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Abstract 

This study explores the explicit modelling of polyoxometalate (POM) counter-cations in both solid 

states and solutions, focusing on their potential for integration into molecular electronics, specifically 

as components of single-molecule electronic devices. Employing Density Functional Theory (DFT) and 

the Conductor-like Screening Model (COSMO), our research addresses the challenge of accurately 

representing the environmental effects on POMs, particularly the influence of counter-cations and 

solvent molecules. A critical finding of this work is the demonstration that traditional models, like 

COSMO, often fail to capture the physical distancing effects of solvents, leading to an overestimation 

of the proximity of counter-cations to POM anions and resulting in over-stabilized frontier orbital 

energies. By implementing geometry constraints on lithium cations, we achieve a more realistic 

depiction of POM-cation interactions in solution, enhancing model accuracy. Additionally, our results 
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suggest that explicit counter-cation inclusion is essential for accurate simulations pertinent to POM 

applications in electronic devices, though it can be computationally intensive in solution environments. 

This study not only advances the theoretical understanding of POMs but also underscores the need for 

improved computational strategies to simulate real-world conditions effectively, thereby guiding the 

development of POM-based electronic components. 

 

Introduction  

POMs properties and applications 

Polyoxometalates (POMs) are a diverse class of inorganic compounds, molecular metal oxides 

composed of early transition metals like molybdenum (Mo) and tungsten (W) in their highest oxidation 

states, combined with oxide anions1. POMs form a variety of large, highly-charged anionic clusters, 

balanced with a range of counter-cations2. There are several polyanion architectures, including 

Lindqvist ([M6O19]2−), Keggin ( [XM12O40]n−), and Wells-Dawson ([X2M18O62]n−) frameworks, each 

distinguished by the unique count, configuration, and connectivity of their constituent metal oxide 

polyhedra3, where M is typically Mo and W and X, is a heteroatom such as silicon (Si), phosphorus (P), 

or arsenic (As): in isopolyoxometalates the heteroatoms are absent4,5.  

 

The extensive variability of POMs motivates a rich field of research 6: in fact, POMs are the target of 

investigations across a range of fields including catalysis 7–9, medicine10–12, energy storage 13–15, and 

notably, molecular electronics16–19. This study focuses on the integration of POMs into molecular 

electronics, particularly as components in flash memory devices. This aptness for this application is 

down to POMs high thermal stability20,21, nanoscale dimensions, and unique redox characteristics22–24, 

aligning with the continuous drive towards device miniaturization and energy efficiency. As such, 

POMs are of special interest in the context of single-molecule electronics25,26. Therefore, this research 

delves into the explicit modelling of POM counter-cations as single molecules (ionic compounds) both 

in solid state and in solution, building upon foundational studies that have illuminated the potential of 
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POMs in memory device applications 21,22,27–31 and in some cases, demonstrated that the electron 

transport properties are significantly influenced by the identity of the counterion 32.  

 

POMs and DFT 

Computational modelling, particularly Density Functional Theory (DFT), is a widely used tool in the 

study and characterization of POMs 33–36. Theoretical analysis of POMs through DFT, provides insights 

into their electronic structures and properties, guiding experimental efforts and theoretical 

understanding37–39. However, one of the challenges of realistic theoretical modelling of POMs lies in 

accounting for influence of the immediate environment, this includes the effects of solvent and counter-

cations 27,33,40–43. Both the solvent and counter-cations serve to stabilise the POMs anionic charge and, 

as such, these factors influence on the electronic properties of POMs42.  

The influence of solvent and counter-cation environment can be determined through investigating 

frontier orbital energies, since they are key indicators of a molecule's electronic structure 44. As such, 

these parameters are instrumental in determining POMs' reactivity, stability, catalytic effectiveness, and 

their electronic and optical characteristics. The energy levels of HOMO and LUMO are particularly 

significant in the context of molecular electronics because charge transport capabilities depend on the 

accessibility of energy states near the HOMO and LUMO levels 42,45. DFT is particularly useful in these 

investigations since it provides a higher level of detail than can be determined by empirical methods 

alone. This current study's approach uses DFT calculations to examine the effect POM environment 

though investigation of frontier orbital energy and their implications for memory device integration. 

We hypothesise that the explicit modelling of counter-cations in conjunction with POMs can yield novel 

insights into the material's suitability for electronic applications, particularly memory devices39,42. 

Notably, this includes modelling POMs in vacuum with explicit counter-cations in order to best 

replicate the state in which POMs will operate as part of components in memory devices, particularly 

in the context of single-molecule electronics.  

 

POMs, Continuum Solvent Models (COSMO) and Counter-cation interactions 
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One theoretical method employed to account for solvent effects, the Conductor-like Screening Model 

(COSMO)46–48 has proven to be an effective and pragmatic option 41,48,49. COSMO, a continuum solvent 

model, offers a less computationally intensive alternative for incorporating solvent influences compared 

with modelling explicit solvent 40,48. It treats the solvent as a structureless continuum, simplifying the 

computational demands while providing a reasonable approximation of solvent effects 49. COSMO has 

been employed in this study to simulate the solvent environment's impact on the POMs’ properties. Part 

of the rationale for using COSMO comes from a study conducted by Miró et al.41, who demonstrate 

comparability between explicit solvent models and COSMO in stabilizing the electronic structures of 

POMs, particularly in terms of Keggin anions ([XM12O40]n−, where X= P, Si, As, etc.  and M= Mo6+, 

W6+). These investigations reveal that while detailed, explicit models provide nuanced insights, 

COSMO remains a robust alternative, adequately mirroring the solvation effects, especially when 

focusing on the electronic stabilization crucial for theoretical predictions. Miró et al. also consider 

counter-cations in their theoretical models, however, they model counter-cations as point charges rather 

than explicitly including the counter-cations in the model as with this current study. As such, we develop 

previous models by employing a higher level of precision and a greater range of POM anions and of 

explicit counter-cations; Figure 1 shows the range of POMs used in this study. We also employ 

exchange-correlation functional PBE050–52 along with GGA BP8653,54 in an effort to examine the 

additional effect of functional on the investigation of the effects of POM environments.  

 

Another significant advancement in this study is the examination of the limitations inherent to the 

COSMO continuum solvent method in combination with counter-cations, namely its failure to simulate 

the physical effects of solvent molecules on the proximity of counter-cations to POM anions. This 

limitation can lead to an overstabilization of frontier orbitals, a consequence of unrealistic counterion-

POM proximities, shorter distances than would occur under actual solvent conditions. By adopting a 

more rigorous approach that includes constraining the geometry of Li+ cations, this research endeavours 

to overcome these shortcomings, aiming for a more authentic representation of POM-cation interactions 

in solution. This methodological refinement is not merely a technical adjustment but a crucial step 
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towards ensuring that our theoretical models mirror real-world conditions as closely as possible, thus 

enhancing the reliability of our predictions and findings. 

 

 

Figure 1. Polyhedral and ball and  ball-and-stick model  (B&S) representation of the range of POM 

anions considered in this study; geometry optimised with BP86 functional in vacuum. Colour code: O: 

red; Heteropoly anions: blue polyhedra; a) [W18O54(SeO3)2]4− Se: dark blue B&S; b) β*-

[W18O56(IO6)]9−, I: white c) α-[W18O54(PO4)2]6−  P: green d) γ*-[W18O56(TeO6)]10− Te: pale blue; 

Isopolyanions: yellow polyhedra e) α-[W18O56(WO6)]10−  Wcentral: black f) γ*-[W18O56(WO6)]10− ; g) 

[Mo18O54(SO3)2]4− h) [W18O54(SO3)2]4−  S: yellow; i) α-[SiW12O40]4−  Si: white; j) α-[GeW12O40]4-  Ge: 
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yellow; k) α-[PW12O40]3- P: green; l) α-[AsW12O40]3- As: purple;  m) β –[SiW12O40]4− Si: white; n) γ –

[SiW12O40]4−  Si: white; o) [W10O32]4− ; p) [W6O19]2−. 

 

Implications, relevance and summary 

This study represents a development on previous work27 in that it includes explicit counter-cations along 

with solvent in theoretical calculations which evidence their effects on frontier orbital energies. Our 

research is driven by the critical relevance of POMs' frontier orbital energies, particularly the absolute 

energy levels rather than relative differences, due to their significant implications in electrochemistry 

and molecular electronics applications. Accordingly, with the view to realistically modelling POMs for 

use in memory devices, this study also models POMs with explicit counter-cations in vacuum in order 

to replicate the environmental conditions of POMs used for this purpose. We question whether 

continuum solvent methods can serve as a proxy for a counter-cation environment. Building upon the 

foundational insights offered by previous studies, including the examination of [W18O54(SeO3)2]4− 

polyoxometalates for memory device applications, this research extends the inquiry to a broader array 

of POMs and to the hybrid exchange-correlation functional, PBE0 alongside the GGA functional, BP86, 

in order to strengthen the generalisability of our findings. 

 

Computational Details 

Different non-classic Wells-Dawson, Deca-tungstate and Keggin geometries have been fully optimized 

at the DFT level using the ADF package of the Amsterdam Modelling Suite (AMS 2021.1).55,56 The 

exchange-and-correlation functional functionals used in the calculations in this study are BP86, PBE0, 

and, B3LYP. BP86 is a generalized gradient approximation (GGA) density functional57,58, PBE0 an 

B3LYP are the hybrid which combine a standard GGA with a Hartree-Fock exchange part59–61. Each 

functional was used in combination with TZP basis set62, a large frozen core for BP86, and no frozen 

core for PBE0 and B3LYP, since previous studies have demonstrated their suitability for these types of 

calculations.33,40,63,64 Relativistic effects were accounted for using the ZORA formalism.65–69 Solvent 

effects were considered using the Conductor-like Screening Model (COSMO)70 - included in the ADF 

package48 with conventional van der Waals values for solvation radii established for ADF.71,72 
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Results and Discussion 

Frontier orbitals energies, geometries, HOMO-LUMO gaps and molecular electrostatic potential (MEP) 

mappings  have been plotted for the following POMs (shown in Figure 1): [W18O54(SeO3)2]4−, β*-

[W18O56(IO6)]9−, α-[W18O54(PO4)2]6−, γ*-[W18O56(TeO6)]10−, α-[W18O56(WO6)]10−, γ*-[W18O56(WO6)]10− 

, [Mo18O54(SO3)2]4−, [W18O54(SO3)2]4−, α-[SiW12O40]4−, α-[GeW12O40]4−, α-[PW12O40]3−, α-

[AsW12O40]3−, β -[SiW12O40]4−, γ -[SiW12O40]4−, [W10O32]4−, [W6O19]2−. The metal selected for the 

majority of the POMs used in this study is tungsten. This is because tungsten-polyanions (tungstates) 

are typically more structurally resilient and are stable at higher temperatures than the other common 

alternatives such as molybdates.21,73 This is significant for this project because the candidate POMs are 

required to be stable at the high temperatures used for device fabrication. 

 

Effect of the functional 

We investigated the impact of different functionals (BP86, B3LYP, PBE0) on the frontier orbital 

energies and HOMO-LUMO gaps of all candidate POMs. As shown in Figures 2 and 3, the HOMO-

LUMO gaps calculated using BP86 were consistently smaller than those obtained with the hybrid 

functionals (B3LYP and PBE0). Moreover, the HOMO-LUMO gap range for BP86 fell within the range 

of B3LYP, which, in turn, was within the range of PBE0. These findings align well with previous 

studies,74 including reported López et al.'s review.40 This same review evidenced that BP86, particularly 

in combination with TZP basis set, is adequate for determining frontier orbital energies. However, the 

large discrepancy between the frontier orbital energies calculated with GGA and with hybrid functionals 

and also the HOMO-LUMO gaps, compelled us to continue with both GGA with hybrid functionals - 

in spite of the fact that hybrid functionals are computationally more expensive [ref]. Thus, our findings 

are more generalisable: indeed, we found the same patterns present regardless of functional despite 

continued discrepancies between frontier orbital energies and HOMO-LUMO gaps. 
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Figure 2. Comparison of different functionals BP86, B3LYP and PBE0 for calculation of the HOMO-

LUMO energies in eV of POM anions with Wells-Dawson framework {XzW18}. The energy of the 

LUMO is indicated by black horizontal lines, the energy of the HOMO is indicated by red horizontal 

line and, the HOMO-LUMO gap (eV) is labelled in between. 
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Figure 3. Comparison of BP86, B3LYP and PBE0 functionals for calculation of the HOMO-LUMO 

energies in eV of POM anions with Keggin {XW12}, Deca-tungstate {W10} and Lindqvist {W9} 

frameworks. The energy of the LUMO is indicated by black horizontal lines, the energy of the HOMO 

is indicated by red horizontal line and, the HOMO-LUMO gap (eV) is labelled in between. 

 

Solvent effects (Continuum solvent model) 

To assess the impact of solvent on POM properties, we employed the COSMO continuum solvent model 

with water and acetonitrile respectively as solvents across the same range of POM anions. The results, 

revealed that solvation stabilised the energies of the frontier orbitals, as expected. The magnitude of the 

HOMO-LUMO gap remained largely unaffected by solvation in line with previous work41, indicating 

that this parameter remains a reliable descriptor of stability across both conditions. We observed 

minimal differences between the two solvents, water and acetonitrile, further suggesting that solvent 

choice has limited impact on the HOMO-LUMO gap magnitude. However, further investigation using 

a broader range of solvents should be conducted in future work, especially given that water and 
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acetonitrile have comparable polarity. An extremely strong correlation is observed between solvation 

stabilisation and charge of the POM anion, shown in Figure 4, which indicates that POM-anion charge 

is the main factor which determines the magnitude of the stabilisation which results from solvation.  

 

Figure 4. HOMO stabilisation by solvation vs POM anion charge. The HOMO stabilisation was 

calculated by finding the difference between the absolute value of the HOMO energy for the POM in a 

vacuum and the absolute value of the HOMO energy for the solvated POM (taken as the mean average 

between calculations conducted in water and acetonitrile. The values were calculated with DFT 

calculations which used the BP86 functional and COSMO to model the solvation. 

 

Effect of explicit counter-cations 

To examine the effect of including explicit counter-cations in our theoretical models we focused on a 

narrower range of POMs, [W18O54(SeO3)2]4−, α-[W18O54(PO4)2]6−, α-[SiW12O40]4−, α-[PW12O40]3−, and 

[W10O32]4−. We modelled POMs with explicit lithium (Li+), tetramethyl ammonium (TMA+), tetrabutyl 

ammonium (TBA+) counter-cations both in vacuum and solvent environments to investigate their 

influence on the stability, frontier orbital energies, HOMO-LUMO gaps and charge distribution of 

POMs. We performed these calculations with both BP86 and PBE0 exchange-correlation functionals to 

examine the effect of functional of these calculated values. This was achieved by performing geometry 
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optimisation calculations, or in the case of more computationally expensive calculations (PBE0 with 

Well-Dawson POMs and explicit counter-cations), single-point calculations using a previously 

optimised geometry.  

 

In line with previous studies 2,42, our calculations evidence the stabilising effect of a counter-cation 

environment on POM frontier orbital energies. Figure 5 shows the frontier orbital energies of Keggin 

α-[PW12O40]3− POM salts in vacuum. The same pattern is observed for each of the POMs modelled in 

vacuum for this study: counter-cations stabilised the frontier orbitals by between 6 and 9eV; the HOMO-

LUMO gap remains fairly constant; and Li+ has the greatest stabilising effect compared with the 

alkylammonium cations. The large discrepancy between the BP86 and PBE0 functionals also remained. 

The fairly constant HOMO-LUMO gap, similar to the results observed in water and acetonitrile 

solvents, demonstrates that both the HOMO and LUMO are stabilised to the same degree by their 

immediate environment. In contrast, the immediate environment has a large effect on the absolute 

energies of the frontier orbitals. Li+ counter-cations induced the largest stabilizations and were 

accompanied by the largest HOMO-LUMO gaps. This effect can be attributed to the smaller size of Li+ 

ions, leading to a higher charge density and closer POM-counter-cation distances, significantly 

impacting the frontier orbital energies. Interestingly, the effects of TMA+ and TBA+ counter-cations 

were nearly identical, suggesting their comparable influence on the POM properties.  

 

This current study demonstrates that POM frontier orbital energies are counter-cation dependent under 

vacuum. Moreover, explicit counter-cations with vacuum are the conditions which best replicate a solid-

state environment, particularly suitable in the context of single-molecule electronics. Our calculations 

demonstrate that the identity of the counter-cation affects the frontier orbital energies: there is 

differential stabilisation by the Li+ and alkylammonium cations. As such, models which attempt to 

replicate these conditions should employ explicit counter-cations in order to ensure the accuracy of their 

calculations. 
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Figure 5. Comparison of explicit counter-cation incorporation for calculation of the HOMO-LUMO 

energies of α-[PW12O40]3− Keggin POM salts in vacuum. The energy of the LUMO is indicated by black 

horizontal lines, the energy of the HOMO is indicated by red horizontal line and, the HOMO-LUMO 

gap (eV) is labelled in between. The left facet shows results using BP86 functional, the right facet shows 

results using PBE0 functional. 

 

Initially, this same dependence on counter-cation identity was observed with the addition of solvent into 

the model, however, in this case, this was attributable to a neglect of POM-cation distance. As 

previously mentioned, one issue with using the COSMO method models which include explicit counter-

cations is that it doesn't consider how solvent molecules affect the distance between cations and POM 

anions.75 This arises because it models the solvent as a homogenous medium, rather than explicit solvent 

molecules which form solvent shells around charged species. In reality, solvent shells results in a 

minimum distance between POM and cation. Failing to take this minimum distance into account means 

that counter-cations exert an exaggerated influence on POMs' electron distribution and stability, 

diverging from behaviours noted in actual solvent conditions. Kaledin et al. further explores this 

discrepancy, suggesting that the COSMO model inadequately represents the bulk effects of aqueous 

solutions on POMs, particularly concerning the spatial arrangements of counter-cations.76 
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Figure 6. Comparison of explicit counter-cation incorporation for calculation of the HOMO-LUMO 

energies of α-[PW12O40]3− Keggin POM salts in water. The energy of the LUMO is indicated by black 

horizontal lines, the energy of the HOMO is indicated by red horizontal line and, the HOMO-LUMO 

gap (eV) is labelled in between. The left column shows results were obtained without constraining the 

POM-Li+ distance, the right column shows results where the POM-Li+ distance was constrained (cation-

heteroatom distance = 9.1 Å). 

 

Distances between the alkylammonium cations and central heteroatom calculated in this current study 

matched previous work, which crucially was empirically grounded by 31P-NMR 77. Thus, it was not 

necessary constrain the geometries for POM-TMA and POM-TBA distances during geometry 

optimisation calculations. In contrast, the optimised geometries calculated where Li+ was the counter-

cation resulted in unrealistically short POM-cation distances. We attribute this weakness in the model 

to the fact that Li+ a far higher charge density that the alkylammonium cations, therefore, it is solvated 
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to a greater extent. As such, constraining the geometry becomes important. Previous work by Kaledin 

et al.76 show that with Li, and explicit water molecules the average distance between Li and the central 

heteroatom of α-[PW12O40]3− POM was 9.1Å. Accordingly, we repeated our geometry optimisation 

calculations using the ADF to constrain the geometry of the Li+ cations to 9.1Å from the central 

heteroatom. In the Wells-Dawson and Decatungstate POM structures, no central heteroatom is present. 

In these case, a dummy atom was inserted at the centre of the POM anion and this was used to constrain 

the geometry. As shown in Figure 6 and 7, the increased distance led to less stabilisation of the frontier 

orbital energies than when the Li+ was allowed to approach the POM anion too closely.  

 

Figure 7. The changes in the frontier orbital energies of the Keggin α-[PW12O40]3− POM upon 

constraining the POM-cation distance to 9.1Å. The energy of the LUMO is indicated by black horizontal 

lines, the energy of the HOMO is indicated by red horizontal line and, the HOMO-LUMO gap (eV) is 
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labelled in between. The top plot shows data for BP86 functional calculations, the bottom plot shows 

data for BP86 functional calculations. Polyhedral and ball and ball-and-stick model  representation of 

the α-[W18O54(PO4)2]6− POM, the left model shows an optimized geometry with no geometry constraint, 

the right model show an optimized geometry where the POM-Li+ distance was constrained (cation-

heteroatom distance = 9.1 Å). Colour code: heteropoly anions: light red polyhedra; P: green; O: red; 

Li: pale blue.  

 

In addressing these challenges, this work incorporates a more refined approach by constraining Li+ 

cations' geometry to replicate solvent-mediated distances accurately. This adjustment is pivotal in 

transitioning from a simplified COSMO simulation to a representation that respects the empirical data, 

thereby providing a more authentic depiction of POM-cation interactions within a solvent. Moreover, 

the discussion extends to evaluating the COSMO model's efficacy as a proxy for explicit counter-cation 

modelling in solution. This understanding underscores the broader implications of our findings, driving 

future research directions and potential applications in molecular electronics and POM-based devices.  

 

Notably, this change in frontier orbital energy meant that models which included solvent effects gave 

frontier orbital energies which were largely independent of counter-cation, that is, the frontier orbital 

energy was not dependent on the identity of the counter-cation or even whether they were present at all. 

We found that the counter-cations, when compared to the water solvated naked POM, had minimal 

additional effects on frontier orbital energies in terms of stabilisation. These results indicate that solid-

state POMs can be accurately modelled using the continuum solvent model alone; this is significant 

because it is more computationally efficient approach. The implication of this finding is that models 

which include aqueous solvent (common given the common aqueous synthesis of POMs) need not 

include explicit counter-cations. These same patterns as detailed for the Keggin α-[PW12O40]3− POM 

are replicated in the other POMs modelled – the results of these calculations are given in the 

supplementary information. This is significant for future work since it means computationally less 

expensive calculations without a meaningful reduction in accuracy. 
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Conclusion 

This investigation into the explicit modelling of POM counter-cations, both in solid state and in solution, 

has yielded insights that are crucial for the integration of POMs into molecular electronics, particularly 

as components of single-molecule electronic devices. That theoretical models should include explicit 

counter-cations when calculating frontier orbital energies in the solid state, but it is more 

computationally efficient to forgo them in solution. Our study, by employing a combination of Density 

Functional Theory (DFT) calculations and the Conductor-like Screening Model (COSMO), has 

addressed key challenges in accurately representing the environmental effects on POMs, especially the 

influence of counter-cations and solvent molecules. The explicit inclusion of counter-cations remains 

imperative for accurately simulating the conditions relevant to POM-based electronic devices. 

 

Another significant finding of our work is the identification and correction of the overestimation of 

counter-cation proximity to POM anions by the COSMO model. This overestimation, which leads to 

an overstabilization of frontier orbital energies, was effectively mitigated by constraining the geometry 

of Li+ cations, thus providing a more realistic depiction of POM-cation interactions in solvent 

environments. This methodological enhancement underscores the importance of considering physical 

solvent effects and counter-cation distances in theoretical models to ensure accuracy and relevance to 

real-world applications. Furthermore, the differential impact of various exchange-correlation 

functionals on the frontier orbital energies and HOMO-LUMO gaps of POMs underscores the necessity 

of further work which is grounded in empirical work. Given the magnitude of the discrepancy between 

these methods, it should be established which is gives the more realistic results. 

 

In conclusion, our work not only advances the theoretical modelling of POMs but also contributes to 

the broader quest for novel materials capable of powering the next generation of molecular electronics. 

By bridging gaps in our understanding of POM-cation interactions and the role of the solvent 

environment, this study lays a solid foundation for future endeavours in the design and development of 

POM-based electronic components. 
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