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A B S T R A C T

The introduction of fluorine in compounds plays a crucial role in drug development as it greatly influences their final
pharmacokinetic and dynamic properties. Due to the increasing prevalence of fluorine in FDA-approved drugs in recent
years, identifying the underlying mechanisms driving their chemical transformations has become crucial in the drug
discovery landscape. 19F NMR spectroscopy is a powerful analytical technique that allows for the examination of
fluorine-containing compounds, offering valuable information about their structure, dynamics, and reactivity.
Consequently, this technique has become a cornerstone in the mechanistic evaluation of fluorine-containing chemical
transformations. NMR spectra can be interpreted through the leveraging of Density Functional Theory (DFT), an ab initio
modeling method that can be harnessed for the prediction of NMR chemical shifts. However, the screening of compounds
and discovery of feasible drug candidates is severely limited due to the computational cost of DFT. Here, we present a
machine learning approach to accelerate the prediction of DFT-calculated 19F NMR chemical shifts. The fluorine atoms’
features in the models were derived from their local three-dimensional structural environments, representing their
neighboring atoms within a radius of n Å away from the given fluorine atom in the compound. A comparative analysis of
thirteen regression models was conducted using features extracted from 501 fluorinated compounds in our laboratory’s
chemical inventory. The target chemical shift values were calculated using DFT with the quantum chemistry software
ORCA. Among the models evaluated, Gradient Boosting Regression (GBR) exhibited the highest performance, achieving
a mean absolute error of 2.89 ppm - 3.73 ppm with a local environment radius of 3 Å. This demonstrates a comparable
accuracy to DFT calculations while significantly reducing computational time per compound from several hundred
seconds to milliseconds. 3 Å was also found to be the most optimal radius across all models when encoding features for
local atomic environments.
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1. Introduction

Fluorinated small molecules and materials play an integral role in the modern development of

therapeutic agents[1], synthetic polymers[2], agrochemicals[3,4], and industrial materials[5].

Given the unique properties imbued by organofluorine functional groups on a molecule[6] such

as enhanced bioavailability and metabolic stability, about one in five small molecules currently

approved by the US Food and Drug Administration (FDA) in the last three decades contain one

or more fluorinated motifs[7]{Figure 1A}. Such compounds include fluoroquinolone antibiotics

such as ciprofloxacin[8], fluorinated nucleoside antivirals such as fluoxetine[9], cholesterol

regulators atorvastatin[10], fluorinated corticosteroids such as fluticasone propionate[11], and

most recently, the HIV capsid inhibitor lenacapavir, which has recently shown remarkable

efficacy in attenuating viral propagation in a late-stage FDA clinical trial{Figure 1B}[12].
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Fig. 1. A) Representative FDA-approved fluorinated small molecules: I. Ciprofloxacin, II.

Fluoxetine, III. Atorvastatin, IV. Fluticasone propionate, V. Lenacapavir. B) Pie chart
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representation of fluorinated FDA-approved drugs in 2023. This data was taken from Inoue

et al.[7]

Consequently, 19F NMR spectroscopy has become fundamental in structural characterization

[13], purity analysis[14], and screening[15] of these compounds. This technique has also been

used to study biological phenomena, including biomolecular structure and function[16–18],

enzymatic mechanisms[19,20], metabolic pathways[21], drug screening[22–24], and medical

imaging[25,26]. Moreover, given the broad applicability of fluorinated organic molecules, the

application of 19F NMR spectroscopy for the real-time deconvolution of complex reaction

mechanisms has become a primary focus for our group and many others[27,28].

Density Functional Theory (DFT) is an ab initio computational modeling method applying

quantum mechanical principles to accurately describe the distribution of electrons within

molecules, enabling the precise predictions of electronic molecular structures[29–31]. DFT

calculates the shielding effects experienced by nuclei due to surrounding electron densities to

determine NMR chemical shifts[32–36]. However, the computational expense of such

calculations can prove prohibitive for researchers, limiting practicality when handling large

datasets[37–40]. In order to address this, machine learning techniques have been employed to

generate similar predictive values at a fraction of the compute cost. This provides an accelerated

shortcut for the normalized process while maintaining a reasonable balance between speed and

accuracy[41–45], allowing for the prediction of chemical properties of previously unknown

structures. Other advanced modeling techniques have also been recently introduced in the forms

of graph neural networks (GNN) to predict 19F and 13C chemical shifts by Li et al. and Rull et al.

respectively[46,47]. While many of these models rely on one-dimensional (e.g. SMILES) or

two-dimensional (e.g. graphs) chemical representations, they do not contain enough information

given the inherent three-dimensional nature of anisotropic and bond-polarization effects that

contribute to NMR shielding constants. To address this, we postulate that the simplest

representation of each fluorine’s local electronic environment can be gathered through encoding

three-dimensional structural information of proximal neighboring atoms along with

electronegativity and atomic weight. Due to the 3D nature of this input data, machine learning

models trained using this dataset will be able to capture local atomic environments more

effectively than the aforementioned 2D or 1D representations. Specifically, these models will
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have the ability to form crucial connections paralleling real time chemical interactions from the

information offered through this third dimension within our data. This featural input can then be

used to train machine learning models to predict DFT-calculated 19F NMR chemical shifts at a

fraction of the computational cost associated with a full DFT calculation.

Fig. 2. Data preprocessing workflow. This was used to extract chemical shift values from

fluorinated compounds. We begin with SMILES strings of fluorinated compounds pulled from

our chemical inventory, then convert them into 3D structure form using the gen3D and Monte

Carlo search functions in Open Babel. Additionally, Open Babel was used to convert the

optimized 3D structures into XYZ coordinate format. Further details can be found in our

Electronic Supplementary Information.
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Fig. 3. A) Visualization of varying local environments with an example compound

structure. Areas spanning 2.0 Å radius, 3.0 Å radius, 4.0 Å radius, and 5.0 Å radius away from

the given fluorine atom. B) Workflow for model training and testing. The proximity of

neighboring atoms of each fluorine nucleus was calculated with the Euclidean distance formula,

forming four datasets of atomic environment information at varying radii. Input features were

then extracted for model training from these geometrically optimized coordinates in Ghemical
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file format and subsequently encoded. Optimal distance for input data was then determined after

model evaluation and testing based on runtime speed, MAE, and R2. Upon running all the

models using the dataset tailored to this optimal atomic radius, we were then able to determine

the best performer.

Here, we present a comparative study of thirteen machine learning models in predicting 19F

NMR chemical shifts given structural input data. Since different model families exhibit varying

levels of applicability to this task due to distinct model architectures, this greatly influenced the

specific models evaluated in our project. For instance, ensemble models are well suited for

capturing intricate non-linear relationships, making them an attractive candidate. In contrast,

simpler linear models may struggle with the complexity of the input data but are less prone to

overfitting due to simpler parameters. Due to these factors, we selected models from these two

major families in our approach.

Through this, we seek to identify models that accelerate the prediction of chemical shifts while

minimizing the loss of accuracy in addition to elucidating the optimal radii when encoding

neighboring atoms as model features. Out of the thirteen machine learning models tested, we

found that Gradient Boosting Regressor was most suitable for this specific task. Furthermore, we

found 3 Å to be the optimal radius when extracting local atomic information of fluorine atoms,

as all thirteen models generally performed their best when trained with this dataset.

2. Material and methods

The data curation began with 501 fluorinated organic compounds and their respective SMILES

strings from our laboratory’s chemical inventory. The SMILES strings were first converted to an

initial 3D structure using Openbabel’s gen3D function. These initial 3D structures were then

optimized using a Monte Carlo conformer search with the MMFF94 force field using Open

Babel’s obconformer module[48]. The resulting optimized conformers’ 3D coordinates were

extracted into xyz files, which were then used as input for Orca’s geometry optimization

function[49,50] with the B3LYP functional and 6-31G(d,p) basis set. Using the final optimized

3D structures, the 19F NMR chemical shifts for each compound were calculated at the B3LYP /

6-31G(d,p) level of theory. Subsequently, the DFT-optimized compound’s coordinates were
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converted from xyz format to Ghemical format for additional features, such as atomic number

and charge.

To extract the local environment around each fluorine atom within our dataset, we looped

through the 3D coordinates of each fluorinated compound to find the Euclidean distance from

each atom to a given fluorine atom within the compound according to Equation 1.

(1)𝑑 =  (𝑥 − 𝑥
0
)2 + (𝑦 − 𝑦

0
)2 + (𝑧 − 𝑧

0
)2

We define an atom as a “neighbor” of the fluorine atom if its distance from the given fluorine is

less than or equal to n Å. To determine the optimal distance from which to select “neighbors,”

we set n = 2 Å, 3 Å, 4 Å, and 5 Å in four independent data processing rounds, yielding four

different datasets with varying “neighbor” sets for each fluorine atom. Additionally, for every

“neighbor,” we included its atomic number and charge (from the Ghemical files),

electronegativity and mass number (from Python’s Mendeleev library), and its element symbol

label-encoded into a numeric representation. This leads to each dataset varying in terms of

capturing the complexity of the given fluorine’s local atomic environment.

The final datasets included 1161 entries, with each entry representing a fluorine atom. The input

features included each of the fluorine atoms’ neighbors with their atomic number, charge,

electronegativity, mass number, and label-encoded symbol. The target values were the fluorine

atoms’ DFT calculated chemical shifts. To adjust the size of the data for the regression models,

missing values were padded with zeros. Each dataset was then split into an 80% training set and

a 20% testing set.

We trained and evaluated the following regression models: Gradient Boosting Regressor

(GBR)[51,52], Gaussian Process Regressor (GPR)[53], Decision Trees (DT)[54,55], Random

Forest Regression (RF)[56–58], Extra Trees (ET)[59], Adaboost (ADB)[60,61], Bagging

Regression (BR)[62], Lasso Regression (LSO)[63,64], Ridge Regression (RDG)[65,66], Elastic

Net (EN)[67,68], Multi-layer Perceptron Regressor (MLP)[69], Support Vector Regression
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(SVR)[70], and K-Nearest Neighbors (KNN)[71,72] {Figure 2}. All models were implemented

in Python using the scikit-learn library[73].

Fig. 4: Model training diagram of all 13 models, color-coded by model “family” (decision

tree-based models are purple; linear regression models with penalties are in pink; all other

models of different families were assigned unique colors).

Each model’s hyperparameters were optimized using the Bayesian optimization algorithm[74]

from a combination of Python’s Bayesian optimization library[75] and scikit-learn’s Bayes

Search CV. Hyperparameter search space bounds were manually defined. In use cases of the

Bayesian optimization library, the objective functions were written to optimize by either mean

absolute error (MAE) or R2. The accuracy of each model in predicting DFT-calculated 19F NMR

chemical shifts was evaluated using MAE and R2.
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3. Results and Discussion

Fig. 5: Performances of various ML algorithms on the 3 Å dataset. Evaluation metrics were

MAE and for all tested models.𝑅2
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Fig. 6:Model performance graphs. Prediction diagrams (predicted values vs actual values) of

the four best-performing models: a) GBR, b) BR, c) RF, d) KNN and the two poorest performing

models: e) GPR, f) MLP.

Following fine-tuning of all regression models, GBR continued to have the lowest MAE and

highest R2 values, 3.31 ppm, and 0.93, respectively. RF also exhibited high performance with an

R2 of approximately 0.89 and MAE of 4.39 ppm. Similarly, BR showed strong performance,

achieving an R2 of 0.88 and the second lowest MAE of 3.82 ppm compared to all 13 models.

Additionally, KNN had a comparable performance, with a slightly lower R2 of 0.85, but a

relatively low MAE of 4.01 ppm. The least accurate models were MLP with an R2of 0.51 and

MAE of 13.18 ppm, as well as GPR with an R2of 0.4 and MAE of 12.95 ppm - 15.11 ppm

{Figure 4}. Furthermore, GBR, BR, RF, and KNN demonstrated superior performance by

exhibiting close adherence to the ground truth line in the prediction plots. Conversely, the models

GPR and MLP displayed a more dispersed distribution, indicating less accurate predictions

{Figure 5}.We observed no trends within the performance of these models that could be

attributed to inherent differences in the model family.
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Figure 7: Angstrom comparison visualizations by heatmaps: runtime, normalized runtime,

MAE, and by models trained on extracted neighbor features within n Å radii of each fluorine𝑅2

atom. Runtimes are calculated on the time it takes for the model to predict on the testing data, i.e.

around 232 compounds.

To address the question of the optimal distance from each fluorine atom from which to retrieve

its neighbors, we ran a comparative analysis of each model’s performance on datasets consisting

of neighbors taken at 2-5 Å radii. Results are shown in heatmaps of runtime, MAE, and for𝑅2

each model on the 2 Å, 3 Å, 4 Å, and 5 Å radii datasets {Figure 6}.
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For every model, the 3 Å dataset yields the lowest MAE values and the highest values for 9𝑅2

models out of the 13. Overall, the best performance across all models and all potential radii was

shown by the GBR model at 3 Å with an MAE of 2.89 ppm - 3.73 ppm and of 0.93.𝑅2

To address the balance between efficiency and model performance, which we anticipated would

vary with each dataset due to differences in atomic environmental complexity, we recorded the

runtimes of each models’ training and prediction process. Since the runtimes vary from model to

model due to differences in architecture, we normalized the plotted runtimes for each model in

the heatmap above for ease of interpretation, where we generally observed an exponential

decrease between runtime and radii after this normalization. Expectedly, the 2 Å dataset had the

fastest runtime overall among all the models. On the other hand, the superior model performance

while using the 3 Å dataset (as shown through low MAE and values) led to the conclusion𝑅2

that the majority of models performed their best when trained on the 3 Å dataset. Therefore, we

deduced that the optimal distance when retrieving local atomic environments of each fluorine

atom is 3 Å.

In comparing model performance on varying radii, we aimed to identify the optimal balance

between providing the model with too much information (with a radius too large) and not enough

information (with a radius too small to adequately capture local environmental factors) without

sacrificing our predictive accuracy[76,77]. Our results indicated that a radius of 3 Å most

effectively addressed this bias-variance tradeoff between the fluorine atom’s environmental

complexity and the model’s predictive accuracy[78–82]. For model performance using datasets

of radii of 4 Å and 5 Å, it is possible that too much extraneous information in the input features

(that have little true correlation with the NMR shifts) was introduced into the models, potentially

leading to overfitting and poor generalization[83].

When tested with the 3 Å dataset, the best-performing model overall was GBR with the lowest

MAE value of 3.31196, followed by BR with an MAE of 3.8294 and KNN with 4.0169. The

least predictive models were MLP and GPR, with MAE values of 13.1814 and 14.0274,

respectively.
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In summary, the dataset utilized for model training and testing consisted of atomic numbers,

charges, electronegativities, mass numbers, and label-encoded symbols of each fluorine atom’s

neighbors as input features (X). The compounds’ corresponding DFT shifts[84,85] were

considered as the output (y). While DFT can shorten the time needed to calculate the shifts of all

501 compounds–in contrast to producing experimental 19F NMR shifts over the course of months

or years (depending on dataset length)–DFT has limited predictive power. Imperatively,

computational methods will never be equal in accuracy to real experimental methods[86–88].

Specifically, the inability of DFT to fully account for dynamic averaging, relativistic effects, and

electron correlation can lead to small discrepancies between predicted and experimentally

observed chemical shifts[89–91]. This deviation typically ranges from 3 ppm to 10 ppm for the

shifts of fluorinated compounds. Models trained with DFT shifts as output will therefore be less

accurate than DFT itself. In our study, the MAE of our best performing model (GBR) was 3.5

ppm when using the DFT calculated shifts as ground truth. Therefore, its overall MAE from

experimentally calculated shifts would likely range from 4.5 to 13.5 ppm.

4. Conclusion

In this study, we systematically screened and evaluated thirteen machine learning platforms to

identify the most optimal means of predicting DFT-calculated 19F NMR chemical shifts. As in

most end-case applications, not all machine learning models perform equally well under the

constraints provided. From a dataset of several hundred fluorinated chemical structures, our

highest performing model, GBR, achieved an R2 of 0.93 and MAE of 2.89 ppm - 3.73 ppm, with

a runtime (for 3 Å) of 0.34 seconds. As suggested by the results of this model in addition to the

other 12 evaluated, a radius of 3 Å is the optimal distance around each fluorine atom of the

compound structure from which to extract neighboring atoms as model input features. This

allows for consistent high performances and an effective bias-variance tradeoff.

Given the widespread applicability of fluorinated compounds within a broad spectrum of

industrial, biopharmaceutical, and other chemical spaces, the rapid and precise prediction of 19F

NMR chemical shifts with machine learning presents an attractive opportunity to decrease the

computational cost of high throughput screening approaches of fluorinated chemical entities.
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Ultimately, the applicability of this and similar approaches of integrating machine learning

approaches in predictive modeling of computationally costly calculations will certainly enhance

modern efforts in improving efficiency and accuracy of targeted predictions of molecular

properties. In the future, integrating Graph Neural Networks (GNNs) to predict 19F NMR

chemical shifts, leveraging their ability to learn from the 3D molecular structures, may further

improve DFT-level accuracy. Additionally, developing machine learning models trained directly

on experimental NMR data could expand the applicability of these models beyond

DFT-calculated shifts. Such efforts are currently underway in our group and will be reported in

due course of time.
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