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Design Green Chemicals by Predicting Vaporization Properties 
Using Explainable Graph Attention Networks 
Yeonjoon Kim,ab‡ Jaeyoung Cho,cd‡ Hojin Jung,ae Lydia E. Meyer,c Gina M. Fioroni,c  
Christopher D. Stubbs,a Keunhong Jeong,a Robert L. McCormick,c Peter C. St. John *c  
and Seonah Kim *ac 

Computational predictions of vaporization properties aid the de novo design of green chemicals, including clean alternative 
fuels, working fluids for efficient thermal energy recovery, and polymers that are easily degradable and recyclable. Here, we 
developed chemically explainable graph attention networks to predict five physical properties pertinent to performance in 
utilizing renewable energy: heat of vaporization (HoV), critical temperature, flash point, boiling point, and liquid heat 
capacity. The predictive model for HoV was trained using ~150,000 data points, considering their uncertainties and 
temperature dependence. Next, this model was expanded to the other properties through transfer learning to overcome 
the limitations due to fewer data points (700-7,500). The chemical interpretability of the model was then investigated, 
demonstrating that the model explains molecular structural effects on vaporization properties. Finally, the developed 
predictive models were applied to design chemicals that have desirable properties as efficient and green working fluids, 
fuels, and polymers, enabling fast and accurate screening before experiments.

Introduction 
Decarbonizing the power sector is urgently needed for most 

countries to realize net-zero carbon emissions in the 
foreseeable future.1 This will require advanced power 
generation technologies from renewable thermal resources 
(solar heat, geothermal, biomass, waste heat, etc.), 
necessitating an efficient thermodynamic cycle that works in 
the low-to-mid temperature range. The organic Rankine cycle 
(ORC) has been recognized as a promising technology owing to 
its functionality over a wide temperature.2, 3 The ORC’s 
performance heavily relies on the vaporization properties of the 
organic working fluid.4 For example, a working fluid with a high 
heat of vaporization (HoV) is known to give a higher unit work 
output at the given temperature of the heat source.5 In this 
regard, extensive research has been conducted on the 

structure-property relationships for the working fluid’s 
vaporization properties.6-9 

The vaporization properties of working fluids are also closely 
related to the performance of refrigeration cycles (or heat 
pumps)10 that consume ~23 % of residential sector electricity in 
the United States.11 Since the Montreal Protocol banned the use 
of chlorofluorocarbon, there have been constant demands for 
green working fluids with low global warming and ozone 
depletion potential.12 Developing such chemicals must be 
preceded by thoroughly understanding structure-property 
relationships for vaporization properties.  

The structure-property relationships of vaporization 
properties have been extensively studied to design clean (low-
emission) alternative fuels.13-15 Specifically, the HoV has been 
considered one of the key factors for determining the 
combustion characteristics of liquid fuels. Fuel vaporization in 
the engine cylinder leads to a significant drop in temperature 
and pressure, affecting propulsion systems' thermal efficiency 
and emission characteristics.16-18 For example, a predictive 
model for particulate matter emissions from spark-ignition 
engines utilizes fuel HoV to account for the influence of its 
vaporization properties on the emission characteristics.19 
Similarly, the importance of HoV in the thermal efficiency of 
propulsion systems is evident as shown in the relationships of 
HoV vs. cetane number (CN)20 and HoV vs. octane number 
(ON).21 Therefore, considering chemicals’ vaporization 
properties can lead to the discovery of green chemicals with low 
emission that are relevant to one of the twelve Principles of 
Green Chemistry (#3 – Less hazardous/toxic materials).22 

A de novo design of green chemicals demands a predictive 
model for the vaporization properties of arbitrary molecules. 
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For HoV, various approaches have been applied to develop the 
predictive models, including equation-based,23, 24 group 
contribution (GC) models,25-27 and their combination with 
regression methods or neural networks.28-30 Besides GC-based 
methods, quantitative structure-property relationship (QSPR) 
models have been built using various structural descriptors.31-35 
Similar approaches have also been adopted for other 
vaporization properties,27, 31, 36-69 including critical temperature 
(TC), flash point (FP), and boiling point (TB). More generally, 
numerous QSPR-based predictive models have been developed 
for organic molecules’ properties relevant to chemical 
regulations70 and safety in fire and explosion,71 and for other 
physicochemical, biological, technological properties.72 

Despite the remarkable advances in prediction accuracy 
over decades, these models still have several limitations. First, 
some equation-based models assume knowledge of prior 
information of other physical properties (e.g., TB predictive 
equation as a function of HoV and vapor pressure). This 
assumption is sometimes problematic when assessing a novel 
molecular structure whose physical properties have not been 
measured. Second, most models have not considered the 
temperature dependency of vaporization properties (e.g., HoV), 
which constrains the general applicability of the model to the 
broader temperature range. Most existing predictive models for 
HoV are valid for one temperature (room temperature or 
boiling point).28-30, 32, 33 Third, the models do not properly 
account for the uncertainties in experimental measurements. 
Training the model with uncertainty quantification can improve 
model accuracy and provide a confidence bound for the 
predicted value.73  

Lastly, there have been fewer discussions regarding the 
chemical interpretation of predictive models than those 
regarding their accuracy. Prediction results from GC-based 
methods can be regarded as chemically explainable, since one 
can find chemical reasons of different atom-wise contribution 
values of each substructural moiety in a molecule. However, 
there are three limitations of GC-based predictive models; first, 
further investigation is needed to elucidate the effects of 
temperatures on atom-wise GC values and vaporization 
properties such as HoV. Second, the GC values are typically 
assigned to fragments consisting of only first-nearest atoms 
around one atom, possibly leading to the lack of considering 
non-local intramolecular interactions. The influence of ‘Nth-

nearest-neighboring’ atoms on vaporization properties should 
be included to achieve more reliable prediction and 
interpretation. Third, the non-linear relationship between GC 
and property values should be taken into account, in addition 
to linear additivity. When it comes to non-GC machine learning 
(ML) models (tree-based, neural networks, etc.), many studies 
did not even report chemical explanation of models, despite the 
availability of several available tools for interpretation, 
including attention weights (vide infra for details).  

A chemically explainable model can give the predicted value 
as well as rational principles for designing green working fluids 
and low-emission fuels. In that regard, this study developed 
chemically interpretable models through analyzing (i) attention 
weights for each atom and (ii) sensitivity of individual atoms 
when HoV is changed with varying temperatures. Objective (i) 
aims to identify crucial structural components that contribute 
to significant variations in property values among closely 
related molecules. Objective (ii) provides insights into which 
molecular substructures are responsible for significant changes 
in HoV under different temperature conditions. Such 
approaches provide chemical explanation of prediction results 
even for deep learning models such as neural networks.  

Here, we introduce a novel strategy to develop a reliable 
and chemically explainable machine learning (ML) predictive 
model for vaporization properties (Fig. 1). First, databases of 
vaporization properties were collected and curated to use as 
inputs for training and evaluation of the model. The raw 
databases are not structured; particularly, molecules’ simplified 
molecular-input line-entry system (SMILES) strings are 
unavailable in some data sources. Therefore, we generated and 
canonicalized their SMILES strings to input molecules as two-
dimensional representations into our ML model (Details in the 
Methods Section). A graph attention network (GAT) model was 
then built and trained against the databases. The GAT is an 
advanced graph neural network structure where atoms and 
bonds of a molecule are described as nodes and edges. It can 
consider the effects of interactions among atoms on target 
molecular properties. (i.e., vaporization properties in this study). 
Attention weights of each atom in GAT are related to structural 
importance, and investigating them is beneficial regarding their 
interpretability. Hence, this approach has been utilized in 
predicting and analyzing numerous chemical properties.74-83  

Fig. 1. Flow diagram of the overall procedure for developing predictive models for vaporization properties. 
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Besides GAT, tree-based ML algorithms have also succeeded 
in various chemistry applications, e.g., drug discovery.84 
However, in this work, we did not consider molecular 
descriptor-based models, including tree-based ones, because 
our GAT showed better accuracy than the recent descriptor-
based models (vide infra). Second, GAT does not usually need 
exhaustive molecular feature generation and selection. 
Reasonable accuracy was accomplished using only a few 
features (atom features and connectivity). Without 
incorporating additional molecular features, the model can 
infer overall molecular structural effects on HoV through local 
graph convolution, which can consider more than first-nearest 
neighbors around each atom. Therefore, it could be 
generalizable to a broader scope of molecules compared to 
descriptor-based models, and its accuracy can be comparable 
to or better than conventional group contribution methods, 
which usually consider only first-nearest atoms. Third, GAT is 
not computationally expensive when using a graphical 
processing unit (GPU). Details are available in the following 
sections regarding the architecture and accuracy of the GAT 
model. 

To reach the maximal accuracy, a grid search and ten-fold 
cross-validation found the optimal hyperparameters of the GAT. 
The mean absolute error (MAE) of validation sets from ten folds 
was evaluated for each hyperparameter, and the 
hyperparameter that showed the lowest MAE was selected. 
Among the ten models from the optimal hyperparameter set, 
the best model with the lowest validation set MAE was selected. 
The final accuracy of the model with optimal hyperparameters 
was assessed for the held-out test set of HoV, with analyses of 
functional group effects and outliers. This training and accuracy 
evaluation process was then repeated for other properties: 
flash point (FP), critical temperature (TC), boiling point (TB), heat 
capacity of liquid (CP), and melting point (TM). The predictive 
model for HoV was also validated by comparing our 
experimentally measured HoVs with predicted values. 

Subsequently, the chemical structural effects on HoV were 
investigated by analyzing the GAT model. Attention weights of 

each atom in a molecule were then compared to find key 
substructures or functional groups determining HoV. Such 
investigations demonstrate that our predictive model is 
accurate and chemically explainable. Finally, our predictive 
models for vaporization properties were applied to the practical 
design of green chemicals (i.e., working fluid, renewable fuel 
candidates, and polymers). The following sections describe each 
step's detailed procedure and results outlined in Fig. 1. 

Results and discussion 
Databases of vaporization properties used for the model 
development 

Table 1 summarizes the data sources and the number of 
data points for the six properties studied in this work. The 
present study only considers the molecules consisting of C, H, 
and O atoms, most common in fuels and working fluids readily 
synthesizable from natural sources. Halogens were omitted 

Table 1. Summary of molecular properties and databases considered in this work. 

Property Ndata References Comments 

Heat of 
vaporization 

(HoV) 
153,105 NIST Web  

Thermo Tables 
(NIST-WTT)85 

• 7,400 molecules at different temperatures 
• Experimental + calculated values 

Critical 
temperature (TC) 

7,362 • Temperature at which HoV is zero 

Flash point (FP) 708 

Design Institute for 
Physical Properties 
(DIPPR) database 

+Literature28, 30, 32, 33, 47-

49, 51, 53-55, 57, 86 

• Total 3,282 data points were found from DIPPR and other 
literature sources, but only those from DIPPR (708 data points) 
were used for training and validation of the model due to the 
inconsistency among different data sources. 

Boiling point (TB) 3,034 N/A 

Heat capacity of 
liquid at 298 K (CP) 

777 
DIPPR 

database86 
• Control properties irrelevant to vaporization.  

Melting point (TM) 920 

 

Fig. 2. Heat of vaporization of five example molecules in the 
NIST-WTT database. 
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from the consideration owing to their potential impacts on 
ozone depletion.  

For the HoV prediction model, we used 153,105 data points 
of 7,400 molecules in the NIST Web Thermo Tables (NIST-WTT). 
Fig. 2 illustrates the HoV values of five molecules in the NIST-
WTT85 as examples, depicting the sensitive nature of HoV to 
molecular structures. NIST-WTT contains the HoV values of each 
molecule at varying temperatures below TC where HoV 
becomes zero. The database also provides error bars from 
experimental measurements or extrapolations from 
experimental values, which were utilized for uncertainty 
quantification of predicted HoVs. A tenth of the molecules (740) 
were reserved for the held-out test set for splitting the data. 
The rest 6,660 molecules were divided into ten folds to carry 
out the ten-fold cross-validation and hyperparameter tuning. 
Detailed information about each split data set is available in 
Section S1 of Electronic Supplementary Information (ESI).† 

Meanwhile, the same data source collected TC values of 
7,362 molecules. Molecular FPs were gathered from the Design 
Institute for Physical Properties (DIPPR) database86 and other 
literature.58 We removed the ambiguous FPs, which are 
significantly different among multiple literature sources, 
leading to 3,282 data points,47-49, 51, 53-55, 57, 86 708 of which are 
from the DIPPR database. The FPs from the DIPPR database 
were only used for training and validating the model since 
combining all data from different sources deteriorates the 
predictive accuracy, presumably due to the different reliability 
of standard and non-standard experimental methods (vide infra 
for details). The same procedure was repeated for TB, resulting 
in 3,034 data points in total.28, 30, 32, 33, 86 All TB values correspond 
to those measured in the atmospheric pressure condition. In 
addition, 777 CP values in the liquid phase and 920 TM values 

were acquired from the DIPPR database.86 CP and TM were 
considered a control group to compare the accuracy of 
predicting vaporization properties with those unrelated to 
vaporization. Liquid CP was also utilized with vaporization 
properties such as TB, TC, and HoV when designing new working 
fluids (vide infra). 
 
Development of graph attention networks for predicting HoV 

Fig. 3a shows a schematic diagram of our GAT model for 
predicting the HoV and other properties outlined in Table 1. The 
model first generates the 16-dimensional atom feature vectors 
from a SMILES molecular representation. For each atom, five 
features (atom type, number of bonds and hydrogens, ring state, 
and aromatic state) are encoded as one-hot feature vectors. A 
connectivity matrix is also created from SMILES. This matrix 
encodes whether there is a bond between two atoms, and does 
not contain information about bond orders. These atom 
features and connectivity matrix comprise an input layer, and it 
should be emphasized that no three-dimensional coordinates of 
atoms in a molecule are needed for the prediction. Of note, 
SMILES strings can distinguish stereoisomers and diastereomers, 
and atom feature vectors can encode information about 
stereocenters. However, the current HoV model does not 
consider stereocenters since only 13% of the molecules in NIST-
WTT contain the stereochemistry information (1,106 and 7,400 
molecules with and without stereochemistry, respectively). In 
addition, the mean HoV difference between two stereoisomers 
(e.g., cis vs. trans, (E)- vs. (Z)-, and (R)- vs. (S)- ) is 1.54 kJ/mol, 
being lower than the mean uncertainty of HoVs in NIST-WTT 
(3.44 kJ/mol, Section S2 in ESI†). Thorough consideration of 

Fig. 3. (a) Architecture of the GAT model. (b) The Kullback-Leibler divergence loss function to predict HoV with considering 
uncertainty. (c) 2D representations of atom feature vectors obtained after passing the first (Layer 1), third (Layer 3), fifth 
(Layer 5) graph convolution layers. As a specific example, the feature vectors are plotted for two carbon atoms of dibutyl 
ether (in red cross) and butyl sec-butyl ether (in black square), to demonstrate that the model can consider the structural 
effect between an atom and its fifth-nearest neighbors. 
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stereochemistry effects on HoV is beyond the scope of current 
work and will be future work. 

The input atom features then pass through the graph 
convolutional layers updated with considering adjacent atoms. 
Detailed formulations for graph convolution and attention 
matrices can be found in Methods and the literature.74 
Meanwhile, to consider temperature dependence on HoV, an 
input temperature value is embedded into a global feature 
vector. Next, the global feature vector updates the atom 
feature vectors from the last convolution layer, and those atom 
vectors again update the global feature vector (crossed arrows 
in Fig. 3a). More technical details about the global feature 
update scheme can be found in Wen et al.87 and Methods 
section of the present paper.  

It should be noted that GATs have better capabilities than 
convolutional neural networks and graph neural networks 
having no attention mechanisms, when they learn global 
features. In GATs, the attention coefficients in an attention 
matrix are shared throughout multiple GAT layers and attention 
heads, resulting in a more robust consideration of non-local 
structural effects on HoV.74, 88-90 Such attention mechanisms 
alongside global update blocks of temperatures lead to a 
rigorous quantification of the influence of temperatures on HoV. 
The global update scheme effectively enhances model’s 
accuracy through reinforcing the introduction of relational 
inductive biases to the model.91 Predictive models utilizing 
global updates have demonstrated superior accuracy compared 
to those without global updates in predicting chemicals’ bond 
dissociation enthalpies, cetane numbers, and solubilities.87, 92-94 

The averaged atom feature vector and global vector are 
then concatenated and undergo three readout layers with ReLU 
activation functions to provide the predicted HoV (Hpred) and its 
uncertainty (spred). In other words, the predicted HoV of a 
molecule is given as not a specific value but a normal 
distribution Q whose mean and standard deviation are Hpred and 
spred, respectively (Fig. 3b). This distribution is compared with 
another normal distribution P~N(HNIST, s2NIST) acquired from the 
NIST database. The model is trained to maximize the overlap 
between P and Q.  

Methods for quantifying spred include Bayesian neural 
networks (BNNs) where trainable weights and biases of readout 
layers are given as probability distributions instead of specific 
values. BNNs are appropriate for considering the epistemic 
uncertainty stemming from fitting the model to limited data. 
However, we assumed that the database is sufficiently 
extensive (153,105 data points, Table 1) and focused on 
aleatoric uncertainties arising from the variability from 
experimental measurements or extrapolation of experimental 
data. Such uncertainties may depend on uniquely complex 
molecular structures and can be irreducible regardless of 
database size.95 In this regard, the final readout layer directly 
quantifies spred as a function of molecular structure and outputs 
the distribution Q instead of determining spred from BNNs or 
ensembles of NNs. Elucidating the relationship between 
chemical structure and uncertainties informs how distant the 
molecule is from the chemical space of well-known compounds 
and the fidelity of the predicted values when designing new 

molecules.96-99 Recent studies have also adopted similar 
approaches and obtained reliable results from the graph neural 
network-based prediction of molecular properties with 
uncertainty quantification.96, 97 

In the first step of the model development, cross-validation 
and hyperparameter tuning were performed to find the best 
model architecture (Fig. 1). Using five layers with five attention 
heads minimizes the validation set MAE; fewer or more layers 
or attention heads do not improve the accuracy (Section S3 in 
ESI†). It should be noted that the mathematical definition of the 
loss function is another key hyperparameter for developing a 
reliable model. The Kullback-Leibler (KL) divergence loss 
function, DKL(P||Q), was adopted to minimize the difference 
between two normal distributions (Fig. 3b) of HoVs from the 
database and prediction. It has been successfully applied to 
recent ML models relevant to physics, chemistry, and 
biochemistry.100-103 Detailed formula of the KL divergence is 
available in Equation (5) of the Methods section. Surprisingly, 
the KL divergence showed higher accuracy than the typical 
mean-squared-error loss function without uncertainty 
quantification, indicating that considering uncertainty is pivotal 
for a reliable prediction. In addition, the GAT model with the KL 
divergence is more accurate than the graph convolutional 

Fig. 4. (a) Learning curve for the model, plotting the test set 
MAEs against the number of molecules in the training set. 
Error bars indicate the standard deviation from triplicate 
runs. (b) Parity plot of predicted vs. database HoV values for 
training (blue), validation (green), and test (red) sets. 
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networks without attention, and the GAT prediction based on 
Watson’s equation (Details in Section S3, ESI).† Optimization 
of other hyperparameters is explained in Section S4 of ESI.†  

The weights of graph convolution layers from the HoV 
model were then used to expand the prediction to five other 
properties (Fig. 3a). A transfer learning approach was adopted 
to overcome the limitation due to fewer data points of these 
properties (700-7,500 data points, Table 1) compared to HoV 
(~105). Its feasibility was examined by comparing the 
accuracies of the models trained with and without transfer 
learning (For details, vide infra). These properties do not have 
a temperature effect, so only the graph convolution layers were 
adopted from the HoV model. The averaged atom feature 
vectors obtained from the transfer learning pass through 
another series of readout layers to predict vaporization 
properties.  

The five-layer GAT model (Fig. 3a) can distinguish the 
different local environments of atoms in a molecule, as shown 
in the t-stochastic neighbor embedding (t-SNE) analysis of atom 
feature vectors in hidden layers (Fig. 3c). The first layer's 2D t-
SNE representations of atom features display a clear clustering 
according to the four basic atom types. Those in the third layer 
are more dispersed except for a few clusters near the center, 
and the fifth layer shows the most scattered atom features. This 
indicates that, as a molecular graph passes through more layers, 
the model updates atom feature vectors to differentiate more 
detailed local environments leading to different HoVs. 

For further demonstration, we selected two representative 
compounds, butyl sec-butyl ether, and dibutyl ether, which 
have slight structural differences in Fig. 3c. The former has one 
branched methyl group (methyl group on a tertiary carbon), 
whereas the latter does not. The terminal methyl carbons in the 
butyl group were chosen from each compound, and their atom 
feature vectors were compared. They show similar 2D t-SNEs 
until the third layer; interestingly, they become distinct in the 
fifth layer. These two carbons share the same substructure until 
the fourth-nearest neighbors. Their fifth-nearest ones are 

different, and the model captures this structural dissimilarity, 
ultimately leading to different HoVs of these compounds. 

The feasibility of the model shown in Fig. 3a was assessed 
by training the model using the databases of HoVs at TB from 
the literature and comparing the prediction accuracies from 
previously reported models (Table 2). The previous studies used 
various techniques such as genetic algorithms, multivariate 
regression, group contribution, and artificial neural networks. 
For a fair comparison, we applied the splits of data sets into 
training, validation, and test sets identical to those reported in 
the literature. Although only C/H/O-containing molecules were 
chosen, the training:validation: test set ratio is maintained at 
approximately 8:1:1 (or training: test 4:1), which is reasonable 
for training our model and comparing the accuracy with other 
models. Our model generally shows better accuracy; a test set 
MAE 0.1 kJ/mol higher was demonstrated in only one case, 
which could be attributed to experimental uncertainties. The 
raw data obtained for the analysis shown in Table 2 is available 
via an Excel spreadsheet file uploaded as ESI†. 
 
Accuracy of the HoV model trained using the largest database 

Ultimately, our GAT model was trained using a much more 
extensive database than any other models in the literature. 
There are 124,100 HoVs at varying temperatures in the training, 
13,634 in the validation, and 15,371 in the test sets. In the best-
case model, we achieved reasonable accuracy for this extensive 
database, with the MAEs of 3.33, 4.21, and 4.77 kJ/mol for each 
split data set. Although the MAEs are relatively higher than 

Table 2. Comparison of accuracies of predicting HoVs with literature 

Reference Method 
Ndata (Training/ 

validation/ 
test)a 

Mean absolute error 
(Training/ 

Validation/Test) Comments 
Literature 
(kJ/mol) 

This work (GAT, 
kJ/mol) 

Gharagheizi et 
al.32 

Genetic algorithm-
based multivariate 

regression 

2291/ 
-/ 

571 

1.01/ 
-/ 

0.99 

0.73/ 
-/ 

0.79 
HoVs at boiling point (TB) 

Gharagheizi et 
al.30 

Group contribution + 
artificial neural 

network 

2312/ 
287/ 
275 

0.86/ 
1.21/ 
1.05 

0.84/ 
1.20/ 
1.16 

HoVs at TB 

Jia et al.33 
Features from quantum 
chemistry calculations 

+ QSPR 

219/ 
-/ 
61 

1.13/ 
-/ 

1.12 

0.88/ 
-/ 

0.92 

HoVs at TB. Less extensive database 
but contains new oxygenates 

(alcohols, ethers, esters, ketones, 
etc.) 

a Database from the literature. C/H/O-containing molecules only. 
 

Table 3. Correlations between absolute errors of prediction 
(|HNIST - Hpred|) vs. uncertainties quantified from the model 

(spred). 

Dataset Nmolecule Ndata 
Pearson 

r 
Spearman r 

Training 5,994 124,100 0.60 0.57 

Validation 666 13,634 0.49 0.47 
Test 740 15,371 0.54 0.50 
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those of HoVs at TB (Table 2, 0.7-1.2 kJ/mol), it should be 
emphasized that the errors are comparable to the mean 
uncertainty of HoVs in the database (3.44 kJ/mol, Section S2, 
ESI†). Given the MAEs similar to the database’s mean 
uncertainty, it can be deduced that the GAT model architecture 
and the trained model are less susceptible to overfitting. 
Moreover, the model was trained using the largest database 
ever (153,105 data points) compared to any other previous 
studies, considering the temperature effects of HoV. 

A learning curve was obtained (Fig. 4a) by training the model 
with increasing training set data points, where triplicate runs 
were performed for each training set to consider the variance 
of MAEs stemming from the randomness of training. A clear 
improvement in test set accuracy was shown as the number of 
training set molecules increased, suggesting that the model 
accuracy could be further improved using a more extensive 
database.  

More analysis on the model error was then carried out 
(Details in Section S5, ESI†). Most of the errors (~80%) are within 
± 5.0 kJ/mol. Next, the MAEs by 13 categorized functional 
groups were analyzed. All functional groups showed lower 
MAEs (2.24 – 4.57 kJ/mol) than the overall test set MAE (4.77 
kJ/mol) except for fused ring compounds whose MAE is 5.03 
kJ/mol. Fused rings have fewer data points per molecule at 
different temperatures (17.06 data points/molecule) than other 
functional groups (19-22 data points/molecule), while their 
structures are more complex, presumably leading to their 
higher MAE.  

The molecular structure of the top 5 outliers was further 
analyzed. Interestingly, methane showed the highest MAE (81.4 
kJ/mol), which may be attributed to the temperature range (90 
– 150K) and atom type (a carbon with four hydrogens) that 
rarely appear in the database. The molecules with the second 
to fifth highest MAE are complex cyclic compounds. The 2nd and 
5th outliers have 26- and 24-membered rings, respectively, and 
their structures are highly twisted and deviated from typical 
conformations (chair and boat, etc.) of cyclic compounds. The 

remaining two compounds are cyclopropene with ketone and 
phenyl rings and quinone with four linearly fused rings 
(pentacenequinone). Such structural distinctiveness is hard to 
be captured by GATs that use 2D structures as inputs, so they 
became outliers from predictions. However, these large-sized 
or fused ring structures are uncommon and far from desirable 
fuel candidates or working fluids. To further examine the 
feasibility of uncertainty quantification, we compared the 
accuracy of this model with one that used a mean-squared-
error loss function without considering uncertainty. A lower 
training set MAE of 2.21 kJ/mol was observed, but validation 
and test set MAEs are 4.67 and 5.09 kJ/mol, respectively, 
indicating that overfitting occurs if uncertainty is not considered 
(Section S5, ESI†). 

Next, we investigated the Pearson and Spearman rank 
correlation coefficients (r) between the absolute errors from 
the prediction (|HNIST - Hpred|) and uncertainties quantified from 
the model (spred), as listed in Table 3. In principle, these two 
quantities should show a positive correlation; if the uncertainty 
is low, the prediction error should also be low. The KL 
divergence formula (Equation (5), Methods section) also well 
reflects this trend; the numerator and denominator contain 
|HNIST - Hpred| and spred, respectively. A stronger positive 
correlation leads to the numerator and denominator being 
closer, thus minimizing divergence values. Meanwhile, the first 
term of Equation (5) prevents |HNIST - Hpred| and spred from 
simultaneously diverging to infinity. The logarithm of the ratio 
between spred and sNIST minimizes spred to be closer to the 
uncertainty tabulated in the database (sNIST). 

A Pearson r close to 1 indicates that two variables have a 
relationship close to monotonic proportionality. A Spearman r 
equal to 1 corresponds to identical ranks of two variables. Our 
GAT model showed a decent positive Pearson correlation: 0.60, 
0.49, and 0.54 for training, validation, and test set, respectively. 
The Spearman rank correlation values were located within 0.47-
0.57. This is comparable to the r=0.469 obtained from the 
state-of-the-art message-passing neural network, which 

Fig. 5. The mean and standard deviation of test set MAEs of 20 GAT models from different random data splits, with varying 
the number of graph convolution layers transferred from the HoV model. Line and scatter plots with error bars for (a) three 
vaporization properties and (b) two properties irrelevant to vaporization.  

https://doi.org/10.26434/chemrxiv-2023-hs9n1-v2 ORCID: https://orcid.org/0000-0002-4784-7925 Content not peer-reviewed by ChemRxiv. License: CC BY-NC-ND 4.0

https://doi.org/10.26434/chemrxiv-2023-hs9n1-v2
https://orcid.org/0000-0002-4784-7925
https://creativecommons.org/licenses/by-nc-nd/4.0/


ARTICLE Green Chemistry 

8  |  

 

 

quantified the uncertainty for molecular properties of 133,885 
compounds in the QM9 dataset.96 All these results manifest that 
our model gives an accurate HoV prediction and a reasonable 
quantification of uncertainties.  
 
Expansion of the predictive model to other vaporization 
properties 

The predictive model for HoV was expanded to predict other 
vaporization properties listed in Table 1 by adopting the 
transfer learning approach (Fig. 3a). This overcomes the limited 
number of data points for these properties while utilizing the 
pre-trained HoV model that learned chemical structural effects 
on vaporization from the large database. Transfer learning can 
be done by varying the number of layers transferred from the 
HoV model. Here, we hypothesized that the relevance to HoV is 
different for each of the properties in Table 1, and transferring 
more layers is optimal when a property has higher relevance. 
For each property, the GAT models were trained by changing 
the number of transferred layers (0 to 6, seven cases) to find the 
optimal number of transferred layers and the model with the 
best accuracy. Twenty different data set splits were tested for 
each of the seven cases to prevent the model from obtaining 
biased results regarding accuracies.  

Fig. 5a illustrates the mean and standard deviation of test 
set MAEs from the 20 TC, FP, and TB models with different 
numbers of transferred layers. The standard deviation of MAEs 
does not exceed 2 K for Tc, FP, and TB, indicating that changing 
the data splits does not affect the overall trends of MAEs. These 
low deviations also demonstrate that the models from transfer 
learning are not susceptible to overfitting specific data splits. 
These three vaporization properties are relevant to HoV, so 
transferring all or part of the layers from the HoV model 

effectively maximizes the predictive accuracy. The means of test 
set MAEs converged for TC and FP with the difference below 1K 
when four to six layers were transferred (16.1–17.1 K for TC, 
9.2–9.4 K for FP). Transferring two to five layers is optimal for TB 
(Means of test set MAEs ranging from 11.1 to 11.7 K).  

In contrast, CP of liquid at 298 K and TM are unrelated to HoV. 
These two properties were examined additionally to justify that 
the optimal number of transferred layers is relevant to the 
relationship of a given property with HoV (Fig. 5b). Transferring 
0–1 layers showed the best mean of test set MAEs (98.4–98.6 
J/kg.K) for CP. The optimal number of transferred layers is 1–2 
for TM. However, the means of MAEs (32–33 K) are much higher 
than those of other properties (9 – 17 K) shown in Fig. 5a. Also, 
the standard deviations of MAEs are very high in all cases: 11 – 
14K. These two contrasting examples further demonstrate our 
hypothesis that the number of transferred layers is related to 
the correlation between HoV and vaporization properties.  

We also compared the Pearson correlation coefficient 
between HoVs and other vaporization properties (Table 4) to 
verify that a property strongly correlates with HoV if the model 
becomes more accurate when more layers are transferred. The 
first target property is TC; TC is the temperature where HoV 
becomes zero. Watson’s equation estimates that the HoVs at 
different temperatures T are proportional to (TC – T).23 In other 
words, there is a direct formulaic relationship between TC and 
HoV, which can be associated with a high Pearson r (0.86) 
between HoV at room temperature and TC. Transferring four to 
all six layers showed the best accuracy in predicting TC, also in 
line with these high Pearson r values. The Pearson r between 
FPs and HoVs at FP (0.91) is comparable to that in the case of TC, 
resulting in the identical range of the optimal number of 
transferred layers (4–6 layers). Previous studies46, 52 quantified 

Table 4. Summary of the models for each vaporization property. 

Property 

Number of transferred layers vs.  
correlation with HoV 

Model accuracies 

Number of 
transferred 

layersa 

Pearson 
coeff. 

Correlation 
betweenb 

Ndata 

(Training/ 
Validation/Test) 

MAE – Best-case 
model (Training/ 
Validation/Test) 

MAE – All models 
(Training/ 

Validation/Test) 
Unit 

Critical 
temperature 

(TC) 
4 – 6 0.86 

HoV at 298 K 
vs. TC 

(5,890/736/736) (15.9/16.1/14.9) 
(16.5±0.6/ 

16.7±1.0/16.9±1.0) 
K 

Flash point 
(FP) 

4 – 6 0.91 
HoV at FP  

vs. FP 
(566/71/71) (6.4/7.1/6.5) 

(8.6±1.0/ 
8.4±1.5/9.3±1.5) 

K 

Boiling point 
(TB) 

2 – 5 0.68 
HoV at TB  

vs. TB 
(2,427/304/303) (7.2/8.9/9.2) 

(9.6±1.5/ 
10.6±0.9/11.4±1.1) 

K 

Melting point 
(TM) 

1 – 2 0.18 
HoV at TM  

vs. TM 
(736/92/92) (19.1/26.2/21.7) 

(19.7±4.8/ 
30.5±12.4/32.8±12.9) 

K 

Liquid heat 
capacity at  
298 K(CP) 

0 – 1 -0.10 
HoV at 298 K 

vs. CP 
(622/78/77) (65.1/78.3/81.0) 

(60.5±14.0/ 
77.8±11.7/98.5±13.3) 

J/kg·K 

aNumbers of layers where the mean of test set MAEs is within 1 K (1 J/kg·K for CP) compared to the lowest.  
bHoVs are from the GAT predictive model, and the target properties are from the database. 
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the relationship between FP and HoV. They derived an equation 
for estimating FP as a function of HoV, TB, and other descriptors 
such as the number of carbons, surface area, etc., explaining the  
Pearson r value for FPs.  

TB is also known to have a relationship with HoV, according 
to the Clausius-Clapeyron equation and other studies regarding 
FP and TB.46, 52 Therefore, transfer learning shows better 
accuracy than training the model without transferring layers 
from the HoV model, with slightly fewer numbers of transferred 
layers (2–5) than TC and FP. It should be emphasized that the 
model for each vaporization property has been developed 
without prior knowledge regarding the relationships among 
these properties, while the results are consistent with their 
underlying physical equations.  

Meanwhile, the best-case model for each property should 
be chosen for screening desirable working fluids and fuel 
candidates. Table 4 summarizes the best-case models with their 
number of data points and MAEs for training, validation, and 
test sets. The best-case models showed the test set MAE of 14.9 
K, 6.5 K, and 9.2 K for TC, FP, and TB, respectively. TC could also 
be predicted by estimating the temperature where the 
predicted HoV becomes zero; however, the HoV prediction near 
TC was less accurate than that at lower temperature ranges (Fig. 
4b). As can be seen in Fig. 2, the uncertainties of NIST-WTT HoVs 
increase near TC, leading to less reliable predictions of HoVs 
when they approach zero. Transfer learning was carried out 
instead of predictions from the HoV model to obtain the best TC 
prediction accuracy, resulting in the best model shown in Table 
4.  

It should be noted that the test set MAE is lower than the 
training set MAE for the best-case model of TC. Such an anomaly 
could occur when the molecules in the test set have relatively 
plain structures that make the prediction more accurate. To 
avoid the artificial bias from data splitting, we also evaluated 
the mean and standard deviation of MAEs for all models with 
different data splits (20 per each number of transferred layers, 
Table 4). As a result, all properties showed lower averaged 
training set MAEs than averaged test set MAEs, indicating that 

our models were evaluated under no specific ‘privileged’ data 
splits. 

The FP prediction model was developed using only the 
DIPPR database. We also attempted to train the model using a 
larger integrated database, but the MAEs increased (Section S6, 
ESI†). The less accuracy for the larger database is presumably 
due to the inconsistency arising from different data sources, 
including FPs measured using non-standard methods,47-51, 53-57, 

86 rather than the deficiency of the model. The best model from 
training against the DIPPR database showed the MAEs of 6.4-
7.1 K for training, validation, and test sets. These errors are 
comparable to the typical experimental errors of FP 
measurements using standard methods (5.0-8.0 K).58, 85, 86 On 
the other hand, the model for TM showed a higher test set MAE 
(21.7 K) than other properties, but it was not used for designing 
green chemicals. The lowest MAEs for CP of liquids are 65–81 
J/kg·K. This accuracy is acceptable to be utilized in the design of 
working fluids (vide infra).  

While numerous models have been reported for ‘one 
independent predictive model per one property’, all these 
results manifest the general applicability of the temperature 
dependence of HoV to other properties relevant to vaporization. 
Such approaches would lead to robust predictive models 
consistent with the underlying physics of vaporization and 
integrated into one model architecture. As discussed in the next 
section, the model can be more powerful if it is chemically 
interpretable. 
 
Chemical interpretation of the model 

The interpretability of an accurate predictive model is a key 
aspect of chemistry-informed design.104, 105 To demonstrate our 
model's chemical interpretation, we chose ethers and esters as 
representative molecules among various fuel candidates. They 
have drawn attention as promising biofuel candidates due to 
their favorable reactivity, emission characteristics, and 
synthetic viability from biomass.106, 107 First, the attention 
weights of atoms were analyzed to find the key substructures 
that lead to HoV differences. The literature108 and Section S7 in 

Fig. 6. Analysis of HoVs and atom attention weights for (a) three ethers: dibutyl ether (black), butyl isobutyl ether 
(blue), diisobutyl ether (red), and (b) four esters: ethyl 3-hydroxyhexanoate (red), ethyl hexanoate (green), methyl 
3-hydroxypropanoate (blue), methyl 2-hydroxypropanoate (black). (c) Comparison of temperature response of 
atom feature vectors in ethyl 3-hydroxyhexanoate and ethyl hexanoate, at two temperatures. 
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ESI† explain the detailed procedure for evaluating atom-wise 
attention weights.  

 The attention weight analysis for three C8 ethers is 
illustrated in Fig. 6a. The predicted HoVs showed a good 
agreement with those in the NIST-WTT. More methyl branches 
result in lower HoVs (dibutyl ether > butyl isobutyl ether > 
diisobutyl ether), presumably due to decreased molar surface 
area and, thus, intermolecular interactions.109 The attention 
weights also explain this trend; the highest attention weights 
were observed in the tertiary carbons of two branched ethers 
since they have methyl branches and lower HoV than a linear 
one. The g carbons in dibutyl ether showed the most significant 
attention because they are adjacent to terminal methyl carbons 
and determine the continuation or termination of alkyl chains.  

This analysis was repeated for esters (Fig. 6b). The hydroxy 
(OH) substitution at beta carbon of ethyl 3-hydroxyhexanoate 
(E3OHH) leads to higher HoVs than ethyl hexanoate (EH) 
because it can form intramolecular and intermolecular 
hydrogen bonds. HoVs of the hydroxyester with a shorter 
carbon chain (methyl 3-hydroxypropanoate: M3OHP) are still 
higher than EH, indicating the significance of OH groups in 
determining HoV. Our model also captured this structural 
feature; the beta carbons having an OH group showed the 
highest attention weights among atoms in E3OHH and M3OHP. 
On the other hand, the effect of OH position on HoVs was 
investigated. The HoVs of methyl 2-hydroxypropanoate 
(M2OHP) are lower than M3OHP. In both cases, the carbon 
atom with an OH group showed the highest attention, 
regardless of whether it is a terminal carbon.  

It should be noted that, as the critical point is approached, 
the prediction accuracy of GAT model, particularly for esters in 
Fig. 6b, gets worse as it is relatively harder to catch the 
molecular interaction in dense states. This challenge around the 
critical point is also reflected in the large error bar of 
experimental data near the critical points. Still, it is interesting 
that the prediction for M2OHP deviates from the experimental 
data more than their uncertainty bound, while those of the 
other ethers and esters in the figures are within the 
experimental error bar. This large discrepancy in M2OHP can be 
attributed to its unique molecular structure, where a OH group 

is attached to the alpha-site of the ester functional group which 
is rarely observed in other molecules and may cause the 
intricate intramolecular interaction.  

The OH group also influences the temperature dependence 
of a molecule on HoV. For example, the HoV of E3OHH is higher 
than that of EH at all temperatures. To explain the reason for 
these HoV differences, we compared the response of atom 
feature vectors to the global updates, which is evaluated by the 
L2-norm of feature vector difference before and after the 
update: ||v-v’|| (Equation 2 in Methods and Fig. 6c). At 400K, 
all atoms in EH and E3OHH show a low response value to the 
temperature except the OH group, alpha, and beta carbons of 
E3OHH. The overall responses increase at 600K, but these three 
atoms in E3OHH respond most sensitively to the temperature, 
contributing to higher HoVs of E3OHH than EH at the given 
temperature range. This indicates that the OH substitution at 
the beta position is a key factor for increasing the HoV of esters 
via hydrogen bonds.  

The above analysis on attention weights and temperature 
dependence demonstrates our model’s capability of capturing 
chemical structural effects on HoV. The predicted HoVs are 
accurate and are consistent with the chemical knowledge 
pertinent to HoV, such as molecular surface area and hydrogen 
bonds. The structural insights from this chemical interpretation 
would inform the discovery and design of new working fluids 
and (bio)fuel candidates. It should be emphasized that the 
chemical interpretation method using attention weights can 
also be applied to the GAT models trained through transfer 
learning for other vaporization properties. (Section S8, ESI†) 
 
Experimental validation of the model 

We carried out in-house measurements of HoVs at 
temperatures near TB for further assessment of the model using 
external data besides NIST-WTT. HoVs were measured for three 
beta-hydroxy esters and six ethers shown in Fig. 7a. They are 
promising biofuel candidates derivable from biomass and have 
high reactivity and low soot emission.106, 107, 110 They also have 
diverse structural features, such as linear/branched, 
symmetric/asymmetric alkyl chains, hydroxy, ether, and ester 
groups, which are suitable for model evaluation. Notably, three 

Fig. 7. (a) Results from our in-house measurements of HoVs for nine ether and hydroxy ester molecules, with HoV values 
predicted using our GAT model. (b) Overlapped confidence intervals of measured and predicted HoV values for these nine 
molecules. 
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(4-butoxyheptane, methyl 3-hydroxyhexanoate, and methyl 3-
hydroxytetradecanoate: I, VII, and IX) do not exist in NIST-WTT. 
The remaining six compounds are found in NIST-WTT, but the 
GAT model has never seen HoVs at the temperatures in Fig. 7a 
during the model training. Therefore, the feasibility of our 
external validation is further justified by the unavailability of 
these nine molecules at the given temperatures.  

We predicted the HoVs of these molecules at the same 
temperature using our model and compared the measured and 
predicted values. As a result, our GAT model showed reasonable 
accuracy with an MAE of 2.6 kJ/mol for these nine molecules. It 
should be emphasized that all measured and predicted values 
overlap if uncertainties are considered (Fig. 7b), which 
manifests the importance of considering confidence intervals in 
the ML prediction of HoV.  
 
Application of the model to green chemical screening 

The developed GAT models for vaporization properties 
prediction can have numerous potential applications for 
designing green chemicals. Here, we applied our GAT models to 
screening green chemicals for three purposes: working fluids, 
alternative fuels, and sustainable polymers. It should be 
emphasized that other molecular properties relevant to 
‘greenness’ of chemicals were examined together with the 
vaporization properties for the practical consideration of Green 
Principles during the screening. Such additional molecular traits 

are fuels’ emission characteristics (yield sooting index - YSI) and 
polymers’ glass transition temperature which are relevant to 
degradability. In addition, when screening working fluids, 
renewable energy sources were taken into account, such as 
solar and geothermal energy (vide infra for details). 

The first example is to screen for optimal ORC working fluids 
with desirable vaporization properties that maximize the utility 
of renewable thermal resources. Xu et al.111 discussed the 
relevance of working fluids’ TC on the thermal efficiency of sub-
critical pressure ORC. Their simulation study revealed that the 
thermal efficiency of ORC at a given temperature of heat source 
(TH) is maximized with the working fluids having TC between TH 
– 30 K and TH + 100 K, suggesting TC as an essential criterion for 
screening the optimal working fluids. Meanwhile, the “dryness” 
of working fluids was also widely accepted as an important 
property relevant to ORC's thermal efficiency and work 
output.112-114 The working fluid is considered dry if the fluid 
stays in the vapor phase upon isentropic expansion of the 
saturated vapor, which is essential to ensure the absence of 
liquid droplets at the turbine exit. The dryness of the working 
fluid can be determined with the temperature sensitivity of the 
specific entropy (ξ = ds/dT) of saturated vapors; that is, the 
working fluid is dry if ξ>0 or wet otherwise. Liu et al.112 
suggested an analytic equation for predicting ξ of organic 
compounds from their vaporization characteristics as below: 

𝜉!"#!. =
%
&!"
#𝐶',#𝑇) − #'

*&!∗

%+&!∗
( + 1+HoV,+,  (1) 

Fig. 8. Application of the GAT model for working fluid and alternative fuels screening. (a) Distribution of ~27,000 organic 
molecules on TC - ξ axis, (b) T-s curve of four different working fluids with varying TC and ξ, (c) distribution of ~1,300 saturated 
ethers on TB – FP axis, and (d) sub-screening based on YSI and CN. 
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where 𝑇)∗  is the reduced temperature of the heat source 
(=TH/TC), n is an empirical coefficient that ranges from 0.375 to 
0.38,115 and HoVH is the HoV at TH. This study assumes the TH as 
TB for the brevity in molecular screening. 

To screen working fluids based on their dryness and TC, Fig. 
8a depicts the distribution of ~27,000 organic molecules from 
the database (NIST WTT, DIPPR, PubChem, etc.85, 86, 116 ) on TC – 
ξ axis, where all the relevant molecular properties – TC, TB, CP,l, 
and HoVH – were evaluated from the present GAT model. The 
TC screening criteria for solar collector, geothermal, and solar 
pond were based on their typical temperature range (573 K, 453 
K, and 353 K, respectively117), while ξ was restricted to positive. 
Most (96 %) tested molecules fall into the dry working fluid. 
Meanwhile, more compounds at higher TC provide more viable 
options for working fluid selection for high-temperature heat 
sources such as solar collectors. On the other hand, the low-
temperature heat sources (geothermal and solar ponds) have 
limited choices for the dry working fluid. 

The validity of working fluid screening based on the GAT 
model was confirmed on the T-s diagram of the selected 
working fluids for geothermal ORC (Fig. 8b), where the 
thermodynamic properties of liquid-vapor transition were 
collected from CoolProp.118 The n-heptane met the screening 
criteria as a working fluid for geothermal ORC, and its T-s 
diagram in Fig. 7b depicts the ideal shape in geothermal 
temperature with clear dryness, proving the soundness of ML-
based screening of ORC working fluid. Similarly, the iso-hexane 
and neo-pentane also satisfied the screening criteria for 
geothermal ORC but with lower TC than n-heptane, which is 
consistent with their T-s diagram in Fig. 8b. This finding is in line 
with previous studies on n-heptane, iso-hexane, and neo-
pentane as ORC working fluids,119, 120 all of which showed a 
plausible performance in geothermal power generation. As a 
counterexample, we depicted the T-s diagram of ethanol, which 
shows the negative temperature sensitivity of specific entropy 
(thus, wet) as predicted from the ML-based working fluid 
screening. In summary, the GAT model from the present study 
can provide useful guidance on screening ORC working fluid for 
renewable thermal resources with varying temperatures. 

As another example, the present GAT model can be utilized 
to discover alternative fuel candidates for decarbonizing the 
transportation sections. Our previous study110 suggested ether  
fuels as a promising alternative to conventional fuels owing to 
their high reactivity and low soot emission characteristics while 
being synthesizable from biomass conversion. Such ethers can 
be derived through catalytic Guerbet coupling and dehydration 
of biomass-derived alcohols.110, 121 Despite the extensive studies 
from both experimental and theoretical approaches, the 
optimal structure of ether-containing molecules is still under 
investigation due to their various degrees of freedom. In this 
regard, the present study examined the utility of the GAT model 
in screening ether fuels based on their vaporization and 
combustion characteristics. 

ASTM standards122-124 restrict various molecular properties 
of transportation fuels to ensure safety and operability in the 
propulsion systems. TB range is one of the important criteria for 
categorizing the fuel molecules into diesel, jet fuels, and 
gasoline, and it affects the vaporization process of the injected 
fuels in the combustion chamber. Meanwhile, fuel safety and 
inflammability are controlled by regulating the FP above specific 
criteria. Fig. 8c presents the distribution of ~1,300 saturated 
ethers on TB – FP axis, where both properties are predicted from 
the GAT model from the present study. All the tested ethers are 
from existing databases that contain experimentally observed 
molecules; thus, they are all synthesizable. We set the boundary 
of TB for diesel, jet fuel, and gasoline as 423 – 653 K, 398 – 563 
K, and 308 – 473 K, respectively.125 The lower limit of FP of diesel 
and jet fuels was set as 325 K and 311 K, while those of gasoline 
are not constrained, as described in ASTM standards.  
Consequently, 30.3 % of tested ethers fall into the diesel regime, 
while 45.3 % and 78.5 % are in the jet-fuels, and gasoline range, 
respectively. Of note, the currently oxygenated compounds 
such as ethers are not acceptable as alternatives to 
conventional jet fuels owing to their poor thermal stability and 
low specific energy.125 Therefore, here we focused on diesel fuel 
candidates, although it can also be applied to the design of 
renewable fuels for other engines, including gasoline and 
aviation.  

Fig. 9. Application of the GAT model for screening polymers through the prediction of polymer’s cohesive energy 
and glass transition temperature using monomer’s HoV. 
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The 387 diesel-range ethers were then further analyzed on 
the cetane number (CN) and yield sooting index (YSI) axis, which 
represents the reactivity and sooting tendency of fuel 
candidates, as shown in Fig. 8d. The CN and YSI of ether 
compounds were estimated from the multivariate linear 
regression model suggested by Cho et al.110 The screening 
criteria for CN was set to be higher than 40 as dictated in ASTM 
standard for diesel fuels,123 while YSI was assumed below those 
of n-dodecane (YSI = 67.1), which is a typical surrogate fuel for 
conventional diesel. Consequently, 60 of 387 diesel-range 
ethers satisfied the criteria for combustion characteristics. 
Figure 8d shows four of the selected ethers fuels, all of which 
contain multiple oxygen atoms to increase the reactivity and 
suppress the soot formation, as envisioned by Cho et al.110 Of 
note, the candidates with lower YSI indicate that they are closer 
to green chemicals that mitigate adverse health and 
environmental impacts. In summary, the GAT model from the 
present study can provide an additional window for screening 
alternative fuels based on their vaporization characteristics, 
which significantly reduces efforts for combustion properties 
characterization. 

For the last example, we applied our models to polymer 
screening by predicting cohesive energy and glass transition 
temperature of polymers from the HoVs of their monomers. 
Cohesive energy could be a criterion to consider in designing 
polymers since it is relevant to molecular interactions of 
polymers and the polarity and binding energy of polymer chains. 
It affects many thermophysical and mechanical properties, for 
example, glass transition temperature (Tg). Although polymers 
typically degrade before vaporizing, we can use the cohesive 
energy of a given polymer to approximate the HoV of its 
structural analogs. The validity of this approximation is 
presumably due to the shared need to break molecular 
interactions required by both liquid vaporization and polymer 
degradation.  

We attempted to predict the cohesive energies of polymers 
(Ecoh, Pred) by linear regression of monomer HoVs (HoVPred, mono, 
Fig. 9). The 5-fold cross-validation was performed using the 
literature values of cohesive energies of 93 polymers at room 
temperature.126 High test set accuracies were obtained, with Q2 
and MAE of 0.97 and 2.20 kJ/mol, respectively. Moreover, the 
coefficients (c1 and c2) from five regressions showed very low 
standard deviations (0.01 and 0.43), indicating a robust 
relationship between the monomer’s HoV and the polymer’s 
cohesive energy. Reliable extrapolation from monomers to 
polymers was possible by our accurate predictive models for 
HoV, demonstrating the potential applicability of our GAT 
models to polymers. 

Next, we also predicted Tg of polymers by the linear 
regression of monomer’s HoV normalized by the number of 
functional groups representing molecular oscillations (Noscil). 
This was motivated by a previous study which quantified the 
linear relationship between Tg and cohesive energies per 
Noscil.127 The 5-fold cross-validation for 28 polymers126, 127 
resulted in test set Q2 and MAE of 0.94 and 15.8 K, respectively, 
against the experimental Tg values. The linear regression 
coefficients (c3 and c4) showed low deviations among five 

training sets, highlighting the relationship between HoV and Tg. 
However, a polymer’s glass transition is a complicated 
phenomenon that cannot be accounted for solely by HoVs, as 
can be seen by a weak correlation between HoV and Tg for the 
seven polymers with alcohol moieties (Section S9 in ESI†). 
Despite this limitation, predicting polymer properties from 
monomer’s HoV is a fast and robust approach for designing and 
screening new polymers. The prediction results in Fig. 9 include 
polymers that can be synthesized from renewable sources such 
as biomass: for example, those with ethers, esters, and phenolic 
moieties (I – VI in Fig. 9). 

Conclusions 
A GAT model was developed to predict vaporization 

properties. The extensive NIST-WTT HoV database consisting of 
~150,000 data points was utilized for model development 
considering the temperature dependence of HoV and 
uncertainty quantification. The model showed good prediction 
accuracy with reasonable uncertainty estimation. The 
predictive model for HoV was expanded to other vaporization 
properties, whose databases are less extensive than HoV. 
Adopting transfer learning approaches for TC, FP, and TB was 
beneficial, using the trained layer weights from the HoV model. 
The transfer learning models showed lower errors in estimating 
these properties than the models from non-transfer training. 
The prediction and chemical interpretation were possible by 
analyzing attention weights and temperature response of atom 
feature vectors, leading to the elucidation of molecular 
structural effects on HoV. This workflow encompassing 
uncertainty quantification, transfer learning, and chemical 
interpretation was applied to the practical design of working 
fluids and (bio)fuel candidates.  

Our predictive models and their applications are relevant to 
some of the 12 Green Chemistry Principles:22 (i) Less 
hazardous/toxic materials, (ii) Energy efficient by design, (iii) 
Renewable rather than designing new material, and (iv) Design 
products for degradation. Principle (i) was considered by 
including fuel candidates’ YSI and vaporization properties that 
influence emissions as screening criteria. Principle (ii) was taken 
into account since vaporization properties also affect chemicals’ 
energy efficiency when being used as working fluids and 
alternative fuels. In addition, we mainly considered compounds 
that are derivable from biomass, which is related to Principle 
(iii). Predicting glass transition temperatures of polymers can 
lead to Principle (iv). 

The computational approaches introduced in this 
contribution can be used for other molecular properties related 
to the design of green chemicals, facilitating clean and 
sustainable energy production. Particularly, our predictive 
models can be expanded to Green Indices that quantify 
environmental impacts, emissions, and carbon economy. One 
can adopt other databases of Green Indices and re-train the 
GAT models.128 Transfer learning can also be applied if the 
target properties of interest are correlated with the 
vaporization properties.  
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Methods 
The following procedure was carried out for the data 

collection and curation. SMILES strings of molecules were 
generated by converting their IUPAC names or CAS numbers 
into SMILES via Chemical Identifier Resolver developed by the 
National Institutes of Health (NIH)129 and the PubChemPy 
package.130 The RDKit cheminformatics package131 was utilized 
for canonicalizing SMILES strings and generating atom features 
and connectivity of molecules that are used as inputs of our GAT 
model. Our GAT model was programmed in Python 3.7132 using 
the Deep Graph Library 0.7133 with the TensorFlow 2.4134 
backend. In the GAT, the given 16-dimensional input features 
H(0) pass through graph convolution layers considering attention 
weights (a) that impose different convolution weights to each 
bond based on other surrounding atoms. The updated atom 
feature vector of atom i at the (l+1)-th layer [𝐻.

(#0%)] is: 

𝐻.
(#0%) = 𝜏 2%2 '∑ ∑ 𝛼.3,4

(#) 𝐻3
(#)𝑊(#)

3∈6(.)
7
4 (6, (2) 

where t is the rectified linear unit (ReLU) activation function to 
introduce non-linearity between molecular structure and 
predicted HoV, K is the number of attention heads. N(i) is the 
set of first-nearest neighbors of atom i connected by bonds, W(l) 
is a graph convolution matrix. a and W(l) are trainable matrices. 

Such attention weights with multiple attention heads are 
capable of capturing long-range, non-local, global effects of 
molecular structures on HoV. Next, the two-stage global update 
scheme was combined with our attention mechanisms to 
incorporate temperature information into the model. The first 
update is carried out by: 
 
𝐯8 = 𝐯 + 𝜏[𝜙%(𝐯) + 𝜙9(𝐮)],             (3) 
 
where v and v' are the atom feature vectors before and after 
the update. u is the global (temperature) feature vector. f1 and 
f2 are two fully connected layers, respectively. The second 
update is performed by using the averaged atom feature 
vectors: 

𝒖8 = 𝒖 + 𝜏 2𝜙: '
%

6$%&'
∑ 𝑣.8
6$%&'
. ( + 𝜙;(𝒖)6,  (4) 

where u and u' are the global feature vectors before and after 
the update. f3 and f4 are two dense layers. 𝑣.8  is the updated 
feature vector of one atom obtained from Equation (2), and 
Natom is the number of atoms in a molecule. 

The first update propagates the temperature condition to 
individual atoms in a molecule. The subsequent update is for 
the aggregation of the atom-wise responses to temperature 
changes and the incorporation of the collected information into 
the updated global feature vector. Overall, atom and global 
feature vectors are updated mutually, simulating the effects of 
a molecule on its surroundings during vaporization and vice 
versa, which leads to a physics-informed description of 
vaporization. 

The KL divergence is defined as 

𝐷2<(P||Q) = 

%
6()*)

D∑ Elog =+,-(,/
=0123,/

+ =0123,/
" 0>,0123,/+,+,-(,/?

"

9=+,-(,/
" − %

9
H6()*)

. I   (5) 

where HNIST, sNIST, Hpred, spred are HoVs and uncertainty from 
database and prediction, respectively, and P~N(HNIST, s2NIST), 
Q~N(Hpred, s2pred). Training the HoV model against 153,105 data 
points for 200 epochs using one V100 GPU took about two 
hours. 
 
Experimental details of HoV measurements. 

Pure component symmetric ethers and beta hydroxy 
hexanoate esters investigated for HoV measurement were 
purchased in >98% purity from Sigma Aldrich. Asymmetric 
ethers were custom synthesized by Advanced Molecular 
Technologies of Melbourne, Australia.  A Differential Scanning 
Calorimeter/Thermogravimetric Analyzer (DSC/TGA) (TA 
Instruments, Q600-series) was utilized to perform HoV 
measurements. It was based on a previous method developed 
for gasoline samples.135, 136 The instrument was calibrated per 
the manufacturer’s specifications, and a correction factor was 
calculated for the instrument (1.17) using n-butyl benzene 
because its HoV is well documented.137, 138 Utilizing a similar 
methodology to that developed by Luning Prak and 
coworkers,139 each pure component was placed in an aluminum 
pan (TA Instruments, Tzero Pan 901683.901) with a hermetically 
sealed pinhole lid (TA Instruments, Tzero Hermetic Lid w/ Pin 
Hole 901685.901). The DSC/TGA was held isothermally for one 
minute and then ramped at a rate of 30°C per minute until it 
reached a temperature of 15-20°C below the boiling point of the 
pure component. The DSC/TGA was then held isothermally for 
30 seconds before again being ramped at a rate of 10°C per 
minute until it reached a temperature within 5°C of the boiling 
point. It then remained isothermal until the sample had 
completely evaporated, as determined by the TGA. The heat 
flow was integrated from the isothermal ramp's start until the 
sample evaporation's end. The HoV was calculated as the 
combined heat flow divided by the mass loss recorded by the 
TGA. Each sample was run in triplicate, and the average HoV 
was reported.  

Data Availability 
Our GitHub repository (https://github.com/BioE-

KimLab/HoVpred) contains Python source codes and predictive 
models with detailed instructions about how to run predictions for 
new molecules.  The molecules used for training the model are 
available through the GitHub repository, although subscriptions are 
required to access the property data in NIST-WTT and DIPPR 
databases. The data points from literature were not redacted and are 
available through the GitHub repository. 
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