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ABSTRACT:	The	development	of	catalytic	enantioselective	aldol	reactions	has	been	at	the	forefront	of	advancements	in	con-
temporary	asymmetric	methodology.	Despite	significant	progress,	the	catalytic	enantioselective	synthesis	of	certain	syntheti-
cally	important	motifs	such	as	the	ubiquitous	aliphatic	syn-diol	remains	a	challenge.	Herein,	we	report	the	application	of	a	
benzyloxy-functionalized	malonic	acid	half	thioester	as	an	activated	ester	equivalent	in	a	highly	enantioselective	glycolate	
aldol	reaction.	This	robust	method	operates	at	ambient	temperature,	tolerates	air	and	moisture,	and	generates	CO2	as	the	only	
by-product.	The	synthetic	applicability	of	the	method	is	demonstrated	by	the	large-scale	enantiodivergent	synthesis	of	a-
benzyloxy-β-hydroxybutyric	acid	thioester	and	its	subsequent	conversion	to	diverse	polyoxygenated	building	blocks,	deoxy-
sugars,	and	the	natural	product	(–)-angiopterlactone	B.

Few	asymmetric	carbon–carbon	bond	forming	reactions	
have	reached	the	prominence	of	the	aldol	condensation	in	
the	synthesis	of	complex	molecules.	The	asymmetric	aldol	
reaction	unites	a	carbonyl-derived	enolate	and	an	acceptor	
aldehyde	to	create	a	new	carbon–carbon	bond	with	the	con-
comitant	formation	of	two	new	stereogenic	centers	in	a	re-
liable	and	selective	fashion.	The	glycolate	aldol	reaction,	the	
condensation	of	an	a-alkoxyacetate	and	an	aldehyde,	repre-
sents	an	important	example	of	this	transformation	that	al-
lows	for	the	stereocontrolled	synthesis	of	enantiopure	1,2–
diols.	 Vicinal	 syn-diols	 are	 a	 ubiquitous	 unit	 in	 carbohy-
drates	and	polyoxygenated	natural	products,	 in	particular	
polyketides	(Figure	1A).1,2	While	the	stereoselective	synthe-
sis	of	syn-diols	using	a	chiral	auxiliary-based	approach	with	
preformed	enolates	is	well	established,3	the	catalytic	enan-
tioselective	synthesis	of	 these	motifs	remains	challenging.	
Several	 catalytic	 enantioselective	 a-hydroxyacetyl	 aldol	
protocols	have	been	reported	using	aromatic	ketones,4–6	or	
hydroxyacetone	derivatives	as	the	enolate	partner.7–9	How-
ever,	 these	protocols	have	not	 found	widespread	applica-
tion	in	synthesis	due	to	the	limited	synthetic	versatility	of	
the	products.	Examples	of	the	more	synthetically	useful	cat-
alytic,	 enantioselective	 glycolate	 aldol	 reactions	 with	 the	
carbonyl	donor	at	the	carboxylic	acid	oxidation	state	remain	
scarce.10,11		
Mukaiyama-type	 glycolate	 aldol	 reactions	 that	 can	 de-

liver	the	1,2–diol	product	in	high	selectivity	have	been	re-
ported	by	 the	Kobayashi	 and	Denmark	groups.12–15	 In	 the	
latter	 case,	 either	 syn-	 or	 anti-diol	 products	 could	 be	 at-
tained	 by	 a	 chiral	 Lewis	 base-catalyzed	 addition	 of	 pre-
formed	glycolate-derived	silyl	ketene	acetals	to	aldehydes	
(Figure	1B).	The	Trost	group	has	pioneered	the	use	of	dinu-
clear	 zinc-ProPhenol	 catalysts	 for	 aldol-type	 transfor-
mations,	 including	 an	 aldol	 reaction	 using	 a-hy-
droxyketones	 as	 the	 carbonyl	 donor.5	 They	 subsequently	
reported	 a	 ProPhenol	 ((S,S)-3)-catalyzed	 syn-selective	

glycolate	 aldol	 reaction	 using	N-acylpyrroles	 as	 activated	
ester	 equivalents	 (Figure	 1C).16	 However,	 aliphatic	 alde-
hydes	have	proven	 to	be	 troublesome	substrates	 in	 these	
methods,	delivering	the	corresponding	syn–diol	products	(2	
&	4)	in	moderate	yield	and	stereoselectivity,	thereby	limit-
ing	the	synthetic	utility	of	these	approaches.	Therefore,	the	
development	of	a	new	catalytic	glycolate	aldol	reaction	that	
provides	efficient	and	selective	access	to	synthetically	 im-
portant	syn–diols	is	highly	desirable.	

Figure	1.	(A)	Aliphatic	syn-1,2-diols	are	a	prevalent	motif	in	nat-
ural	products	and	carbohydrates.	(B)	Lewis	base	(R,R)-1-cata-
lyzed	Mukaiyama	glycolate	aldol	(Denmark).	(C)	Zinc-ProPhe-
nol	(S,S)-3-catalyzed	glycolate	aldol	(Trost).	
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Decarboxylative	carbon–carbon	bond	 forming	reactions	
using	malonic	acid	half	thioesters	(MAHTs)	as	ester	enolate	
surrogates	have	become	increasingly	popular	in	asymmet-
ric	 synthesis.17	 The	 presence	 of	 the	 additional	 carboxylic	
acid	moiety	on	 the	MAHT	overcomes	 common	challenges	
associated	with	using	thioesters	as	templates	in	asymmetric	
reactions.	The	1,3-dicarbonyl	unit	can	coordinate	the	cata-
lyst	to	generate	an	activated,	and	more	rigid	thioester	eno-
late	nucleophile.	Functionalized	MAHTs	have	been	success-
fully	 used	 as	 acetate,18	 propionate,19,20	 a-chloroacetate,21	
and	a-fluoroacetate	 surrogates22	 in	 enantioselective	 aldol	
reactions.	We	previously	reported	a	stereodivergent	aldol	
reaction	using	alkyl-substituted	MAHTs	in	the	presence	of	a	
Ti(IV)-salen	catalyst.20	Decarboxylative	addition	of	MAHT	6	
to	 diverse	 aldehydes	 provided	 the	 corresponding	 aldol	
products	in	high	yield	and	stereoselectivity	(Figure	2A).	De-
sirable	features	of	the	method	include	easy	set-up,	scalabil-
ity,	and	high	atom	economy.	Herein,	we	report	that	this	mild	
method	tolerates	a-alkoxy-functionalized	MAHTs,	 thereby	
enabling	the	challenging	synthesis	of	syn-1,2-diols	through	
a	catalytic	glycolate	aldol.		

Figure	2.	(A)	A	decarboxylative	syn-propionate	aldol	reaction	
(previous	work).	A	decarboxylative	syn-glycolate	aldol	reaction	
(this	work).	#After	chromatographic	purification.	Red,	oxygen;	
gray,	carbon;	yellow,	sulfur;	white,	hydrogen.	(B)	Sensitivity	as-
sessment	of	reaction	yield	(left)	and	stereoselectivity	(right);	
enantioselectivity	(blue	line),	diastereoselectivity	(green	line).		

	

We	began	our	studies	by	investigating	the	condensation	
of	a-benzyloxy-MAHT	9	and	hydrocinnamaldehyde	5	using	
our	previously	reported	conditions	(Figure	2A).	The	desired	
syn-diol	product	10a	was	obtained	in	quantitative	yield	and	
high	 diastereo-	 and	 enantio-selectivity	 (7:1	 d.r,	 99:1	 e.r.).	
Chromatographic	purification	provided	10a	in	83%	yield	as	
a	single	stereoisomer	(>99:1	d.r,	99:1	e.r.).	To	assess	the	ro-
bustness	of	this	transformation	we	carried	out	a	sensitivity	
screening	 using	 a	 modified	 version	 of	 the	 protocol	 de-
scribed	previously	by	the	Glorious	group.23	The	sensitivity	
of	the	reaction	to	two-fold	changes	in	temperature,	concen-
tration,	catalyst	loading,	or	the	presence	of	water	(1	equiv.)	
and	oxygen	(open-to-air),	was	systematically	examined	(Ta-
ble	S1).	The	changes	in	product	yield,	and	enantio-	and	dia-
stereoselectivity	of	10a	in	comparison	to	the	standard	reac-
tion	 conditions	 are	 illustrated	 using	 radar	 charts	 (Figure	
2B).	The	results	illustrate	that	this	catalytic	glycolate	aldol	
is	remarkably	robust,	and	tolerates	the	presence	of	both	air	
and	water.	
We	 next	 sought	 to	 explore	 the	 scope	 of	 the	 transfor-

mation	(Figure	3).	A	range	of	branched	and	linear	alkyl	al-
dehydes	 provided	 the	 desired	 diol	 products	 in	 high	 yield	
and	 selectivity,	 including	 previously	 challenging	 a-
branched	substrates	(b	&	e).15	Alkyl	aldehydes	containing	
common	 functional	 groups	 including	 chloride	 (f),	 alkyne	
(g),	alkene	(h),	and	a	sensitive	acetal	(m)	were	all	tolerated.	
Alkynyl	(k)	and	phenylacetaldehyde	(i)	were	suitable	sub-
strates,	although	the	more	hindered	diphenylacetaldehyde	
(j)	only	provided	the	desired	product	in	moderate	enanti-
oselectivity.	The	aldol	reaction	with	an	g-ethoxy-substituted	
aldehyde	provided	the	aldol	product	in	addition	to	a	small	
quantity	of	the	lactone	10l.	Exposure	of	the	product	mixture	
to	p-toluenesulfonic	acid	catalyzed	the	quantitative	conver-
sion	of	the	aldol	product	to	the	lactone	10l.	Importantly,	a-
alkoxy	 and	 b-amino	 aldehydes	 were	 suitable	 substrates,	
providing	 access	 to	 important	 precursors	 (n	 &	o	 respec-
tively)	 for	 the	de	 novo	 synthesis	 of	monosaccharides	 and	
iminosugars.24–26		
The	syn-selective	glycolate	aldol	reaction	also	proved	to	

be	general	for	a	range	of	structurally	and	electronically	di-
verse	aromatic	aldehydes.	Aromatic	aldehydes	with	meta-,	
ortho-,	and	para-substitution	gave	the	aldol	products	in	ex-
cellent	yield	and	high	selectivity.	A	broad	range	of	substitu-
ents	were	tolerated,	including	halides	(q	&	w),	trifluorome-
thyl	(s),	nitro	(p	&	v),	cyano	(r),	and	reactive	functionalities	
such	 as	 esters	 (y)	 and	 ketones	 (z).	While	 high	 selectivity	
was	observed	across	all	substituents,	electron	rich	aromatic	
aldehydes	such	as	2-naphthaldehyde	(u),	or	3-methoxyben-
zaldehyde	(x),	proved	to	be	sluggish	in	the	reaction,	provid-
ing	 the	diol	product	 in	moderate	 yield.	 Finally,	 aldehydes	
containing	prevalent	heteroaromatic	scaffolds	such	as	ben-
zothiophene	 (aa),	 furan	 (ab),	 oxazole	 (ac),	 and	 thiazole	
(ad),	were	converted	to	the	corresponding	diol	products	in	
high	yield	and	selectivity.	The	expected	absolute	and	rela-
tive	configurations	of	aliphatic	diol	10e,	aromatic	diol	10p,	
and	heteroaromatic	diol	10ad	diol	were	confirmed	by	X-ray	
crystal	analysis.	

	
	

N N

OH HO

OCH3 H3CO

(R,R)-Salen (7)

Bn
H

O

Bn
OH

CH3

SPh

O

8, 94%, 4:1 d.r., 99:1 e.r.

Bn
OH

OBn
STol

OO

STol

O

HO
OBn

10a, >99%, 7:1 d.r., 99:1 e.r.
[83%, >99:1 d.r., 99:1 e.r.]#

(R,R)-7

conditions

O

SPh

O

HO
CH3

(S,S)-7

conditions

Conditions: 7 (10 mol%), Ti(OiPr)4 (11 mol%), 4Å MS, iPrOH, toluene, 23 ℃

5

6

9

A.

B.

previous work

current work

(2R,3S)-10a

https://doi.org/10.26434/chemrxiv-2024-c3xlq ORCID: https://orcid.org/0000-0002-1231-8353 Content not peer-reviewed by ChemRxiv. License: CC BY-NC-ND 4.0

https://doi.org/10.26434/chemrxiv-2024-c3xlq
https://orcid.org/0000-0002-1231-8353
https://creativecommons.org/licenses/by-nc-nd/4.0/


 

	

Figure	3.	Aldehyde	substrate	scope	for	the	syn-selective	glycolate	aldol	reaction.	Reactions	were	performed	on	a	0.3	mmol	scale	with	
respect	to	the	aldehyde	in	toluene	(0.1	M)	for	24–48	hours	unless	otherwise	stated.	Isolated	yields	after	chromatographic	purifica-
tion	are	reported.	§Reaction	was	performed	for	48	hours	in	toluene	(0.4	M).	¶Reaction	was	performed	using	15	mol%	Ti(OiPr)4.	The	
d.r.	and	e.r.	values	were	determined	by	supercritical	fluid	chromatography	(SFC)	with	a	chiral	stationary	phase.			

	

The	 utility	 of	 this	 method	 was	 further	 demonstrated	
through	the	synthesis	of	syn-(2S,3R)-dihydroxybutyric	acid	
(thio)ester	10ae	 and	 its	 enantiomer	 (2R,3S)-10ae,	which	
are	important	building	blocks	for	the	synthesis	of	complex	
carbohydrates	and	other	densely	oxygenated	natural	prod-
ucts	(Scheme	1).	Prior	syntheses	of	this	valuable	substrate	
have	 typically	 employed	 Sharpless	 dihydroxylation	 of	 the	
corresponding	ester.27,28	By	employing	our	decarboxylative	
glycolate	aldol	the	multigram	synthesis	of	both	enantiomers	
of	 syn-2,3-dihydroxybutyric	 acid	 thioester	 10ae	 was	
achieved	in	a	single	atom	economic	transformation.	This	ap-
proach	avoids	the	olefination	reaction,	removes	the	need	for	
toxic	osmium	catalysts,	and	 is	 facile	 to	run	on	 large	scale.	
Furthermore,	 the	 thioester	provides	a	versatile	 functional	

handle	that	can	be	directly	converted	to	carboxylic	acid	de-
rivatives	and	ketones.		
The	 enantioenriched	 syn-diol	 thioester	products	 can	be	

readily	 transformed	 into	 synthetically	 important	 chiral	
building	blocks	(Scheme	1).	Hydrolysis	of	the	(2S,3R)-thioe-
ster	product	10ae	provided	the	differentially	protected	syn-
(2S,3R)-dihydroxybutyric	acid	11.	b-lactones	serve	as	ver-
satile	synthetic	intermediates	in	the	synthesis	of	numerous	
important	compound	classes,	as	they	undergo	a	variety	of	
transformations	in	a	stereospecific	fashion.29	The	glycolate	
aldol	products	can	be	readily	converted	to	a-alkoxy-b-lac-
tones	(such	as	12)	by	silver	trifluoroacetate	(AgTFA)-cata-
lyzed	 intramolecular	 lactonization.	 The	 unprotected	 syn-
(2R,3S)-dihydroxybutyric	acid	 thioester	13	 is	accessed	by	
debenzylation	of	(2R,3S)-10ae	using	 TiCl4	 in	
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dichloromethane.	 Finally,	 reduction	 of	 (2R,3S)-10ae	with	
lithium	 aluminium	 hydride	 (LiAlH4)	 afforded	 the	 corre-
sponding	 triol	 14	 in	 95%	 yield.	 Importantly	 all	 of	 these	
transformations	were	achieved	under	mild	reaction	condi-
tions	and	without	loss	of	optical	purity.		
The	thioester	can	also	serve	as	a	versatile	functional	han-

dle	for	metal-catalyzed	cross-coupling	reactions	to	generate	
enantioenriched	2,3-dihydroxyketones	(Scheme	1).	O-silyl	
protection	of	the	b-hydroxy	group	of	(2S,3R)-10ae	followed	
by	 a	 copper-catalyzed	 cross-coupling	with	 acetoxymethyl	
stannane	15	yielded	protected	D-deoxyxylulose	16,30	a	val-
uable	 polyoxygenated	 intermediate	 	 containing	 four	

orthogonal	oxygen	atoms	that	can	each	be	selectively	func-
tionalized.	pTsOH-mediated	desilylation	of	16	followed	by	
subjection	of	the	corresponding	b-hydroxy	ketone	to	tetra-
methylammonium	triacetoxyborohydride	[Me4NHB(OAc)3]	
selectively	 reduced	 it	 to	 the	 anti-diol	 17.31	 Thioester	
(2S,3R)-10ae	can	 also	 be	 converted	 to	 the	a,b-acetylenic	
ketone	 19	 via	 a	 Pd-catalyzed	 cross-coupling	 with	 alkyne	
18.32	Subjection	of	the	chiral	ynone	19	to	a	gold-catalyzed	
intramolecular	oxy-Michael	reaction	directly	afforded	tetra-
hydropyrone	20.33,34		
	

	

	

Scheme	1.	Multigram	scale	synthesis	and	functionalization	of	both	enantiomers	of	the	thioester	product	10ae.	See	the	Supplemen-
tary	Materials	 for	 experimental	 details.	 #After	 chromatographic	 purification.	 (a)	 LiOH•H2O	 (1.1	 equiv),	 aqueous	H2O2	 (30%,	 10	
equiv),	THF–H2O	(5:1),	23	°C,	12	h.	(b)	AgTFA	(1.5	equiv),	DIPEA	(1.6	equiv),	CH2Cl2,	24	h,	23	°C.	(c)	TiCl4	(1.0	M	in	CH2Cl2,	2	equiv),	
CH2Cl2,	0	°C,	16	h.	(d)	LiAlH4	(1.0	M	in	Et2O,	2.2	equiv),	Et2O,	3	h,	0	°C.	(e)	(i)	TBSOTf	(1.2	equiv),	DIPEA	(1.5	equiv),	CH2Cl2,	1	h,	0	°C,	
94%;	(ii)	15	(6	equiv),	CuOAc	(2	equiv),	DMF,	80	°C,	24	h,	73%.	(f)	(i)	pTsOH	(20	mol%),	CH2Cl2–MeOH	(1:1),	6	h,	23	°C,	66%;	(ii)	
Me4NHB(OAc)3	(28.5	equiv),	CH3CN–AcOH	(1:1),	-40	°C,	18	h,	69%.	(g)	18	(2	equiv),	CuI	(2	equiv),	TFP	(40	mol%),	Pd(dppf)Cl2	(20	
mol%),	DIPEA	(1.01	equiv),	DMF,	50	°C,	48	h,	72%.	(h)	AuCl	(5	mol%),	CH2Cl2,	20	h,	23	°C,	74	%.	(i)	(i)	TBSOTf	(1.2	equiv),	DIPEA	
(1.5	 equiv),	 CH2Cl2,	 1	 h,	 0	 °C,	 99%;	 (ii)	 Pd(OAc)2	 (30	mol%),	MgSO4	 (15	 equiv),	 Et3SiH	 (10	 equiv),	 2	 h,	 0	 °C,	 acetone,	 86%.	 (j)	
(CF3CH2O)2P(O)CH2CO2CH3	(2	equiv),	NaH	(2	equiv),	-78	°C,	2	h,	90%.	(k)	(i)	pTsOH	(20	mol%),	CH2Cl2,	23	°C,	24	h,	90%.	(ii)	TiCl4	
(1M	in	CH2Cl2,	2	equiv),	CH2Cl2,	0	°C,	16	h,	88	%.	(l)	K2CO3	(20	mol%),	DCE,	70	°C,	16	h,	16%.	(m)	9	(1.2	equiv),	(R,R)-7	(10	mol%),	
Ti(OiPr)4	(11	mol%),	iPrOH	(1	equiv),	toluene,	4Å	MS,	23	°C,	24	h,	81%.	(n)	(i)	CSA	(20	mol%),	CH2Cl2–MeOH	(1:1),	50	°C,	20	h,	85%;	
(ii)	DIBAL-H	(1M	in	toluene,	2	equiv),	CH2Cl2,	-78	°C,	2	h,	83%.	

	
O-silyl	protection	of	 the	(2R,3S)-syn	aldol	product	10ae	

and	subsequent	Pd-mediated	Fukuyama	reduction	gave	the	
protected	dihydroxy-aldehyde	21,	a	valuable	intermediate	
in	the	synthesis	of	6-deoxy-sugars	and	polyoxygenated	nat-
ural	products	(Scheme	1).	Olefination	of	aldehyde	21	using	
Still-Gennari	 modified	 Horner–Wadsworth–Emmons	 con-
ditions	yielded	the	Z-olefinic	ester	22	in	90%	yield.35	Treat-
ment	of	22	with	p-toluenesulfonic	acid	(pTsOH)	promoted	
desilylation	of	 the	O-TBS	protected	b-hydroxyl	group	and	
concomitant	in	situ	cyclization	to	the	corresponding	lactone.	
TiCl4-mediated	debenzylation	yielded	 the	α,β-unsaturated	
δ-lactone	23.	 The	 Lawrence36	 and	 Bhattacharya37	 groups	
have	 previously	 demonstrated	 that	 lactone	 23	 could	

undergo	a	biomimetic	dimerization	 in	mildly	basic	 condi-
tions	to	generate	(–)-angiopterlactone	B	(24)	as	a	single	di-
astereomer.	Indeed,	subjecting	23	to	K2CO3	in	1,2-dichloro-
ethane	(DCE)	provided	the	desired	natural	product	in	16%	
yield.		Finally,	aldehyde	21	can	be	converted	to	stereochem-
ically	 diverse	 deoxyhexoses	 via	 several	 known	 proto-
cols.24,38–40	In	this	case,	subjection	of	aldehyde	21	to	a	sec-
ond	 (R,R)-salen	 catalyzed	 decarboxylative	 glycolate	 aldol	
yielded	the	syn-syn	aldol	product	(2R,3S,4S,5S)-25	 in	81%	
yield.	 Camphorsulfonic	 acid-mediated	deprotection	 of	 the	
O-TBS	protected	alcohol	initiated	an	intramolecular	cycliza-
tion	to	directly	yield	the	corresponding	lactone.	Partial	re-
duction	 of	 the	 lactone	 using	 DIBAL-H	 afforded	 an	
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inseparable	3:1	anomeric	mixture	of	2,4-bis(O-benzyl)-L-6-
deoxyidose	(26)	in	83%	yield.24		
In	conclusion,	we	disclose	a	catalytic	decarboxylative	gly-

colate	aldol	reaction	using	OBn-MAHT	as	an	activated	gly-
colate	 surrogate.	 The	 mild	 and	 robust	 method	 delivers	
highly	 enantioenriched	 aromatic	 and	 aliphatic	 syn-diols.	
The	 a-benzyloxy-β-hydroxy	 thioester	 products	 serve	 as	
versatile	building	blocks	in	the	stereoselective	synthesis	of	
valuable	 polyoxygenated	 molecules,	 as	 demonstrated	 by	
the	multigram	enantiodivergent	 synthesis	 and	derivatiza-
tion	of	dihydroxybutyric	acid	thioester.	This	method	adds	to	
the	ever-growing	toolbox	of	enantioselective	decarboxyla-
tive	 C–C	 bond	 forming	 reactions	 using	 functionalized	
MAHTs.		
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