluate market concentration and potential risks. An AI 
assistant, powered by a RAG system using an open-source LLM, facilitates queries on various 
aspects of raw materials. By retrieving relevant documents and generating comprehensive 
responses, this tool provides a unified platform for assessing sustainability, criticality, and market 
risks in material science. 

2. Methods 
 
2.1 Data Collection and Pre-processing 

 
The data for global elemental production and reserves from 2016 to 2023 was sourced from the 
USGS Minerals Yearbook and Mineral Commodity Summaries. These comprehensive resources 
provide detailed, country-wise data on production and reserves. The pre-processing phase involved 
cleaning and organizing the data to ensure consistency and accuracy by handling missing values, 
standardizing units of measurement and saving in CSV files.  
 
We focused on various elements and calculated their respective market shares by country for each 
year, followed by the calculation of the HHI. The HHI is a widely recognized measure of market 
concentration, defined as: 
 

HHI = 	%𝑆!"
#

!

 

  
Where, 𝑁 is the total number of countries involved in the world production or reserve for a given 
metal/mineral and 𝑆! 	 is the percent market share of the country i. The HHI ranges from 0 to 10,000, 
where HHI = 0 indicates a market controlled by a large number of countries with nearly equal 
shares, and HHI = 10,000 indicates a market controlled by a single country. According to the U.S. 
Department of Justice and Federal Trade Commission, the concentration of the market can be 
categorized based on HHI values as follows: an HHI value of less than 1500 indicates an 
unconcentrated market, an HHI value between 1500 and 2500 indicates a moderately concentrated 
market, and an HHI value greater than 2500 indicates a highly concentrated market. These standard 
metrics were utilized in our study to visualize the market risk for different elements [2]. 
 
2.2 Visualization 

We developed a web-based application to facilitate the interactive exploration of material 
availability and market risks across various countries globally. The technical architecture of the 
application was built using HTML (HyperText Markup Language), CSS (Cascading Style Sheets), 
and JavaScript, and it is hosted on a Python based web server [15]. The front-end interface was 
designed as a single-page layout using the Bootstrap [16] and Plotly frameworks [17]. The periodic 
table allows users to select multiple elements for exploration. Selected elements are highlighted, 
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providing a visual cue for user selections. Users can customize their queries by specifying desired 
years and choosing between reserves or production data. 

The system dynamically retrieves data from the CSV files and presents it in various graphical 
formats. Color-coded world maps illustrate the geographical distribution of market shares for 
reserve and production. Users can hover over countries to view specific market shares in 
percentages and absolute values in tons. Line charts track HHI values over time, categorized by 
market concentration levels (high, moderate, or unconcentrated), providing a temporal perspective 
on market dynamics. Bar charts compare reserve and production market shares of various elements 
across different countries and years. Additionally, users can download data in CSV format for 
independent analysis, further research, or archival purposes. This feature enhances the 
application's utility for academic research and industry stakeholders. Figure 1. provides a 
comprehensive visualization of the selected elements and the chosen year. The world map 
illustrates the production and reserve market share for different countries for the highlighted 
element lithium in 2023. Additionally, it displays the HHI of all selected elements and a market 
share bar graph for lithium. 

Figure 1. illustrates a comprehensive visualization of the selected elements and the chosen year. a. The element 
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selection panel shows the selected elements. b. The year selection dropdown enables users to specify the desired year 
for querying data, allowing for temporal analysis of production and reserve. c. Color-coded world maps illustrating 
the geographical distribution of market shares for production (left) and reserve (right) of the highlighted element. 
Users can hover over countries to view specific market shares in percentage and tons as shown for Australia. d. Line 
charts displaying the HHI values over time for production (left) and reserves (right) of the selected elements 
categorizing market concentration levels into high, moderate, and unconcentrated. e. Bar charts comparing the market 
shares of reserves and production for the selected element across different countries for the chosen year.  
 
 
2.3 AI Assistant (MatAssist) for Querying Mineral Commodities 
 
Central to our platform is an AI assistant, MatAssist, powered by a Retrieval-Augmented 
Generation (RAG) system, specifically designed to process element-wise PDFs of mineral 
commodity summaries from the USGS for the past decade. The overall framework of our platform 
was developed using LangChain, an open-source software library designed for the rapid 
development of LLM applications [18, 19]. Figure 2. shows the overall workflow of the AI 
assistant. 
 

 
 

Figure 2. shows the workflow of the AI assistant. Text is extracted from PDFs and CSVs, with tables converted to 
contextual text using GPT-4. The text is split into chunks and encoded into vector databases. Relevant chunks 

specific to user queries are retrieved, and responses are generated by the LLM using these chunks and chat history. 
 

The PDF documents contain critical information on materials’ domestic production, usage, 
imports, exports, prices, recycling, substitutes, events, trends, issues, world mine production, and 
reserves. The unstructured nature of PDFs poses significant challenges for extracting accurate data, 
particularly from tables. LLMs often struggle to accurately process and answer queries involving 
tabular data within these PDFs. Additionally, inconsistent formatting across PDFs and the inability 
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to visually identify and classify document elements can result in incomplete or incorrect 
information retrieval. 
 
To address these challenges, we utilized the Unstructured API [20], which employs document 
layout detection through the YOLOX model [21]. This model identifies and draws bounding boxes 
around various document elements, including titles, narrative texts, and tables. The text within the 
table elements is processed using the GPT-4 [22] large language model to convert them into plain 
contextual text based on user prompt. The user prompt, example table, and corresponding output 
are detailed in Table TS1 of the supplementary material. The narrative text, along with the 
contextual text from GPT-4, forms a comprehensive text document for each PDF. This document 
is then split into small chunks and encoded into vector representations using the Hugging Face 
UAE-Large-V1 embedding model [23], chosen for its balance of memory efficiency and 
embedding accuracy [24]. The encoded vectors are stored in a vector database using ChromaDB, 
an open-source vector store designed to manage high-dimensional vector embeddings, allowing 
efficient storage, indexing, and retrieval functionality [25]. 
 
CSV documents containing year-wise market share and HHI data for reserves and production are 
converted into JSON format and are processed similarly, split, and stored in a separate vector 
database. Upon receiving a user query, the system reformats the query to ensure contextual 
relevance using the question formation prompt and the chat history detailed in TS2 of the 
supplementary material. This process is facilitated by the LLMChain module from LangChain, 
utilizing the open-source LLM “Meta-Llama-3-8B-Instruct" [26] available in the 
HuggingFaceHub library. The reformatted query is then processed by both vector retrievers 
retrieving the top K chunks based on the similarity scores between the query vector and the vectors 
of chunks. The LangChain MergeRetriever combines results from these retrievers into a single list, 
enhancing the accuracy of document retrieval by increasing variability and reducing the risk of 
bias.  
 
The final response is generated by the LLM “Meta-Llama-3-8B-Instruct,” considering the merged 
context and the conversation history. This process ensures that the response is informative and 
interactive, effectively handling formatting and source document inclusion. The combination of 
LangChain for workflow orchestration, ChromaDB for efficient vector management, Unstructured 
for handling tables, GPT-4 for contextual information extraction from tables, and an open-source 
LLM for coherent response generation creates a robust and reliable system to address the 
complexities of extracting and interpreting data from unstructured PDF documents. 
 
3. Results and Discussion 
 
3.1 Geographical Distribution and HHI Trends Over Time  
 
Our platform provides visualizations of the geographical distribution of mineral production and 
reserves, market concentration, and HHI trends over time. Figure 1 shows data for key elements 
such as lithium (Li), cobalt (Co), nickel (Ni), manganese (Mn), and rare earths. For example, the 
world map in Figure 1. c highlights the primary producers and reserves of the highlighted element 
lithium in 2023, with Australia, Chile, and China being the leading producers. Australia and Chile 
also hold significant reserves. The HHI values in Figure 1. d reveal market concentration for these 
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elements, with cobalt and rare earths showing high production HHI values, indicating significant 
market control by a few countries. Analyzing HHI trends over time helps us understand the 
temporal dynamics of mineral markets, capturing the impacts of geopolitical events and data 
availability for certain countries. These insights are essential for assessing potential supply risks 
and market dynamics. For a detailed discussion and specific examples related to energy materials, 
we have provided an in-depth analysis in Section 4. 
 
3.2 RAG Evaluation 
 
To evaluate the quality of responses generated by MatAssist, metrics such as ROUGE and 
BERTScore are employed, focusing on aspects like factual correctness, readability, and user 
satisfaction [27]. ROUGE (Recall-Oriented Understudy for Gisting Evaluation) measures the 
overlap of n-grams between generated and reference texts [28], while BERTScore uses contextual 
embeddings from pre-trained transformers to evaluate semantic similarity [29]. 
 
The evaluation involved 30 user queries covering various topics such as market share, HHI, 
imports, exports, prices, events, trends, domestic production, usage, recycling, and substitutes. For 
each query, MatAssist's responses were compared with human-generated ground truths based on 
the original documents to assess accuracy and relevance. The details of these queries, MatAssist's 
responses, and the corresponding ground truths are provided in Table TS3 of the supplementary 
material. These ground truths were used as benchmarks to evaluate the performance of the RAG 
system. The scores obtained are shown in Figure 3. These results indicate that the system performs 
well in maintaining the contextual integrity and relevance of the responses. The high ROUGE 
recall values demonstrate the system's capability to capture a broad range of relevant information, 
ensuring that critical content is included in the responses. The high BERTScore values highlight 
the system's strength in capturing the semantic meaning of the queries and providing responses 
that are not only factually correct but also contextually appropriate [27, 30]. This comprehensive 
performance demonstrates the utility of the RAG system in generating accurate and informative 
outputs for complex queries related to mineral commodities, supporting informed decision-making 
for researchers, policymakers, and industry stakeholders. 
 
While our platform provides comprehensive insights and an effective AI assistant for querying 
mineral commodity data, there are certain limitations to consider. One notable limitation is that 
the AI assistant may sometimes merge information from different years when the same data is 
available across multiple years, potentially leading to less precise responses. To mitigate these 
issues, it is recommended to specify the year when making queries to ensure more accurate and 
contextually relevant responses. Additionally, for queries that require extensive information, the 
response might be incorrect if the relevant data cannot be accommodated within the number of 
chunks processed by the AI. Our element-specific data represented in bar graphs complements this 
by providing an intuitive way to explore and verify the data. 
 
Furthermore, not all elements in the periodic table have complete data available on the USGS site. 
For example, rare earth elements are grouped together which includes scandium (Sc) and yttrium 
(Y) combined with lanthanides. Similarly, platinum group metals, such as iridium (Ir), osmium 
(Os), palladium (Pd), platinum (Pt), rhodium (Rh), and ruthenium (Ru) are often reported together.  
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Figure 3. Evaluation metrics for the generated responses by MatAssist compared to ground truth data 

 
 

 
4. Use Case: Energy Materials 

 
To illustrate the practical application of our platform, we demonstrate the analysis of critical 
elements essential for the development of batteries, wind turbines, and electric vehicles [1]. The 
primary elements analyzed include lithium, cobalt, nickel, manganese, and rare earth elements. 
 
4.1 Analysis of Market Share and HHI for Energy Materials 
 
The provided figures (Figure 4) illustrate the market share percentages for the production and 
reserves of critical energy materials lithium, cobalt, nickel, manganese, and rare earth elements 
across various countries. Figure 1.d represents their HHI trends over time of these elements. 
 
Lithium: The lithium market is predominantly controlled by Australia and Chile, with Australia 
having the largest share in production, while Chile holds significant reserves. This concentration 
underscores the strategic importance of these two countries in the global lithium supply chain. 
China's presence is also notable, indicating its growing influence in the lithium market. For lithium, 
the production HHI in 2023 was 3096, indicating a highly concentrated market, while the reserve 
HHI was 2048, suggesting moderate concentration. 
 
Cobalt: Cobalt production is highly concentrated in the Congo (Kinshasa), which accounts for over 
70% of global production. This reliance on Congo (Kinshasa) poses significant supply risks due 
to political and economic instability. Other notable producers include Indonesia and Russia, but 
their contributions are considerably smaller. Cobalt displayed higher concentration levels 
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compared to lithium, with a production HHI of 5591 and a reserve HHI of 3626, indicating 
significant market control by a few countries. 
 
Nickel: Indonesia is the leading producer of nickel, with a substantial share of global production, 
followed by the Philippines. Indonesia also holds significant nickel reserves. The diversified 
production landscape for nickel indicates a relatively lower supply risk compared to cobalt. Figure 
1.d (left) shows the production HHI trends over the years, highlighting that nickel's HHI has been 
increasing since 2016. Year-wise production analysis reveals that this increase is due to Indonesia's 
growing production market share. 
 
Manganese: Australia and South Africa are key players in the manganese market, with significant 
shares in both production and reserves. The presence of multiple producing countries, including 
Brazil, China, Gabon, Ghana, and India, indicates a well-distributed supply chain, reducing the 
overall risk of supply disruptions. The production HHI for manganese is 2142, which is relatively 
lower compared to other critical elements. 
 
Rare Earth Elements: China dominates the rare earth elements market, with the largest shares in 
both production and reserves. This concentration highlights the critical dependency on China for 
these essential materials used in various high-tech and renewable energy applications. Other 
notable reserves are found in Brazil and Vietnam. The production market for rare earth elements 
is highly concentrated with an HHI of 4909, and the reserve market is moderately concentrated 
with an HHI of 2288. 
 
The analysis of these figures underscores the critical role of specific countries in the supply chains 
of essential energy materials. The concentration of production and reserves in a few key regions, 
particularly for cobalt and rare earth elements, emphasizes the need for strategic planning and 
international cooperation to ensure stable and sustainable supply chains.  
 
 
4.2 AI Assistant Interaction for Energy Materials 
 
MatAssist provides valuable insights and detailed responses to queries related to the production, 
price trends, substitutes, imports, exports, and recycling resources of critical energy materials. 
Here are few example interactions showcasing its capabilities presented in Table 1: 
 

Table 1. Few examples of interactions with MatAssist for energy materials 
 

User Query à What was the price trend for lithium from 2021 to 2023? 
MatAssist à The historical price trend of lithium from 2021 to 2023 is as follows: 
• In 2021, the price of battery-grade lithium carbonate was $12,600 per metric ton. 
• In 2022, the price of battery-grade lithium carbonate significantly increased to $68,100 per 
metric ton. 
• In 2023, the price of battery-grade lithium carbonate decreased to $46,000 per metric ton. 
This trend indicates a significant increase in lithium prices from 2021 to 2022, followed by a 
decrease in 2023. 
 

User Query àWhat are the primary substitutes for Cobalt in lithium-ion battery manufacturing? 
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MatAssist àThe primary substitutes for Cobalt in battery manufacturing, specifically in 
lithium-ion batteries, are: 
Iron and Phosphorus: These elements can be used to create cobalt-free substitutes for lithium-
ion batteries. 
Note that the suitability of these substitutes may vary depending on the specific application and 
the desired performance characteristics. 
 

User Query à What is the production trend of rare earths in China from 2020 to 2023? 
MatAssist à The production trend of rare earths in China from 2020 to 2023 is as follows: 
• 2020: 140,000 tons 
• 2021: 168,000 tonsc 
• 2022: 210,000 tons 
• 2023: 240,000 tons 
 

User Query à What are the recycling resources available for Manganese? 
MatAssist à Recycling resources available for manganese in the United States are limited. 
Manganese was recycled incidentally as a constituent of ferrous and nonferrous scrap; however, 
scrap recovery specifically for manganese was negligible. Manganese is recovered along with 
iron from steel slag. 
 

User Query à Briefly explain about World Resources of Ni in 2023. 
MatAssist àHere's a brief overview of the world resources of Nickel (Ni) in 2023: 
• Globally, nickel resources have been estimated to contain more than 350 million tons of nickel, 
with 54% in laterites and 35% in magmatic sulfide deposits. Hydrothermal systems, seafloor 
manganese crusts and nodules, and miscellaneous resources contain 10% and 1%, respectively. 
• Identified land-based resources averaging approximately 0.5% nickel or greater contain at least 
300 million tons of nickel, with about 60% in laterites and 40% in sulfide deposits. 
• Extensive nickel resources are also found in manganese crusts and nodules on the ocean floor. 

 
 

MatAssist effectively provides detailed and insightful responses to queries related to energy 
materials. This comprehensive approach supports informed decision-making for researchers, 
policymakers, and industry stakeholders, facilitating the transition to renewable energy systems 
and technologies. 
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Figure 4. Market share production and reserve for the energy materials 
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5. Conclusions 
 
The comprehensive data analytics platform developed in this study offers significant insights into 
global mineral commodities, with a focus on market concentration and supply risks. The 
integration of MatAssist, an AI assistant powered by a RAG system, enhances the platform's ability 
to provide detailed, accurate responses to complex queries. This supports informed decision-
making for researchers, policymakers, and industry stakeholders. This tool is particularly valuable 
for assessing the sustainability and criticality of materials essential for developing new 
technologies and high-demand applications. By offering an integrated source of data and advanced 
analytics, we anticipate that this platform will significantly contribute to research efforts towards 
sustainability. 
 
Supplementary Material 
 
The supplementary material includes prompts used for GPT-4 to derive contextual text from the 
tables, as well as prompts for MatAssist to reformat queries and generate responses. It contains the 
user queries, sample responses, and ground truths for all 30 queries used in the RAG evaluation 
metrics. 
 
Acknowledgments 
 
The authors gratefully acknowledge funding from the Army Research Office Materials Design 
program under contract number #W911NF-23-1-0333. 
 
 
Author Declarations 
 
Conflict of Interest: The authors have no conflicts to disclose. 
 

Data Availability 

The source codes, datasets, and algorithms used in this study are available on GitHub 
at https://github.com/truptimohanty/mineral-ai 

 
References 
 
1. Junne, Tobias, et al. "Critical materials in global low-carbon energy scenarios: The case for 

neodymium, dysprosium, lithium, and cobalt." Energy 211 (2020): 118532. 
 
2. Theler, Brennan, Steven K. Kauwe, and Taylor D. Sparks. "Materials Abundance, Price, and 

Availability Data from the Years 1998 to 2015." Integrating Materials and Manufacturing Innovation 
9 (2020): 144-150. 

 
3. Gaultois, Michael W., et al. "Data-driven review of thermoelectric materials: performance and resource 

considerations." Chemistry of Materials 25.15 (2013): 2911-2920. 

https://doi.org/10.26434/chemrxiv-2024-vg302 ORCID: https://orcid.org/0000-0003-4270-1430 Content not peer-reviewed by ChemRxiv. License: CC BY-NC 4.0

https://doi.org/10.26434/chemrxiv-2024-vg302
https://orcid.org/0000-0003-4270-1430
https://creativecommons.org/licenses/by-nc/4.0/


   
 

 13 

 
4. Ghadbeigi, Leila, et al. "Performance and resource considerations of Li-ion battery electrode materials." 

Energy & Environmental Science 8.6 (2015): 1640-1650. 
 
5. Olivetti, Elsa A., et al. "Lithium-ion battery supply chain considerations: analysis of potential 

bottlenecks in critical metals." Joule 1.2 (2017): 229-243. 
 

6. Altiparmak, Suleyman Orhun. "China and lithium geopolitics in a changing global market." Chinese 
Political Science Review 8.3 (2023): 487-506. 

 
7. Alessia, Amato, et al. "Challenges for sustainable lithium supply: A critical review." Journal of Cleaner 

Production 300 (2021): 126954. 
 
8. Liu, Wei, et al. "Resilience assessment of the cobalt supply chain in China under the impact of electric 

vehicles and geopolitical supply risks." Resources Policy 80 (2023): 103183. 
 
9. Mancheri, Nabeel A., et al. "Effect of Chinese policies on rare earth supply chain resilience." Resources, 

Conservation and Recycling 142 (2019): 101-112. 
 
10. Mansouri Tehrani, Aria, et al. "Balancing mechanical properties and sustainability in the search for 

superhard materials." Integrating materials and manufacturing innovation 6 (2017): 1-8. 
 
11. United States Geological Survey (USGS) Minerals Yearbook and Mineral Commodity Summaries 

https://www.usgs.gov/centers/national-minerals-information-center/minerals-yearbook-metals-and-
minerals 

 
12. Tonmoy, S. M., et al. "A comprehensive survey of hallucination mitigation techniques in large language 

models." arXiv preprint arXiv:2401.01313 (2024). 
 

13. Lewis, Patrick, et al. "Retrieval-augmented generation for knowledge-intensive nlp tasks." Advances 
in Neural Information Processing Systems 33 (2020): 9459-9474. 
 

14. Gao, Yunfan, et al. "Retrieval-augmented generation for large language models: A survey." arXiv 
preprint arXiv:2312.10997 (2023). 
 

15. Web technology for developers, https://developer.mozilla.org/en-US/docs/Web 
 

16. Bootstrap: The world’s most popular framework for building responsive, mobile-first sites. Retrieved 
from https://getbootstrap.com/ 
 

17. Plotly Technologies Inc. "Plotly: Collaborative Data Science." 2015, plotly.com. 
 

18. Topsakal, Oguzhan, and Tahir Cetin Akinci. "Creating large language model applications utilizing 
langchain: A primer on developing llm apps fast." International Conference on Applied Engineering 
and Natural Sciences. Vol. 1. No. 1. 2023. 

 
19. LangChain Documentation, https://python.langchain.com/v0.2/docs/introduction/ 
 
20. Unstructured Documentation, https://docs.unstructured.io/welcome 

 
21. Ge, Zheng, et al. "Yolox: Exceeding yolo series in 2021." arXiv preprint arXiv:2107.08430 (2021). 

https://doi.org/10.26434/chemrxiv-2024-vg302 ORCID: https://orcid.org/0000-0003-4270-1430 Content not peer-reviewed by ChemRxiv. License: CC BY-NC 4.0

https://doi.org/10.26434/chemrxiv-2024-vg302
https://orcid.org/0000-0003-4270-1430
https://creativecommons.org/licenses/by-nc/4.0/


   
 

 14 

 
22. OpenAI. "GPT-4." OpenAI, 2023, www.openai.com/research/gpt-4 

 
23. Universal AnglE Embedding, https://huggingface.co/WhereIsAI/UAE-Large-V1 

 
24. Massive Text Embedding Benchmark Leaderboard, https://huggingface.co/spaces/mteb/leaderboard 

 
25. ChromDB Documentation, https://docs.trychroma.com/getting-started 

 
26. "Meta-Llama-3-8B-Instruct" Hugging Face, https://huggingface.co/meta-llama/Meta-Llama-3-8B-

Instruct 
 
27. Yu, Hao, et al. "Evaluation of Retrieval-Augmented Generation: A Survey." arXiv preprint 

arXiv:2405.07437 (2024). 
 

28. Lin, Chin-Yew. "Rouge: A package for automatic evaluation of summaries." Text summarization 
branches out. 2004. 
 

29. Zhang, Tianyi, et al. "Bertscore: Evaluating text generation with bert." arXiv preprint 
arXiv:1904.09675 (2019). 
 

30. Chauhan, Pratyush, et al. "Evaluating Top-k RAG-based approach for Game Review Generation." 2024 
IEEE International Conference on Computing, Power and Communication Technologies (IC2PCT). 
Vol. 5. IEEE, 2024. 

 

 

 

 

 

 

 

 

 

 

 

 

 

https://doi.org/10.26434/chemrxiv-2024-vg302 ORCID: https://orcid.org/0000-0003-4270-1430 Content not peer-reviewed by ChemRxiv. License: CC BY-NC 4.0

https://doi.org/10.26434/chemrxiv-2024-vg302
https://orcid.org/0000-0003-4270-1430
https://creativecommons.org/licenses/by-nc/4.0/

