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We derive an analytic expression of the non-equilibrium Fermi’s golden rule (NE-FGR) expression for a
Holstein-Tavis-Cumming Hamiltonian, a universal model for many molecules collectively coupled to the op-
tical cavity. These NE-FGR expressions capture the full-time-dependent behavior of the rate constant for
transitions from polariton states to dark states. The rate is shown to be reduced to the well-known fre-
quency domain-based equilibrium Fermi’s golden rule (E-FGR) expression in the equilibrium and collective
limit and is shown to retain the same scaling with the number of sites in non-equilibrium and non-collective
cases. We use these NE-FGR to perform population dynamics with a time-non-local and time-local quantum
master equation and obtain accurate population dynamics from the initially occupied upper or lower polari-
ton states. Further, NE-FGR significantly improves the accuracy of the population dynamics when starting
from the lower polariton compared to the E-FGR theory, highlighting the importance of the non-Markovian
behavior and the short-time transient behavior in the transition rate constant.

I. INTRODUCTION

Coupling molecules inside an optical cavity generates
polaritons, which have been the target of interest in re-
cent years. These hybrid polariton states arise from
strong coupling between molecular states (electronic or
vibrational excitations) and quantized Fock states of a
cavity-confined radiation mode inside.1,2 The formation
and subsequent dynamics of the polariton states are hy-
pothesized to be the key to various important phenom-
ena, such as cavity-induced alternation of chemical reac-
tivity3–17, as well as the enhanced transport of exciton-
polaritons.18–28

In this work, we investigate the excitonic polariton re-
laxation process, where the excited states of N molecules
(hereon referred to as sites) are coupled to the photonic
excitation of the cavity. The system consists of two po-
laritonic states which are highly delocalized mixtures of
the photon state and excited states of a large number of
sites (for N ∼ 106 − 1012), as well as a large number of
dark states (a total of N − 1 of them) with purely ex-
citonic character and carry zero transition dipole from
the ground state (hence optically dark). The coupling,
and corresponding population transfer as a result, in be-
tween the polaritonic as well as the dark state is facili-
tated by the nuclear/phonon (hereon referred to as the
bath) degrees of freedom (DOF). This is crucial for an
accurate description of the polariton relaxation process,
as demonstrated by the collective scaling of the transfer
rates between the polariton and dark states29–32 as well
as the polaron decoupling effect observed in the collective
limit,33–36 the interesting energy gap law,37 and phonon
and polariton bottleneck effect.38

While the relaxation process of cavity polari-
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ton has been the subject of various experimental
studies,12,37,39–43 accurate simulation of the popula-
tion dynamics is essential to the theoretical studies
of an excitonic polaritonic system. Numerically exact
methods such as multi-configurational time-dependent
Hartree44–46 (MCTDH) and its multilayer extension,47,48

and hierarchical equations of motion49–52 (HEOM) adopt
full quantum mechanical treatment of every DOF, of-
ten facing the challenge of a rapidly increasing computa-
tional cost when increasing the number of molecules N .
Reported simulation of collective dynamics using trun-
cated equations32 (CUT-E) takes advantage of permuta-
tional symmetry of the material states and can signifi-
cantly reduce the computational cost through an effec-
tive 1/N expansions. Mixed-quantum-classical (MQC)
methods36,53,54 treat bath DOF classically and are feasi-
ble for stimulating a large number of molecules N collec-
tively coupled to the cavity. These methods have been
applied previously to study the collective behavior of the
polaritonic dynamics.20,55

Reduced population dynamics based on transfer rates
represent an alternative way to investigate the polari-
ton population dynamics.56,57 These approaches often
use the well-known Fermi’s golden rule (FGR) to the
polariton dynamics11,14,31,32,58–61 to describe transition
rate and simulate the population dynamics. The popu-
lation transfer rates between polariton states and dark
states can be obtained without any explicit propagation
of the bath equation of motion (EOM), and in princi-
ple can be performed with an arbitrarily large number of
sites N . Another strength of the rate-based approach
is the decomposition of the EOM into explicit trans-
fer rates, which provides valuable physical intuition to
the underlying dynamics.56 However, the widely-known
conventional frequency-domain formulation of FGR com-
monly referred to as the equilibrium Fermi’s golden rule
(E-FGR) assumes that the bath DOF initial condition is
at equilibrium with the initial system state, which is not
necessarily valid upon photoexcitation.57 Additionally,
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E-FGR leads to a fully Markovian EOM, which means a
different time-dependent rate equation is required to cap-
ture any non-Markovian characteristics of the dynamics.

In this work, we follow a quantum master equation
(QME)-based time-domain formulation and derive var-
ious analytic expressions of a non-equilibrium Fermi’s
golden rule (NE-FGR) rate constant that reduces to the
well-known FGR under proper limits under the long time
and collective coupling limit. Using these NE-FGR rate
expressions, we can explicitly perform simulations of the
population dynamics using a non-Markovian EOM. This
formulation also offers an improvement upon the exist-
ing QME-based approach in which no explicit discretiza-
tion of the spectral density is performed, eliminating this
source of additional numerical inaccuracy.62–64 The ac-
curacy and efficacy of the NE-FGR approach are show-
cased via the population dynamics of a model polari-
tonic system with relatively weak system-bath coupling,
by comparing it to the numerically exact HEOM results.
We demonstrate that NE-FGR population dynamics are
very accurate in this case, and for the case of lower po-
lariton being initially populated, we report significant
non-Markovian characteristics in the dynamics, which re-
quires NE-FGR to capture properly.

II. MODEL AND METHODS

A. Holstein-Tavis-Cumming Hamiltonian

We consider a collection of N two-level systems
(molecules, referred to as sites) coupled inside a cav-
ity, described by the following Holstein-Tavis-Cummings
(HTC) model33,34,40,65

Ĥ = ℏωx

N−1∑
n=0

|Xn⟩⟨Xn|+ ℏωcâ
†â + Ĥb + Ĥsb

+ ℏgc
N−1∑
n=0

(
â†|Gn⟩⟨Xn|+ â|Xn⟩⟨Gn|

)
. (1)

Here, ℏωx is the exciton site energy, n ∈ {0, 1 · · ·N − 1}
is the site index, |Gn⟩ and |Xn⟩ are the ground state
and the excited state of site n, respectively, â† and â
are the creation and annihilation operators of the cavity
photons with frequency ωc, and gc is the single molecule
light-matter coupling strength. Experimentally, it was
estimated that N = 106− 1012 molecules are collectively
coupled to one cavity mode, which was referred to as the
collective coupling limit.1

Each site (molecule) is coupled to its independent
phonon environment, which is modeled as the bath
Hamiltonian Ĥb + Ĥsb. These baths are assumed to be
harmonic and identical for all sites n, expressed as follows

Ĥb =
∑
n

∑
a

ℏωab̂
†
a,nb̂a,n (2a)

Ĥsb =
∑
n

|Xn⟩⟨Xn| ⊗
∑
a

ca

(
b̂†a,n + b̂a,n

)
, (2b)

where a is the bath mode index, and b̂†a,n are the rais-
ing operate for the ath harmonic bath mode of the nth

site, with frequency ωa. The exciton-phonon coupling is
characterized by the spectral density defined as66

J(ω) = πℏ−1
∑
a

c2aδ(ω − ωa). (3)

In the current study, we refer to the electronic and the
photonic DOFs as the system DOFs, leaving everything
else as the bath DOFs.

In this work, we derive the non-equilibrium Fermi’s
golden rule (NE-FGR) theory for the polariton relax-
ation processes and simulate the polariton relaxation dy-
namics via quantum master equation approaches. The
application of such a perturbative population dynamics
method (i.e. the NE-FGR rate theory) implies that the
off-diagonal elements of the Hamiltonian are treated as a
perturbation. For the system DOF, the polariton basis is
used such that the system Hamiltonian is diagonalized.
In this case, the exciton-phonon couplings become the
perturbation.

We start by transforming the Hamiltonian from the
site basis to the delocalized eigenbasis,31 using the col-
lective excitation/de-excitation operators36,67,68 for the
bright state (which is j = 0 in Eq. 5) as

B̂† =
1√
N

N−1∑
n=0

|Xn⟩⟨Gn|, (4a)

B̂ =
1√
N

N−1∑
n=0

|Gn⟩⟨Xn|. (4b)

as well as for the Dark states for j = 1, 2, · · ·N − 1 as
follows

D̂†
j =

1√
N

N−1∑
n=0

exp(−2πi nj

N
)|Xn⟩⟨Gn| (5a)

D̂j =
1√
N

N−1∑
n=0

exp(2πi
nj

N
)|Gn⟩⟨Xn| , (5b)

where we adopt first and second quantization notations.
Throughout the paper, we only consider the single exci-
tation subspace. As one can see from Eq. 5, these dark
states are composed of the delocalized exciton states.
To differentiate between the site basis and the de-

localized basis, {m,n, · · · } will be used to index the
site basis while {j, k, · · · } to index the delocalized ba-
sis. Specifically, j = 0 corresponds to an all-symmetric
entity (i.e., the bright state), while j = 1, 2 · · ·N − 1
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are asymmetrical (i.e., dark states). Furthermore, the
{j, k, · · · } ∈ [0, N − 1] are defined explicitly in the recip-
rocal space, such that −j ≡ N − j, and j−k ≡ N + j−k
for j < k.

The same transformation also applies to the phonon
bath DOF, generating a set of delocalized reciprocal-

space bath modes ν̂†a,j . The asymmetrical (j =

1, 2, · · ·N − 1) bath modes are defined as

ν̂†a,j =
1√
N

N−1∑
n=0

exp
(
− 2πi

nj

N

)
b̂†a,n, (6a)

ν̂a,j =
1√
N

N−1∑
n=0

exp
(
2πi

nj

N

)
b̂a,n, (6b)

while the symmetrical (j = 0) phonon bath modes are
expressed as

ν̂†a,0 =
1√
N

N−1∑
n=0

b̂†a,n . (6c)

Readers may refer to Eq. A1 in Appendix A for an ex-
plicit expression of the Hamiltonian in the reciprocal
space.

The diabatic polaritonic Hamiltonian (also known
as the Tavis-Cummings Hamiltonian67) is the system

Hamiltonian Ĥpl = Ĥ − (Ĥb + Ĥsb), whose eigenstates
are two bright polariton states and N − 1 dark states
(with zero transition dipole from the overall ground state
|G⟩ ⊗ |0⟩). In the single exciton basis, the Upper polari-
ton state (UP or |+⟩) and Lower polariton state (LP
or |−⟩) are superpositions of the bright exciton state

(|B⟩ = B̂†|G⟩), expressed as

|+⟩ = sinϕ |G⟩ ⊗ |1⟩+ cosϕ |B⟩ ⊗ |0⟩ (7a)

|−⟩ = cosϕ |G⟩ ⊗ |1⟩ − sinϕ |B⟩ ⊗ |0⟩ . (7b)

with the mixing angle ϕ expressed as

ϕ =
1

2
tan−1

( 2
√
Ngc

ωx − ωc

)
∈ [0,

π

2
) , (8)

and the energy of the polaritons as

ω± =
ωx + ωc

2
± 1

2

√
4Ng2c + (ωx − ωc)2 . (9)

The corresponding raising operators are expressed as

P̂ †
+ = sinϕ â† + cosϕ B̂† (10a)

P̂ †
− = cosϕ â† − sinϕ B̂†, (10b)

In the polaritonic basis, the Hamiltonian is expressed in
Eq. A2 in Appendix A. We further define the detuning
between the photon energy and matter excitation as ∆ =
ωc − ωx.

B. Non-Equilibrium Fermi’s Golden Rule (NE-FGR)

To investigate the polariton relaxation process, we de-
rive the expression of the non-equilibrium Fermi’s golden
rule (NE-FGR) theory for the HTC Hamiltonian ex-
pressed in Eq. A2. NE-FGR has been previously de-
veloped to investigate photoinduced charge transfer pro-
cesses by Sun, Geva, and co-workers.56,57 Note that NE-
FGR treats the off-diagonal elements of the Hamiltonian
as a small perturbation, which in the polariton basis ef-
fectively assumes weak system-bath coupling (exciton-
phonon coupling). This assumption is expected to be
valid when N becomes larger, since all off-diagonal terms
in Eq. A2 scales with 1/

√
N , reducing the magnitude of

the polariton-phonon coupling as N enters the collective
limit (for N = 106 ∼ 1012).
Following previous work on time-domain derivation

of Fermi’s golden rule via quantum master equation
(QME),56,57,69,70 we begin with the following time-
nonlocal (TNL) population equation of motion (EOM)

d

dt
Pj(t) = −

1

ℏ2
∑
k

∫ t

0

ds Kjk(t, s)Pk(t− s) , (11)

which is obtained by defining the population projection
superoperator P in the Nakajima-Zwanzig equation as
PÔ =

∑
j |j⟩⟨j|⟨j|Ô|j⟩, following a second order pertur-

bative approximation, with details provided in Ref. 56.
In Eq. 11, Pj is the time-dependent population for state
|j⟩ ∈ {|±⟩, |D1⟩, |D2⟩, · · · , |DN−1⟩}, and the population
memory kernel Kjk is expressed as

Kjk(t, s) = δkj · 2Re
[∑

l ̸=j

Cj→l(t, s)
]
− 2Re

[
Ck→j(t, s)

]
,

(12)
in which the correlation function Ci→f corresponds to
the population transfer process i→ f , expressed as

Ci→f (t, s) = Trb

[
ρ̂b(0)e

i
ℏ Ĥi(t)Ĥife

− i
ℏ Ĥf (s)Ĥfie

− i
ℏ Ĥi(t−s)

]
.

(13)

Here, Ĥk = ⟨k|Ĥ|k⟩ denotes the diagonal elements of the

Hamiltonian in Eq. A2, while Ĥjk = ⟨j|Ĥ|k⟩ denotes the
off-diagonal elements, {|k⟩, |j⟩} ∈ {|±⟩, |Dj⟩}. Note that

Ĥk and Ĥjk are still operators of the bath DOFs.
To evaluate the correlation function in Eq. 13, we de-

compose Ĥk and Ĥjk terms into single-mode entities (for
the ath mode) according to the detailed Hamiltonian ex-
pression in Eq. A2, yielding

Ĥk = ℏωk +
∑
a

N−1∑
j′=0

ĥj′

a +
∑
a

Ĥa,k (14a)

ĥj′

a = ℏωaν̂
†
a,j′ ν̂a,j′ (14b)

Ĥjk =
∑
a

Ĥa,jk , (14c)

where Ĥa,k and Ĥa,jk corresponds to the coupling be-
tween system and bath DOF, see Eq. 20 for their explicit
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expressions (more details are provided in supplementary
information Eqs. S13, S17). The initial state of the bath
is assumed to be at thermal equilibrium

ρ̂b(0) =
⊗
a,j

1

Za,j
exp(−βℏωaν̂

†
a,j ν̂a,j) , (15)

where Za,j ≡ Trb[exp(−βℏωaν̂
†
a,j ν̂a,j)] is the partition

function for the bath DOF, β = 1/(kBT ) is the inverse
temperature, and kB is the Boltzmann constant.

As a result of the second-order perturbative QME,69

the time-local variant of the population QME shares the
same memory kernel as TNL, expressed as

d

dt
Pj(t) = −

1

ℏ2
∑
k

[ ∫ t

0

ds Kjk(t, s)
]
Pk(t) . (16a)

This time-local population QME can be cast into an
equation of motion (EOM) governed by time-dependent
rate constants,

d

dt
Pj(t) =

∑
i̸=j

ki→j(t)Pi(t)−
∑
f ̸=j

kj→f (t)Pj(t), (16b)

where the time-dependent rate constants ki→f (t) is re-
ferred to56,70 as the non-equilibrium FGR (NE-FGR),
and is generated by integrating the corresponding time
correlation-function Ci→f (t, s) as follows

ki→f (t) =
2

ℏ2
Re

∫ t

0

ds Ci→f (t, s), (17)

and the equilibrium FGR (E-FGR) is the t → ∞ limit
of ki→f (t). Related to the rate constant theory,71–73

Ci→f (t, s) is the flux-flux correlation function and
ki→f (t) is the flux-side correlation function.

We notice that the Hamiltonian Eq. A2 is invariant un-
der any permutations among the dark states index, hence
all inter-dark state rates are identical to each other. The
same argument can be applied to the population transfer
rates between the dark and polariton states, such that
the N − 1 dark states are equivalent in the population
dynamics. In this work, the polariton relaxation process
is investigated by initially populating the polariton state
(either |+⟩ or |−⟩) and then simulating the population
transfer dynamics to the dark state. As a result, all dark
states have zero initial population and will have the same
population throughout the dynamics. Therefore, we in-
stead study the population dynamics of the dark states
manifold that have the combined population of all dark
states

PD =

N−1∑
j=1

Pj = (N − 1)Pj , (18)

and define the dark state manifold as

|D⟩⟨D| ≡
∑
j

|Dj⟩⟨Dj |. (19)

Transition Rate between dark states

To evaluate the population transfer correlation func-
tions, we start by looking at the population transfer
rate between two dark states, j ̸= ±, and k ̸= ± and
ℏωj = ℏωx (dark state energy is identical to the exciton
energy). The relevant single-mode bath Hamiltonians

Ĥa,j for the ath mode (defined in Eq. 14) is expressed as

Ĥa,j =
ca√
N

(
ν̂†a,0 + ν̂a,0

)
(20a)

which is the diagonal system-bath coupling term that
couples one dark state to the fully symmetric bath mode

ν̂†a,0 (the
∑N−1

j=1 D̂†
jD̂

†
j term in Eq. A2). Since all dark

states are shifted by the symmetric bath mode with ex-
actly the same magnitude, this term does not contribute
to the dark-to-dark correlation function. Further, the
Ĥa,jk term defined in Eq. 14 is expressed as

Ĥa,jk =
ca√
N

(
ν̂†a,k−j + ν̂a,j−k

)
, (20b)

which corresponds to the off-diagonal system-bath cou-

pling (the
∑N−1

j ̸=k D̂†
jD̂k term in Eq. A2). This term

causes the transition from |Dk⟩ to |Dj⟩ through the anni-
hilation (creation) of phonons with the reciprocal index
matching (complementary to) the transition.

Since Ĥa,jk is the only term that contributes to the
population transfer between dark states, such transition
is equivalent to a population transfer between unshifted
harmonic oscillators, only involving contributions from
off-diagonal system-bath coupling. The correlation func-
tion is given by (for details of the derivation, see Sec. IIA
of the supplementary material), and the final expression
is

Cj→k(t, s) ≡ CD→D(s) (21)

=
1

N

ℏ
π

∫ ∞

0

dω J(ω)

[
coth

(1
2
βℏω

)
cosωs+ i sinωs

]
≡ 2

Nβ
γβ(s) +

iℏ
N

γ̇(s) ,

where J(ω) is the spectral density defined in Eq. 3. In the
above expression (Eq. 21), we denote all of the Cj→k(t, s)
as CD→D(s) because they are all identical. We further
define the single-site friction kernel74 γ(s), γ̇(s) as well as
the finite-temperature friction kernel γβ(s) are expressed
as

γβ(s) =
βℏ
2π

∫ ∞

0

dω J(ω) · coth
(
1

2
βℏω

)
cos(ωs) (22a)

γ(s) = γβ=0(s) =
1

π

∫ ∞

0

dω
J(ω)

ω
cos(ωs) (22b)

γ̇(s) =
1

π

∫ ∞

0

dω J(ω) · sin(ωs), (22c)

This formulation is chosen because γ(s) and γ̇(s) can be
evaluated analytically and γβ(s) by numerical integra-
tion, as described in more detail in the Appendix B.
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Transition Rate between dark states and polaritons

The population transfer correlation functions between
the polaritons (±) and the dark state manifold (D) can
be evaluated via a similar procedure, as detailed in the
supplementary material Sec. IIB. The final results are

C±→D(t, s) = ei(ω±−ωx)s · (N − 1) · C0
±→D(t, s) (23a)

×1

2
(1± cos 2ϕ) · CD→D(s)

CD→±(t, s) = e−i(ω±−ωx)s · C0
D→±(t, s) (23b)

×1

2
(1± cos 2ϕ) · CD→D(s),

Barring pre-factors and the oscillatory term e±i(ω±−ωx)s,
Eq. 23 contains two major contributions, CD→D(s) and
C0

J→K(t, s) terms. The term CD→D(s) is the contribu-
tion of ν̂j and ν̂−j term that provides off-diagonal cou-
pling between the polaritons and a dark state (through
the last line in Eq. A2). This CD→D(s) expression is
identical to the case of the dark-to-dark state transition
expressed in Eq. 21, since the j-th and −j-th modes are
unshifted in the polariton or dark states, as discussed
above with the derivation of Eq. 21.

The C0
J→K(t, s) term (for {|J ,K} ∈ {|±⟩, |D⟩}) in

Eq. 23 corresponds to the contribution from symmet-

ric bath modes (ν̂†a,0 and ν̂a,0) in the form of diagonal

coupling (see the second line of Eq. A2, shifting by dif-
ferent amounts between the polariton states and the dark
states (see the second line of Eq. A2). Here, we use
C0 to denote that this contribution originates from the

symmetrical phonon ν̂†a,0 and ν̂a,0 coupling to the po-
lariton and dark states. It is evaluated via the Gaus-
sian integral technique,56,57 (for example, Appendix B
in Ref. 57), with the details of derivation provided in
Sec. IIB of the supplementary material. The final ex-
pression of C0

J→K(t, s) is

C0
J→K(t, s) = exp

1

Nℏ

{
− 1

βℏ

(
rJ − rK

)2

Γ̄β(s)

+2i
(
rJ − rK

)
rJ

(
Γ(t)− Γ(t− s)

)
(24)

−i
(
rJ − rK

)2

Γ(s)− i
(
r2J − r2K

)
λ · s

}
,

where λ = γ(0), rD = 1 and r± = (1 ± cos 2ϕ)/2, and
Γβ , Γ̄β are the first and second order antiderivative of γβ
(see Eq. 22a) expressed as

Γβ(s) =

∫ s

0

dτ γβ(τ) (25a)

Γ̄β(s) = 2

∫ s

0

dτ Γβ(τ) , (25b)

with their detailed expressions provided in Eq. S28 in
the supplementary material, and Γ, Γ̄ defined as the high-
temperature limit β = 0 of Γβ(s) and Γ̄β(s), respectively.

Note that C0
J→K(t, s) in Eq. 24 is caused by the differ-

ence in phonon mode shift in the dark state (which is fully
excitonic) and the polariton states (which have mixed ex-
citon and photon character). The C0

J→K(t, s) term can
be interpreted as the non-equilibrium single-site popu-
lation transfer FGR correlation function56,57 under the
Condon approximation (which is equivalent to setting

⟨J |Ĥsb|K⟩ = Îb, the identity operator of the bath DOF).
A similar expression is also encountered in the previous
work on non-equilibrium FGR by Sun and Geva.70

In Eq. 23, the forward rate (|±⟩ → {|D⟩}) and reverse
rate (|D⟩ → |±⟩) scale differently with the number of sites
N . One can clearly see that the transition rate from |±⟩
polariton state to the dark states manifold contains an
additional factor N − 1. This is because there are N − 1
degenerate dark states as the final state (or equivalently,
N − 1 identical. The reverse transition, |D⟩ → |±⟩, also
consists of N − 1 identical processes, but each transition
is from a single dark state which has ∝ 1/(N − 1) of
the overall population of the dark states manifold {|D⟩},
leading to no overall scaling with the number of sites
(∝ O(N0)). Taking the 1/N scaling of CD→D into con-
sideration (see Eq. 21), the dark-to-polariton NE-FGR
rate scales with 1/N , while the polariton-to-dark NE-
FGR rate scales with (N − 1)/N . These scaling in
terms of N is consistent with well-known Equilibrium
FGR polaritonic relaxation rates31,32 or Lindblad master
Equations29,30, and can be confirmed through the recent
Mixed Quantum-Classical (MQC) simulations55 and ex-
act quantum dynamics simulations.68

Transition Rate between Polariton states

Finally, the transitions among two polariton states (for
|+⟩ → |−⟩ and |−⟩ → |+⟩) consist of a minor part of
the polariton relaxation process (when N is large). The
inter-polariton transfer is often ignored in the study of
polariton lifetime because the dark states usually out-
number the polariton states in the collective coupling
regime, and one may reasonably assume that the inter-
polariton transition rate is much lower compared to the
polariton-dark transition rate. For the sake of complete-
ness, we include the inter-polariton transfer explicitly in
the current study, such that its effect can be quantified
when N is not very large.

In the population transfer correlation function
C±→∓(t, s) from one polariton state to the other, the
symmetric bath mode k = 0 contributes to both di-
agonal and off-diagonal coupling. As a result, it is no
longer possible to separate the two contributions cleanly
like the previously discussed cases, leading to a slightly
more complex evaluation via the Gaussian integral ap-
proach. The details are provided in supplementary ma-
terial Sec. IIC. The final result of C±→∓(t, s) is expressed
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as

C±→∓(t, s) = ei(ω±−ω∓)s · 1
4
sin2 2ϕ C0

±→∓(t, s) (26a)

×
[
F±→∓(t, s)F±→∓(t− s, s) + CD→D(s)

]
,

where CD→D is expressed in Eq. 21, C0
±→∓(t, s) is ex-

pressed in Eq. 24, and the auxiliary factors F±→∓ cor-
responds to the non-Condon nature of C±→∓(t, s), with
the following expression

F±→∓(t, s) =
1

N

[
− λ∓ cos 2ϕ · γ(s) +

(
1± cos 2ϕ

)
γ(t)

± 2i

βℏ
cos 2ϕ · Γβ(s)

]
, (26b)

where λ = γ(0), γ(s) is expressed in Eq. 22b, and Γβ is
expressed in Eq. 25.

To summarize, we derived the NE-FGR expressions for
polariton transitions

ki→f (t) =
2

ℏ2
Re

∫ t

0

ds Ci→f (t, s),

with C±→D(t, s) and CD→±(t, s) expressed in Eq. 23,
and C±→∓(t, s) expressed in Eq. 26a. In the following
sections, we further simplify these correlation functions
and arrive at approximate FGR rate expressions. This is
the first key result of the paper.

C. FGR under the Markovian and the Collective limit

The aforementioned NE-FGR (Eq. 17) can be further
simplified via various additional approximations. Most
obviously, the rate defined in Eq. 17 is time-dependent,
meaning the resulting EOM is not Markovian. To arrive
at the more widely used Markovian version of the rate
equation, consider the t → ∞ limit of Eq. 17, we have
the E-FGR rate constant expression as

ki→f (t→∞) = − 2

ℏ2
Re

∫ ∞

0

ds Ci→f (∞, s) , (27)

where the Ci→f (∞, s) is expressed (c.f Eq. 13)

Ci→f (∞, s) = Trb

[
ρ̂b(0)e

i
ℏ Ĥi(s)Ĥife

− i
ℏ Ĥf (s)Ĥfi

]
.

and the Markovian limit of NE-FGR is to assume that
ki→f (t) = ki→f (t → ∞) = ki→f . This is achieved by
making two approximations,

1. The FGR correlation function Ci→f (t, s) has a
short lifetime (in terms of s) compared to the re-
sulting dynamics, such that the integral limit can
be extended to infinity.

2. The t-dependence in Ci→f (t, s) is also eliminated.

This is equivalent to setting ρ̂b(0) = exp(−βĤi)
in Eq. 13, meaning the bath is at equilibrium in
the initial system state i at t = 0, which is why
the Markovian FGR is referred to equilibrium FGR
(E-FGR) in this context.

Another useful limit to consider involves the number of
sites N . In the case of molecular sites interacting with a
cavity, N is usually in the order of 106; for more strongly
coupled systems such as nanoparticles or nanoplatelets,40

N would be in the order of 103. These cases correspond to
the limit of N → ∞, hereon referred to as the collective
limit. More specifically, this refers to the limit where
the light-matter coupling has a predominantly collective
nature, i.e., the individual coupling gc is weak such that
the Rabi splitting ΩR = 2

√
Ngc is large due to the large

N .
Noticing that N is large under the collective coupling

regime, and 1/N often appears in the correlation func-
tion, one can truncate the correlation functions expressed
in Eq. 23 and Eq. 26a to the lowest non-vanishing order
of 1/N , leading to the following approximations
(a). Relevant for all correlation functions, C0

J→K =

exp
1

Nℏ
f(t, s)→ 1;

(b). For polariton-polariton transfer in Eq. 26a, the F×
F term is dropped since it scales as 1/N2 compared
to the CD→D term which scales 1/N .

The above approximation leads to the following simpli-
fied collective-limit correlation function expression

C±→D(s) = ei(ω±−ωx)s · N − 1

2
(1± cos 2ϕ) · CD→D(s),

(28a)

CD→±(s) = e−i(ω±−ωx)s · 1
2
(1± cos 2ϕ) · CD→D(s),

(28b)

C±→∓(s) = ei(ω±−ω∓)s · 1
4
sin2 2ϕ · CD→D(s). (28c)

and all explicit t-dependence in these correlation func-
tions are dropped due to the fact that under the collec-
tive limit C0

J→K → 1. Importantly, Eq. 28 is equivalent
to the expression of Eq. 21, except for a pre-factor and
the oscillatory term. This means that in the collective
coupling limit, all transitions can be modeled as popu-
lation transfer between undisplaced harmonic oscillators
just like the dark-dark transition Eq. 21, as pointed out
in previous studies of collective effects in cavities.33,35

Further, if we substitute Eq. 28a into Eq. 17, and in-
tegrate over ds, we have

k±→D(t) =
N − 1

2Nπℏ
(1± cos 2ϕ)

∫ ∞

0

dωJ(ω) coth
(1
2
βℏω

)
×

( sin[(ω + ω± − ωx)t]

ω + ω± − ωx
+

sin[(ω − ω± + ωx)t]

ω − ω± + ωx

)
+

N − 1

2Nπℏ
(1± cos 2ϕ)

∫ ∞

0

dωJ(ω) (29)

×
( sin[(ω + ω± − ωx)t]

ω + ω± − ωx
− sin[(ω − ω± + ωx)t]

ω − ω± + ωx

)
.

Note that in general, Eq. 29 will not have a closed-
analytic expression (for an arbitrary J(ω) expression).
Nevertheless, Eq. 29 suggests that the NE-FGR rate con-
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stant will oscillate and decay in time, as later shown in
Figs 2-4. Eq. 29 is the second key result of the work.

Combining the equilibrium approximation (t→∞ and
the collective limit (N → ∞ and thus C0

J→K → 1),
the collective equilibrium FGR (E-FGR) rate constants
can be obtained analytically. These E-FGR expressions
can either be obtained from applying the two above-
mentioned approximations, or directly taking the t→∞
limit of Eq. 29 (note that when 1/t → 0 the last line
in Eq. 29 becomes the delta function), with the details
provided in Appendix. C. The final expressions for these
well-known E-FGR rate constants are

k±→D(t→∞) =
N − 1

Nℏ

(
1± cos 2ϕ

) J(|ω± − ωx|)
|1− e−βℏ(ω±−ωx)|

,

(30a)

kD→±(t→∞) =
1

Nℏ

(
1± cos 2ϕ

) J(|ωx − ω±|)
|1− e−βℏ(ωx−ω±)|

,

(30b)

k±→∓(t→∞) =
1

2Nℏ
sin2 2ϕ

J(|ω± − ω∓|)
|1− e−βℏ(ω±−ω∓)|

.

(30c)

The above expressions for E-FGR can also be directly ob-
tained from the standard frequency-domain FGR deriva-
tion, see details in the supplementary material, Sec. III.
The essential scaling of these rates with respect to N
remains the as in the NE-FGR expression, and the
same scaling relations are also discovered using Lindblad
Equations29,58,60 and recently through the 1/N expan-
sion approach32.

The pre-factor N − 1 (degeneracy of the dark states
manifold) can be interpreted either as the density of state
for the dark states or as the effective entropy of the dark
states manifold.75 To demonstrate that, consider the E-
FGR rate |−⟩ ↔ {|Dj} under resonance condition ωx −
ω− =

√
Ngc,

kcE−→D =
1

2Nℏ
· J(
√
Ngc)[n(

√
Ngc) + 1] (31a)

× exp
(
− β

[
ℏ
√
Ngc − kBT ln(N − 1)

])
kcED→− =

1

2Nℏ
· J(
√
Ngc)[n(

√
Ngc) + 1] , (31b)

where n(ω) = 1/[eβℏω − 1] is the Bose-Einstein distri-
bution function, and we have combined the pre-factor of
N − 1 = exp[−βkBT ln(N − 1)] into the expression of
kcE−→D. As such, the detailed balance ratio between the

two states is exp(−β[ℏ
√
Ngc−T · kB ln(N − 1)]). Hence,

the dark states manifold can also be interpreted as one
effective state with the free energy relative to the |−⟩ as

∆G = ℏ
√
Ngc − kBT ln(N − 1) ≡ ∆E − T∆S (31c)

hence the density of state for the dark state manifold
ln(N − 1) is equivalent to an entropy term. This expres-
sion of entropy coincides with existing thermodynamics-
based analysis,75 where the addition of the entropy ∆S
to the dark states renders it to be more favorable than
the lower polariton when N is sufficiently large.
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Figure 1. Schematic Illustration of the model system. (a)
The energy diagram of the relevant states in the case of zero
detuning, ∆ = ωc − ωx = 0. The site (molecular) states
are in turn coupled to a set of bath modes. (b) The bath

function J(ω)/(1− e−βℏω) peaks at ω = 158 meV for the
chosen model parameter. This is the optimal transition fre-
quency at which the bath promotes a population transfer pro-
cess in the largest magnitude based on the E-FGR expression
(Eq. 30a). (c) The energy diagram for the case of positive
detuning ∆ = 142 meV. The amount of detuning is chosen
such that the UP → D transition energy exactly matches the
optimal frequency of 158 meV. (d) The energy diagram for
the case of negative detuning ∆ = −142 meV. The amount of
detuning is chosen such that the D → LP transition matches
the optimal frequency of 158 meV.

III. COMPUTATIONAL DETAILS

To demonstrate the NE-FGR method and compute
rate constant and population dynamics, we study the
polaritonic dynamics for an HTC model (Eq. 1) where
each site coupled to its own independent phonon bath,
described by an identical spectral density. Here, we use
the Brownian oscillator form of the spectral density

J(ω) =
4ληωΩ2

(ω2 − Ω2)2 + 4η2ω2
, (32)

where λ is the reorganization energy, Ω is the character-
istic frequency of the phonon modes, and η is the cou-
pling strength between exciton and phonon. The param-
eters used in the model are as given in Table. I. These
are typical parameters for the recently explored CdSe
Nanoplatelet coupled to a cavity.40,76 To explore the ef-
fect of a few molecules (N = 5) and more realistic col-
lective coupling condition (N = 106). The half Rabi
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Figure 2. The E-FGR and NE-FGR population transfer rates between the relevant states for the zero detuning case ∆ = 0 meV,
for (a) |+⟩ → |D⟩, (b) |D⟩ → |+⟩, (c) |±⟩ → |∓⟩, (d) |−⟩ → |D⟩, and (e) |D⟩ → |−⟩. The short dashed horizontal lines correspond
to the time-independent E-FGR rates. For NE-FGR, rates for N = 5 (short dashed line) and N = 106 (thin solid line) are
presented, where the former is calculated using Eq. 23, Eq. 26a, and Eq. 33, and the latter within collective approximation,
Eqs. 28 and 30a. To better showcase rates at different N values in the same order of magnitude, the dark-to-polariton and
polariton-polariton rates are scaled by a factor of N . (f) The E-FGR population transfer rates, corresponding to the solid lines
in panels (a)-(e), as a function of the number of sites N , plotted on a log-log scale without the scale terms. The equilibrium
rates are calculated with the collective approximation for N = 103 and 106, while without the collective approximation for
N = 5 and 50.

T λ ℏΩ η ℏωx

√
Nℏgc

300 K 14 meV 185 meV 0.1 eV 2.0 eV 50 meV

Table I. Model parameters for the present study.

splitting
√
Nℏgc is kept invariant as the number of sites

N changes, which is equivalent to scaling gc with
√
N .

Fig. 1 presets the schematic for the model system con-
sidered in this work, with an energy diagram of the rel-
evant states as well as the J(ω)/(1 − e−βℏω) function.
Here, we consider three cases for the light-matter detun-
ing, a zero detuning ∆ = 0 case where cavity mode is set
to be resonant with the bare site excitation, a positive
detuning ∆ = 142 meV chosen such that the transition
energy between dark states D and UP is in close reso-
nance with the maximum of J(ω)/(1− e−βℏω), such that
the transition rates involving UP is maximized, and a
negative detuning ∆ = −142 meV where transition rates
involving LP is maximized.

For the NE-FGR approach, the population dynamics

are computed by solving the EOM for a 3-element array
P = [P+, P−, PD], where P+ (P−) is the upper (lower)
polariton population, and PD is the sum of theN−1 iden-
tical dark mode populations. The time local (TL) EOM
in Eq. 16a (which only depends on Pj(t)) is solved nu-
merically, using the memory Kernal in Eq. 12 computed
from the correlation function Ci→f (t, s), with expressions
in Eq. 23 and Eq. 26a. The EOM is numerically solved
using a 4th-order Runge-Kutta algorithm on a quadra-
ture, following the same procedure in Ref. 56. The step
size dt for integration is taken to be dt = 0.1 fs. Note that
solving TL-QME in Eq. 16a with memory kernel (Eq. 12)
is equivalent to solving the rate equation in Eq. 16b with
the NE-FGR rate (Eq. 17). For N = 106 under the col-
lective coupling limit, numerically, C0

±→D = C0
D→± → 1

and F±→∓(t, s) ∝ O(N−2)→ 0, it is safe to ignore them
in the calculation. A similar numerical procedure is used
to solve the TNL-QME in Eq. 11 (note that it depends
on Pj(t− s)) with the same memory kernel in Eq. 12.

For the case of E-FGR, the EOM is a simple rate equa-
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Figure 3. The E-FGR and NE-FGR population transfer rates between the relevant states for a positive detuning ∆ = 142 meV,
with the same quantities as shown in Fig. 2.

tion (c.f. the NE-FGR EOM in Eq. 16b)

d

dt
Pj(t) =

∑
i ̸=j

ki→j(t→∞)Pi(t)−
∑
f ̸=j

kj→f (t→∞)Pj(t),

(33)

where the E-FGR rate ki→j(t → ∞) is used as opposed
to the NE-FGR rate in the TL EOM in Eq. 16b. The
solution of the EOM in Eq. 33 are obtained through the
time-evolution matrix P(t) = P(0) exp(Kt), where K is
given by

Kj ̸=k = kk→j(t→∞), Kjj = −
∑
k ̸=j

kj→k(t→∞),

(34)

where the detailed expressions for these E-FGR rates are
provided in Eq. 30a. Note that K is diagonalized to be-
come Kdiag, and K = U−1KdiagU, which allows for a
straightforward evaluation of population dynamics,

P(t) = P(0)U−1 exp(tKdiag)U. (35)

For N = 5, we have simulated the quantum dynam-
ics using the numerically exact Hierarchical Equations of
Motion (HEOM) approach using the Padé spectral de-
composition (PSD),77–79 with details provided in Sec. IV
of the supplementary material.

IV. RESULTS AND DISCUSSIONS

Fig. 2 shows the population transfer rates between the
two polaritons and the dark states in the zero detuning
case ωx = ωc, with N = 5 (dashed lines) and N = 106

(solid lines). The Rabi splitting 2
√
Ngc is kept invariant.

Consistent with previous works on NE-FGR,70 the time-
dependent rates converge to the corresponding E-FGR
rate after a transient period of time, in this case, ∼ 50 fs.
Panel (f) of Fig. 2 shows the E-FGR rates responsible
for the dynamics beyond the transient non-equilibrium
period, as a function of N . Four E-FGR rates, kD→± and
k±→∓, decreases as N increases. On the log-log scale,
these four E-FGR rates form straight lines with a slope
of −1, meaning these rates scale with 1/N . Such scaling
comes naturally in the collective limit (N = 103 and
N = 106, Eq. 30a), but not in the non-collective case
(N = 5 and N = 50, Fourier transform of Eqs. 23, 26a)
due to the C0(t, s) term. The fact that the non-collective
rates stay in a straight line with the collective rates means
that the C0(t, s) term has a minor influence on the rate
constants. The remaining two rates, k±→D, are expected
to scale with (N − 1)/N , which is close to a horizontal
line on the log-log plot, which agrees with panel (f).

Another factor that affects the transition rates is the
energy of the transition ω = ωi − ωf . Ignoring the scal-
ing involving N , all energetically favorable transitions
have faster E-FGR rates than the energetically unfa-
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Figure 4. The E-FGR and NE-FGR population transfer rates between the relevant states for a negative detuning case ∆ =
−142 meV, with the same quantities as shown in Fig. 2.

vorable transitions. On the other hand, the transient
non-equilibrium rate can be many times larger than the
corresponding E-FGR rates for energetically unfavorable
k−→D, kD→+, and k−→+. This is much less pronounced
for the energetically favorable k+→D, kD→−, and k+→−.

Fig. 3 presents the same plot as Fig. 2, with the positive
detuning case, and Fig. 4 presents the rate constants with
the negative detuning case. The change of detuning leads
to two mutually antagonistic effects. For the positive de-
tuning case, the model system has + → D transition
energy matches the peak of the function J(ω)[n(ω) + 1]
(see Fig. 1b), and D → − farther away from resonance
with J(ω)[n(ω)+1]. This resonance between ω+−ωx and
the peak value of J(ω)[n(ω) + 1] is expected to promote
the + → D transition rate and suppress D → − rate.
On the other hand, the positive detuning reduces the
exciton component of |+⟩ state, which leads to a smaller
1±cos 2ϕ pre-factor in Eq. 30a and suppresses the +→ D
transition rate, while D → − gets an increased pre-factor
that promotes the transition rate. In the present case,
the effect of the pre-factor turns out to be stronger than
the resonance effect. Comparing Fig. 3a,e to Fig. 2, the
positive detuning promotes kD→− and suppresses k+→D.
Analogous observations can be made for negative de-
tuning, Fig. 4a,e, which promotes k+→D and suppresses
k−→D compared to the zero detuning case in Fig. 2.

For the energetically unfavorable rate constants kD→+

and k−→D, effect of changing detuning is more straight-

forward. These rates are most sensitive to the transition
energy ωKJ since they scale exponentially with βℏωKJ .
As a result, k−→D is promoted by the positive detuning,
while kD→+ is promoted by the negative detuning.

We now consider the case where the upper polariton
is initially populated, followed by population relaxation.
Fig. 5a presents the population dynamics for N = 5 case
with zero detuning ∆ = 0, where E-FGR (short dashed),
NE-FGR (long dashed), and TNL (thin solid) are used
to generate the population dynamics, and are compared
against to the numerically exact solution from HEOM
(dotted line). Fig. 5b and Fig. 5b present dynamics for
N = 5, with the positive and negative detuning cases, re-
spectively. Fig. 5d-f presents the corresponding dynam-
ics, with N = 106, without the HEOM results. Among
all of the approximate population dynamics, we consider
the TNL (Eq. 11) as the most accurate one, because
it only makes the second-order perturbation approxima-
tion of the system bath coupling. The NE-FGR theory
(Eq. 16a) carries an additional approximation by using
time local populations Pk(t − s) → Pk(t) compared to
TNL QME. The E-FGR population dynamics (Eq. 33)
has the most approximations, which only uses the E-
FGR rate in the population dynamics, compared to the
NE-FGR population dynamics (Eq. 16b). For all of the
dynamics presented here, the three perturbative methods
resulted in virtually identical dynamics. This means that
the transient (∼ 50 fs) difference between the three meth-
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Figure 5. Population dynamics with the initial state of |+⟩, obtained using E-FGR (Eqs. 16b, 33), NE-FGR (Eqs. 16b, 17), and
a quantum master equation-based time-nonlocal method (TNL, Eq. 11), for N = 5 and the collective case of N = 106, with
three different detunings. The population of the |+⟩ state (red), the |−⟩ state (orange), and the dark state manifold (blue) are
presented. For a comparison with numerically exact results, the HEOM dynamics is also included for N = 5 as the thin black
dashed lines.

ods is not significant enough to influence the dynamics.
The population dynamics therefore can be analyzed in
the context of E-FGR, where in the case of N = 5 the
lower polariton and dark states reach an equilibrium cor-
responding to the relative strength of kD→− and k−→D.
In the case of N = 106, the equilibrium populations con-
sist of mostly dark states, consistent with predictions
from the density of states argument and entropy-based
analysis. Nevertheless, we must emphasize that for other
model systems with different spectral densities J(ω), it is
possible for NE-FGR and E-FGR to differ significantly,
in which case NE-FGR is much preferable to use.

The accuracy of the NE-FGR and E-FGR dynamics
is assessed by comparing them to the numerically ex-
act hierarchical equations of motion (HEOM) method.
Here, we only compute the exact population dynamics for
N = 5 with HEOM. Fig. 5 shows that E-FGR accurately
captures the HEOM dynamics. This is expected since re-
organization energy λ = 14 meV is chosen to be less than
kBT ≈ 26 meV and

√
Ngc = 50 meV, such that under

this the weak system-bath coupling condition, the per-
turbative approximation in FGR is valid. Further, both
NE-FGR and E-FGR are expected to be more accurate
in the experimentally relevant collective regime, because
the off-diagonal system-bath coupling scales with 1/N ,

making the perturbative approximation valid under the
large N limit.

We now study a case where the effect of the tran-
sient difference between NE-FGR and E-FGR results in
a more prominent difference in the dynamics. To this
end, we consider the case where the lower polariton is
initially populated, such that the short-time dynamics
are dominated by energetically unfavorable k−→D where
the transient rate from NE-FGR is significantly larger
than its equilibrium limit E-FGR rate. The resulting
population dynamics are showcased in Fig. 6. Since the
upper polariton never receives any significant population
(P+ ≈ 0), Fig. 6 only presents the dark state popula-
tion for comparison (whereas the P− ≈ 1 − PD). Not
surprisingly, the E-FGR underestimates the dark state
population in all three cases of light-matter detunings,
since the E-FGR rate constant lacks the transient spike
in k−→D(t) (see panel (d) in Figs. 2-4). The deviation be-
tween NE-FGR and its time-nonlocal counterpart TNL
is not significant, since the relatively slow |−⟩ → |D⟩
process makes Pj(t) = Pj(t − s) a valid approximation
(comparing Eq. 11 to Eq. 16a). Further comparing to the
exact HEOM result reveals that the NE-FGR and TNL
give very accurate dynamics. This means that NE-FGR
captures some important non-Markovian nature of the
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Figure 6. Population dynamics with the initial state of |−⟩, obtained from E-FGR (Eqs. 16b, 33), NE-FGR (Eqs. 16b, 17),
and a quantum master equation-based time-nonlocal method (TNL, Eq. 11), for the case of N = 5 (panels (a)-(c)) and the
collective case of N = 106 (panels (d)-(f)), for various detunings. Here, we only plot the population of the dark state manifold
(blue). To demonstrate the population dynamics more clearly, the D population is multiplied by different factors, as labeled in
the corresponding panels. For a comparison with numerically exact results, the HEOM dynamics is also included for N = 5 as
the thin black dashed plot lines.

dynamics. The E-FGR dynamics, on the other hand, has
a substantial difference compared to the NE-FGR and
HEOM dynamics, indicating that E-FGR and a simple
rate equation is not adequate to capture the dynamics
and the full time-dependent NE-FGR rate expression is
necessary for this case. This importance of using NE-
FGR in the transient timescale is likely to be general
for population dynamics starting from LP, since in the
collective regime, the dynamics would be dominated by
k−→D which does not scale unfavorably with 1/N .

V. CONCLUSION

Rate theories such as E-FGR have been widely used
in the studies of polaritonic relaxation processes. In the
present paper, we derived the analytic expression of the
non-equilibrium FGR expression for the polaritonic re-
laxation process. A rigorous, discretization-independent,
and time-domain derivation is provided for E-FGR based
on the quantum master equation (QME), where NE-FGR
arises as a natural generalization to E-FGR. This for-
mulation of NE-FGR yields transfer rates between po-

lariton states and dark states. In particular, for the
|±⟩ → |D⟩ process, both the general formalism in Eq. 17
(with C±→D(t, s) in Eq. 23) as well as the approximate
expression k±→D(t) (Eq. 29) are provided, which gives
the analytic expression of the full time-dependent flux-
side correlation function for the rate.

Under the collective limit (N ≫ 1) and the Markovian
limit (t → ∞), the NE-FGR formalism reduces to the
well-known E-FGR rate expression (frequency-domain
formalism in Eq. 30a). Compared to the NE-FGR ex-
pressions, these E-FGR rate expressions have the same
scaling relation in terms of N . The difference between
the time-independent and time-dependent rate theory is
tested via the application of E-FGR and NE-FGR to an
experimentally relevant model system.40,76 As expected,
the time-dependent NE-FGR rates deviate from the E-
FGR rate transiently before converging to the E-FGR
rate constant on similar timescales for all six popula-
tion transfers. The significance of this deviation is differ-
ent for each population transfer process and is stronger
for the energetically unfavorable population transitions.
In the collective limit N → ∞, the population dynam-
ics is dominated by transfer from the polaritons to the

https://doi.org/10.26434/chemrxiv-2024-kh6mw ORCID: https://orcid.org/0000-0002-8639-9299 Content not peer-reviewed by ChemRxiv. License: CC BY 4.0

https://doi.org/10.26434/chemrxiv-2024-kh6mw
https://orcid.org/0000-0002-8639-9299
https://creativecommons.org/licenses/by/4.0/


13

dark states, which scales favorably with N . Therefore,
LP → D rate shows the most significant deviation from
the equilibrium rate in an experimentally relevant set-
ting.

To further gauge the consequence of the time-
dependent rate from NE-FGR theory, the E-FGR popu-
lation dynamics are compared against that of NE-FGR
as well as a time-nonlocal (TNL) master equation, which
is a further generalization of NE-FGR. In our model
system, given the relatively weak system-bath coupling
λ < kBT chosen for the present trial, starting from the
upper polariton yields coinciding dynamics for E-FGR,
NE-FGR, and TNL. Hence, the non-Markovian effects
are not significant for population dynamics starting from
the |+⟩ state for the current model system investigated in
this work, but our NE-FGR formalism is general for the
future investigation to explore any significant difference
for other HTC model systems with different J(ω). Fur-
ther comparing these dynamics to the numerically exact
HEOM simulations for the case N = 5, we find that E-
FGR, NE-FGR, and TNL all give very accurate dynamics
in this weak system-bath coupling regime. Since the bath
further decouples from the system (note the system-bath

coupling ∝ ca/
√
N in Eq. A2) under the collective limit

(N → ∞), TNL and NE-FGR are expected to be accu-
rate in the experimentally relevant setting as well because
the second order perturbation approximation is valid.

The non-Markovian characteristics of NE-FGR become
more prominent for the population dynamics starting
from the lower polariton. In this case, the dynamics
are dominated by the k−→D rate, since the correspond-
ing transfer starts from the lower polariton and the rate
scales with N . Further, the |−⟩ → |D⟩ being energeti-
cally unfavorable leads to a large difference between tran-
sient NE-FGR rates and the E-FGR rate, and the re-
sulting NE-FGR population dynamics differ significantly
from E-FGR in both non-collective and collective cases.
Comparison to the numerical exact result shows a clear
advantage of using NE-FGR over E-FGR to simulate the
|−⟩ ← {|D} process. This advantage of NE-FGR is likely
to exist for dynamics where the transient process is dom-
inated by a transfer process from a polariton state to a
higher-energy dark state.

ACKNOWLEDGMENTS

This work was supported by the National Science
Foundation Award under Grant No. CHE-2244683. Y.L
was partially supported by the Department of Energy
Award under Grant DE-SC0022171 during the early
phase of this work. W.Y. appreciates the support of the
Esther M. Conwell Graduate Fellowship from the Uni-
versity of Rochester. P.H. appreciates the support of
the Cottrell Scholar Award (a program by the Research
Corporation for Science Advancement). Computing re-
sources were provided by the Center for Integrated Re-
search Computing (CIRC) at the University of Rochester.
We appreciate valuable discussions with Benjamin X. K.
Chng.

CONFLICT OF INTEREST

The authors have no conflicts to disclose.

DATA AVAILABILITY

The data that support the findings of this work are
available from the corresponding author under reasonable
request.

SUPPLEMENTARY MATERIAL

See Supplementary Material for additional information
on the derivation of Hamiltonian in the polariton basis;
the derivation of the FGR time correlation function; the
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Appendix A: Explicit Hamiltonian expression for reciprocal
space and polaritonic basis

Using the reciprocal space operators defined in
Eqs. 5,4,6, the Hamiltonian in Eq. 1 is expressed

Ĥ =ℏωx

N−1∑
j=0

D̂†
jD̂j + ℏωcâ

†â+
√
Nℏg

(
â†B̂ + âB̂†

)
+

N−1∑
j=0

∑
a

ℏωaν̂
†
a,j ν̂a,j

+
(
B̂†B̂ +

N−1∑
j=1

D̂†
jD̂j

)
⊗
∑
a

ca√
N

(
ν̂†a,0 + ν̂a,0

)
+

∑
j ̸=k

D̂†
jD̂k

∑
a

ca√
N

(
ν̂†a,k−j + ν̂a,j−k

)
,

(A1)

Further diagonalizing the light-matter part of the Hamil- tonian ( Eq. 10), and expressing the Hamiltonian in the
polariton basis, we have
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Ĥ = ℏω±P̂
†
±P̂± + ℏωx

N−1∑
j=1

D̂†
jD̂j +

N−1∑
j=0

∑
a

ℏωaν̂
†
a,j ν̂a,j

+
(1 + cos 2ϕ

2
P̂ †
+P̂+ +

1− cos 2ϕ

2
P̂ †
−P̂− +

N−1∑
j=1

D̂†
jD̂j

)
⊗

∑
a

ca√
N

(
ν̂†a,0 + ν̂a,0

)
− sin 2ϕ

2

(
P̂ †
+P̂− + P̂ †

+P̂−

)
⊗
∑
a

ca√
N

(
ν̂†a,0 + ν̂a,0

)
+

N−1∑
j ̸=k

D̂†
jD̂k ⊗

∑
a

ca√
N

(
ν̂†a,k−j + ν̂a,j−k

)

+cosϕ

N−1∑
j=1

P̂ †
+D̂j ⊗

∑
a

ca√
N

(
ν̂†a,j + ν̂a,−j

)
− sinϕ

N−1∑
j=1

P̂ †
−D̂j ⊗

∑
a

ca√
N

(
ν̂†a,j + ν̂a,−j

)
+ h.c.

(A2)

which serves as the working Hamiltonian for the deriva-
tion of all FGR expressions. The reader can refer to Sec. I
of the supplementary material for a detailed derivation
of the delocalized and polaritonic Hamiltonian.

Appendix B: Evaluation of bath correlation functions

In this work, a Brownian form of the single-site bath
spectral density is used, which has the following expres-
sion

J(ω) =
4ληωΩ2

(ω2 − Ω2)2 + 4η2ω2
, (B1)

where the oscillator is underdamped, η < Ω. In this case,
the high-temperature friction kernel can be evaluated an-
alytically as follows

γ(t) = γβ=0(t) = λe−ηt
(η
ξ
sin ξt+ cos ξt

)
γ̇(t) = γ̇β=0(t) = −

λΩ2

ξ
e−ηt sin ξt (B2)

Γ(t) = Γβ=0(t)

=
λ

Ω2

(
2e−

1
2ηtη2t sinhc

1

2
ηt+ e−ηtηξ2t2 sinc2

1

2
ξt

+e−ηt(ξ2 − η2)t sinc ξt
)

where ξ =
√
Ω2 − η2. The cardinal hyperbolic sine func-

tion is defined as sinhcx = sinhx/x = sinc ix. Note that
Eq. B2 is only ture for the specific form of J(ω) which is
Brownian.

The finite-temperature friction kernel γβ and its an-
tiderivatives Γβ , Γ̄β have to be evaluated numerically and
could cause a numerical challenge because of the oscilla-
tory behaving integrand inside the integrals in Eqs. 22,
25. Instead, γβ can be evaluated using the following in-
tegration over a non-oscillatory function,

γβ(t) = −
1

2

∫ ∞

0

dτ coth
πτ

βℏ

[
γ̇(τ − t) + γ̇(τ + t)

]
(B3)

where γ̇ is an odd function and can be evaluated analyt-
ically using Eq. B2. The validity of the above identity in

Eq. B3 can be easily verified by using the definition of
γ̇ in Eq. 22, and the Fourier transform of the hyperbolic
cotangent, ∫ ∞

0

dτ coth τ sinωτ = coth
π

2
ω . (B4)

Further, Eq. B3 leads to similar expressions for Γβ , Γ̄β ,

Γβ(t) =
1

2

∫ ∞

0

dτ coth
πτ

βℏ

[
γ(τ − t)− γ(τ + t)

]
(B5)

Γ̄β(t) =

∫ ∞

0

dτ coth
πτ

βℏ

[
2Γ(τ)− Γ(τ − t)− Γ(τ + t)

]
,

where γ (Γ) are even (odd) functions. In the present ap-
plication, the time integrals Eqs. B3,B5 are evaluated nu-
merically using the standard integration package in Scipy.

Appendix C: Evaluation of collective E-FGR rates

After eliminating the C0
J→K term in the collective

limit, and extending the integration limit to infinity un-
der the equilibrium approximation, the evaluation of rate
constants Eq. 16b is reduced to Fourier transforming
CD→D(s), which can be evaluated analytically

1

ℏ2

∫ ∞

−∞
ds CD→D(s)e−iωs

=
1

ℏ2

∫ ∞

−∞
ds

∑
a

c2a
N

[ ei(ωa−ω)s

eβℏωa − 1
+

e−i(ωa+ω)s

1− e−βℏωa

]
=

2π

ℏ2
∑
a

c2a
N

[δ(ωa − ω)

eβℏωa − 1
+

δ(ωa + ω)

1− e−βℏωa

]
=

2π

Nℏ2

[∑
a c

2
aδ(ωa − ω)

eβℏω − 1
+

∑
a c

2
aδ(ωa + ω)

1− eβℏω

]
=

2

Nℏ

[ J(ω)

eβℏω − 1
+

J(−ω)
1− eβℏω

]
=

2

Nℏ
J(|ω|)
|eβℏω − 1|

, (C1)

which upon including the appropriate prefactors yields
the collective E-FGR rate constants in Eq. 30a.
The E-FGR rate constant can also be obtained from

the t → ∞ limit of Eq. 29. Here, we utilize the identity
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limt→∞ sin(ωt)/πω = δ(ω), yielding

k±→D(t→∞) =
N − 1

2Nℏ
(1± cos 2ϕ)

∫ ∞

0

dωJ(ω) coth
(1
2
βℏω

)
×
(
δ(ω + ω± − ωx) + δ(ω − ω± + ωx)

)
+

N − 1

2Nℏ
(1± cos 2ϕ)

∫ ∞

0

dωJ(ω) (C2)

×
(
δ(ω + ω± − ωx)− δ(ω − ω± + ωx)

)
which is equivalent to Eq. 30a.
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mun. 14, 2426 (2023).

40L. Qiu, A. Mandal, O. Morshed, M. T. Meidenbauer, W. Girten,
P. Huo, A. N. Vamivakas, and T. D. Krauss, J. Phys. Chem. Lett.
12, 5030 (2021).

41B. Xiang, R. F. Ribeiro, L. Chen, J. Wang, M. Du, J. Yuen-
Zhou, and W. Xiong, J. Phys. Chem. A 123, 5918 (2019), pMID:
31268708.

42J. Mony, M. Hertzog, K. Kushwaha, and K. Börjesson,
J. Phys. Chem. C 122, 24917 (2018).

43T. Schwartz, J. A. Hutchison, J. Léonard, C. Genet, S. Haacke,
and T. W. Ebbesen, ChemPhysChem 14, 125 (2013).

44H.-D. Meyer, U. Manthe, and L. Cederbaum, Chem. Phys. Lett.
165, 73 (1990).

45U. Manthe, H. Meyer, and L. S. Cederbaum, J. Chem. Phys. 97,
3199 (1992).
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