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ABSTRACT 

  Living polymerizations of polar vinyl monomers have been successful for decades. However, 

they still suffer the following challenges: fast propagation, air/moisture tolerance, and negligible side 

reactions even at elevated temperatures. Here, we developed an unprecedented polymerization that 

overcomes these limitations using a Lewis pair catalyst. The anionic polymerization of dialkyl 

acrylamides proceeded in a living/controlled matter using Zn(OTf)2/PPh3 within a wide temperature range 

of 25–100 °C for short times (1–10 min) even under open-air conditions. The recovery and reuse of 

Zn(OTf)2 without loss of polymerization activity were observed to be possible. The polymerization was 

retarded by excess Zn(OTf)2, additive methanol, and water, indicating equilibriums of the propagating 

species with them. The putative propagating zinc triflate-ate complex was tolerant to the protic additives 

and significantly selective for the propagation.  
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Living/controlled polymerization is an essential technique for producing well-defined polymers, 

which enables an understanding of the polymer structure–property relationship and the material 

application thereof. Reversible-deactivation radical polymerization (living radical polymerization) has 

been widely employed for this purpose owing to its tolerance for a wide range of functional groups and 

operational simplicity. However, the propagation must be slowly conducted under inert or specific 

conditions to circumvent the undesired bimolecular termination and oxygen deactivation.1–7 Oppositely, 

living anionic polymerization (including organometallic-mediated polymerization) can proceed faster and 

achieve a relatively higher control of the polymer structure (molecular weight, distribution, tacticity, and 

chain-end functionalization).8–10 However, the initiator and propagating metal enolate are inherently 

highly reactive toward various polar functions, e.g., acidic hydrogen and carbonyls.11–14 Therefore, the 

polymerization must be conducted under stringently purified conditions at moderate or low temperatures 

by adding additives as needed to obtain reproducible polymerization outcomes. In this context, the 

development of reliable and universal procedures for highly tolerant living/controlled anionic 

polymerization is an important and challenging issue to overcome.15  

 Frustrated Lewis pairs have received considerable interest in the fields of catalysis, polymers, 

and material sciences.16,17 The Lewis pair (LP) polymerizations18–20 of polar vinyl monomers catalyzed by 

aluminum-,21–32 borane-,33–37 rare-earth38–40 and late transition metal-based LPs41–43 have been performed. 

Notable features of LP polymerization are that (1) propagating enolates, derived from Lewis acids (LAs), 

i.e., enolaluminates and enolborates, are well-defined. In addition, (2) highly active propagating enolates 

can be generated via the cooperative activation of monomers even using relatively low reactive (e.g., 

air/moisture stable) LAs and Lewis bases (LBs).37. Rieger23 and  Zhang25 et al. reported the 

living/controlled polymerization of dialkyl acrylamides using triphenyl aluminum-based LPs to rapidly 

produce high molecular weight polymers. Hon et al. reported an air-tolerant borane/phosphine LP for the 

acrylate polymerizations even at high temperatures and under open-air conditions (exposing the air for 3 
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min and then sealing)35. We have harnessed water-tolerant metal triflate-based LPs for polymerizations in 

organic solvents and on-water,41–43 where the metallic elements (Sc, Y, Fe, Cu, Zn, Ga, In, and Sn) and 

solvents affect the propagating mechanisms (anionic or radical polymerization).43 LP polymerization is a 

rapidly growing area of research because LA-derived propagating enolates, showing distinctive reactivity 

from alkaline metal enolates, enable precise polymer synthesis that cannot be achieved by conventional 

anionic polymerization.  

 Compared with ring-opening polymerization,44–46 the polymerization of polar vinyl monomers 

using zinc catalysts or zinc counterions remains considerably less explored. Several notable examples 

include an isolated cationic zinc enolate,47 a higher-order zincate complex of tBu4ZnLi2,48–51  and 

dialkylzincs.9,13,52–54 The polymerization using tBu4ZnLi2 proceeds even in the presence of protic 

reagents.48–51 An anionic propagation via enol zincates has been proposed; however, the possibilities of 

free-radical generation in water-accelerated polymerization have not been debated. Living anionic 

polymerization via alkali metal enolates has been achieved by adding excess dialkylzincs.9,13,52–54 The 

lowered polymerization rate52 suggests that intermediary enol zincates would be formed during the 

polymerization. Although these previous studies suggest that enol zincates seem to be promising 

propagating species, mechanistic considerations using well-defined enol zincates are required to explore 

their potential.  

 Herein, we report the living/controlled anionic polymerization of acrylamides catalyzed by LPs 

comprising Zn(OTf)2 and phosphines (PPh3 or PCy3). The polymerizations were completed within 

minutes at high temperatures and were tolerant to MeOH, water, and open-air conditions. A highly 

tolerant anionic polymerization mechanism involving enol zincates is explained based on various 

polymerization studies: molecular-weight control, kinetics, additive effects, and the recyclability of 

Zn(OTf)2.  
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 We initially investigated the solvent effects on the polymerization of N,N-diethyl acrylamide 

(DEAA) using Zn(OTf)2/PCy3 ([M]0:[LA]0:[LB]0 = 80:2:1) at 25 ℃ for 4 h (entries 1–8, Table S1). The 

polymerization was initiated by adding DEAA to the Zn(OTf)2/PCy3 mixture. The polymerization 

quantitatively proceeded in dichloromethane (DCM), toluene, and PhCl to afford poly(DEAA) with 

narrow molecular weight distributions (Mw/Mn, Đ) of less than 1.2. The polymerization in tetrahydrofuran 

(THF) and chloroform afforded good yields and relatively high Đ values (1.39, THF; 11.0, chloroform). 

No polymer was obtained in N,N-dimethylacetamide (DMAc), dimethyl sulfoxide (DMSO), and 

methanol presumably because of their coordination to the Zn center (Table S1). The use of PPh3, instead 

of PCy3, yielded similar polymerization results (entries 1 and 9, Table S1). The polymerization using 

Zn(OTf)2/PtBu3 afforded the polymer with a slightly broad Đ value (>1.3) with 88% conversion (entries 

10, Table S1). The use of Zn(OTf)2/PMes3, Zn(OAc)2/PR3, and Zn(NTf2)2/PR3 in DCM were ineffective 

for the polymerization (entries 11–16, Table S1). Additionally, no polymers were obtained using either 

PCy3 or Zn(OTf)2 alone.  

Table 1 summarizes the polymerization results using Zn(OTf)2/PCy3. The Đ values slightly 

broadened with a decrease in [LA]0/[LB]0 ratio from 2 to 0.2 (entries 1–4, Table 1). The Mn values 

obtained at the ratios of 2 and 1 were practically equal and close to the theoretical values, assuming that 

one polymer chain was formed from one LB (entries 1 and 2, Table 1). However, Mn values exceeding the 

theoretical values were obtained at the ratios of 0.4 and 0.2 but were dependent on the [M]0/[LA]0 ratio 

(entries 3 and 4, Table 1). These results showed that one molecule of each PCy3 and Zn(OTf)2 was 

required to initiate and propagate one polymer chain. Higher-molecular-weight polymers with narrow Đ 

values were synthesized at the [M]0:[LA]0:[LB]0 ratios of 200:2:1 and 400:2:1 at 25 ℃ for 4 h and 17 h, 

respectively (entries 5 and 6, Table 1; size exclusion chromatography (SEC) and proton nuclear magnetic 

resonance (1H NMR) results in Figure S1(a) and S2(a), respectively). The Mn values linearly increased 

with the conversion maintaining narrow Đ values with monomodal SEC chromatograms (Figures 1(A) 
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and S1(b)). The active chain end of the polymer (Mn = 9,500, Đ = 1.25) synthesized using Zn(OTf)2/PCy3 

([M]0:[LA]0:[LB]0 = 80:2:1, in PhCl, for 45 min, 90% conv.) was extended by the addition of equimolar 

DEAA without a deactivated polymer chain to yield twice the Mn of 17,500 and a narrow Đ of 1.34 

(Figure S1(c)). The matrix-assisted laser desorption ionization–time-of-flight mass spectrometry 

(MALDI-TOF-MS) spectrum indicated the initiating +PCy3 and hydrogen termini (Figure S3). The Mn 

(obtained at [M]0:[LA]0:[LB]0 = 40:1:1) estimated by the 1H NMR integral ratio was consistent with that 

estimated by SEC and the theoretical value (Mn,SEC = 5,700, Mn,NMR = 6,020, Mn,theor. = 5,340) (Figure 

S4). Overall, these experiments showed that the polymerization proceeded in a living manner. In addition 

to the DEAA polymerization, N,N-dimethyl acrylamide (DMAA) and 4-acryloylmorpholine (AMO) were 

polymerized under similar conditions to afford polymers with narrow Đ values (entries 12 and 13, Figures 

S2(b)(c)). The copolymerization of DEAA and AMO afforded the corresponding poly(DEAA-ran-

AMO), wherein the random sequence was supported by comparing the monomer consumption rates 

(Figure S5). The block copolymer, poly(DEAA-b-DMAA), was synthesized by the sequential addition of 

DEAA followed by DMAA under conditions similar to those of entry 1, as confirmed by the clear shift of 

the SEC curve toward the high-molecular-weight side (Figure S1(d)). In contrast to the excellent control 

and activity of the polymerization of dialkyl acrylamides, no polymerizations of α,β-unsaturated esters, 

such as n-butyl acrylate, 2-methoxyethyl acrylate, methyl methacrylate, methyl crotonate, and ethyl 

sorbate, occurred under similar conditions of entry 1. Additionally, the living poly(DEAA) synthesized 

under similar conditions of entries 1 and 2 did not initiate the polymerization of n-butyl acrylate at 25 °C 

in DCM. These preliminary results showed the specific catalytic activity of Zn(OTf)2/LB for the 

polymerization of dialkyl acrylamides. 
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Table 1. Polymerization of acrylamides using Zn(OTf)2/PCy3. 

 

entry 
monomera  

[M]0:[Zn(OTf)2]0:[PCy3]0 solv. (mL) 
time (min) conv.b 

10-3Mn
c 10-3Mtheor.

d Ðc 
I*d 

type mmol 25 ℃ 60 ℃ 100 ℃ % % 

1 DEAA 4 80:2:1 DCM 1.0 240 - - >99 11.2 10.4  1.13 92  

2 DEAA 4 80:1:1 DCM 1.0 240 - - 100 10.2 10.5  1.26 103  

3 DEAA 2 40:0.4:1 DCM 1.0 60 - - 96 19.5 5.2  1.30 26  

4 DEAA 4 40:0.2:1 DCM 2.0 20 - - 100 23.2 5.4  1.33 23  

5 DEAA 10 200:2:1 DCM 1.5 240 - - 98 25.4 25.2  1.26 99  

6 DEAA 20 400:2:1 DCM 2.5 1020 - - 93 45.0 47.6  1.26 106  

7 DEAA 4 80:2:1 PhCl 1.0 - 3 - >99 9.4 10.4  1.13 110  

8 DEAA 10 200:2:1 PhCl 1.5 2 3 - >99 25.2 25.5  1.19 101  

9 DEAA 20 400:2:1 PhCl 3.5 5 10 - 95 64.1 48.6  1.27 76  

10 DEAA 10 200:2:1 PhCl 1.5 2 - 1 100 21.0 25.7  1.15 122  

11 DEAA 20 400:2:1 PhCl 3.5 5 - 2 100 52.0 51.2  1.27 98  

12 AMO 4 80:2:1 DCM 2.0 240 - - 93 18.4 10.8  1.22 58  

13 DMAA 5 100:1:1 DCM 1.0 240 - - 100 15.2 10.2  1.17 67  

aDEAA, N,N-diethyl acrylamide; AMO,4-acryloylmorpholine; DMAA: N,N-dimethyl acrylamide. b1H NMR. cSEC (DMF/LiBr, PMMA 
standards). d[M]0/[PCy3]0×MW(M)×conv+MW(PCy3). dInitiation efficiency, Mtheo/Mn×100. 

 

 

 

 

 

Figure 1. (A) Plots of Mn and Đ versus conversion during the DEAA polymerization using 

Zn(OTf)2/PCy3 (entry 6 in Table 1). (B) SEC chromatograms of poly(DEAA) synthesized in PhCl at 

60 °C at various [M]0/[LB]0 ratios ((a) entries 7, (b) 8, and (c) 9 in Table 1).   
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High-temperature polymerizations were conducted to shorten the reaction time. The DEAA 

polymerization mixture was stirred at 25 ℃ for several minutes and subsequently at 60 ℃ for 3 or 10 

min, resulting in practically quantitative conversions. When the reaction temperature was directly 

increased to 60 °C without stirring at 25 °C, the polymerization results were not reproducible with a 

decrease in the initiator efficiency in some cases. The molecular weights could be controlled with narrow 

Đ values depending on the [M]0/[LB]0 ratios (80, 200, and 400) (entries 7–9) (Figure 1(B)). Furthermore, 

the polymerization at 100 ℃ for just 1 or 2 min at [M]0/[LB]0 ratios of 200 and 400 achieved a 

quantitative conversion, controlled Mn, and low Đ (entries 10 and 11, Figure S1(e)). Thus, the 

propagating terminal is significantly selective for the Michael addition to the monomer within a wide 

temperature range (25 ℃ –100 ℃). To the best of our knowledge, there is no previous report on 

controlled anionic polymerizations at such high temperatures.  

The excellent selectivity of the propagation and air/moisture stability of Zn(OTf)2 and PPh3 

prompted us to operate the polymerizations under open-air conditions (Table 2). The Zn(OTf)2/PPh3 

solution was stirred in the open-air for 5 min before polymerization, and the addition of DEAA and 

subsequent polymerizations were also conducted in the open-air. The initial polymerization of DEAA in 

DCM at 25 ℃ for 4 h afforded the polymer with 65% conversion (entry 1, Table S2). The SEC 

chromatogram indicated the formation of the narrow-Đ polymer, accompanied by a small fraction of a 

significantly high-molecular-weight polymer (Mn = 1.0 × 105) (Figure S1(f)). We previously reported that 

phenothiazine (PTZ; 1.0 mol%) completely inhibited the LP radical polymerization.41,43 It (0.17 mol%) 

was then added to the open-air polymerization system, completely suppressing the formation of the high-

Mn polymer formed via free-radical propagation (entry 2, Table S2, Figure S1(g)). Thus, all subsequent 

polymerizations were conducted in the presence of PTZ. The polymerization in PhCl at 25 ℃ for 20 min 

in the open-air afforded poly(DEAA) with an excellent controlled Mn and a narrow Đ value in a 97% 

conversion (entry 1, Table 2). Furthermore, the chain extension of the resulting polymer was completely 
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successful as the SEC chromatogram shifted to the high-molecular-wight side without dead polymer 

chains (Figure 2(A)(a)). In addition, the chain extension in the polymerization at 60 ℃ for 3 min was 

almost completely achieved (entry 2, Table 2, Figure 2(A)(b)).  

 

Table 2. Polymerization of DEAA using Zn(OTf)2/PPh3 in the open-air or in presence of water/MeOH. 

entrya [M]0:[LA]0:[LB]0 
additive 

atmospherec  
time (min) conv.d 

10−3Mn
e 10−3Mtheor.

f Ðe 
type eq.b  25 °C 60 °C % 

1 80:2:1 - - air 20 - 97 11.1 10.1  1.26  
 +80:0:0 - - air 240 - 100 18.3 20.6  1.27  

2 80:2:1 - - air 2 3 98 14.9 10.2  1.22  
 +80:0:0 - - air - 3 >99 24.4 20.4  1.29  

3 80:2:1 H2O 0.13 N2 120 - 81 15.9 8.5  1.89  

4 80:2:1 H2O 0.13 N2 - 120 99 16.6 10.3  1.50  

5 80:2:1 MeOH 1.0 N2 120 - 97 14.7 10.1  1.27  

6 80:2:1 MeOH 1.0 N2 - 120 90 18.7 9.4  1.48  

7 80:2:1 MeOH 10.0 N2 - 120 4 - 0.4  - 
aentries 1 and 3; DEAA: 12 mmol, PhCl: 3.0 mL, entries 2 and 4; DEAA (12 mmol) was added to the 
polymerization mixtures of entries 1 and 3, respectively. entries 5-9; DEAA: 4 mmol, PhCl: 1.0 mL. brelative to 
PPh3. chumidity value of 30–35 %.d1H NMR. eSEC (DMF/LiBr, PMMA standards). f[M]0/[LB]0 × MW(M) × conv + 
MW(LB). 
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Figure 2. (A) SEC chromatograms of poly(DEAA) obtained via chain-extension experiments under open-

air conditions ((a) entries 1 and (b) 2 in Table 2). (B)(a) Effects of protic additives on the DEAA 

polymerization rate under nitrogen (i) in dry PhCl (entry 1, Table 1), (ii) MeOH–PhCl (entry 5, Table 2), 

and (iii) water–PhCl (entry 3, Table 2). (B)(b) Plots of Mp (molecular weight of SEC peak top) and Đ 

versus conversion in the water–PhCl (entry 3, Table 2). 
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MeOH and water retarded the polymerization but slowly achieved high conversions (Figure 2(B)(a)). The 

molecular weight of the polymers obtained in the water–PhCl increased against conversion maintaining a 

monomodal SEC distribution (Figures 2(B)(b) and S1(i)). This polymerization behavior can also exclude 

the possibilities of a free radical polymerization, which generally produces a high molecular weight 
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We kinetically studied the DEAA polymerization under nitrogen. The linear relationship 

between ln([M]0/[M]) and time indicated a first-order dependence on [M]0 (Figure 3(A), time–conversion 

plot; see Figure S6). Thus, unactivated free DEAA is kinetically involved in the propagation. This is 

contrary to the zero-order kinetics in the DEAA polymerization using Sc(OTf)3/PPh3,43 wherein the 

propagating reaction with the Sc-activated DEAA is kinetically relevant. This difference can be attributed 

to the Lewis acidities of Sc(OTf)3 and Zn(OTf)2 toward the DEAA carbonyl group.  

Next, the polymerization rates (Rp) at various [LA]0/[LB]0 ratios were estimated. The highest Rp 

was obtained at a [LA]0/[LB]0 of 1, and increasing the ratio from 1 to 2 decreased the Rp values (Figure 

3(B); the corresponding kinetic data is shown in Figure S7). Excess Zn(OTf)2 did not accelerate the 

polymerization via monomer activation, which is consistent with the first-order kinetic results. It retarded 

the propagation and consequently narrowed the Đ (vide supra). Thus, we assume that the excess Zn(OTf)2 

or Zn(OTf)2-activated monomer may interact and/or exchange with the propagating Zn species, but the 

underlying mechanism is not clear. A similar retardation was observed in the anionic polymerization of 

methacrylates in the presence of diethylzinc as the additive.52 
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Figure 3. Kinetic studies of DEAA polymerization (Zn(OTf)2/PCy3, DCM, 25 ℃). (A) Pseudo-first order 

kinetic plots at various LP concentrations: ([M]0:[LA]0:[LB]0 = 40:1:1 (a), 53:1:1 (b), and 80:1:1 (c)). (B) 

Effects of Zn(OTf)2 concentration on polymerization rate (Rp) ([M]0:[LA]0:[LB]0 = 40:1–2:1). 
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successful to date, the generation of II as the intermediate via the conjugate addition initiation is 

considered reasonable; analogues of enolaluminates,21,22,24,28,55,30,32 enolborates,36 and others38,40 have 

been isolated in the LP cooperative conjugate additions. The first-order dependence of [M]0 (Figure 3(A)) 

indicates the unactivated monomers react with zincate II. The high tolerance of the propagating species to 

MeOH and water suggests that free enolates were not generated via an elimination of Zn(OTf)2 from the 

terminals. One polymer chain was formed from one molecule of each PCy3 and Zn(OTf)2 (vide supra, 

entries 1–4, Table 1), which also supported that the initiating and propagating terminals are the 

phosphonium and enol zincate, respectively. Based on the lack of the polymerizability and low 

coordination ability of various α,β-unsaturated esters and the lack of the n-butyl acrylate reactivity to the 

propagating poly(DEAA) terminal, it is tempting to suggest that the efficient Michael addition 

propagation of the acrylamides is presumably because the monomer can be activated via the coordination 

of the more Lewis basic monomer carbonyl oxygens to the propagating zinc center. The retardation by 

stoichiometric protic additives suggests their equilibrium coordination to the propagating Zn centers 

(between III and IV) via a higher-order zincate (IV)56. Excess MeOH terminated the polymerization 

through the equilibrium coordination (IV) and protonation (V). No exchanges of the triflate occurred 

during the propagation and termination because the recycling of Zn(OTf)2 was possible. This equilibrium 

termination may be comparably discussed with the well-known equilibrium coordination of water to 

metal triflates,57 which is distinct from the significantly rapid and possibly diffusion-controlled 

protonation of alkaline-metal enolates during conventional anionic polymerization. 
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Scheme 1. Proposed polymerization mechanism via propagating enol zincates (II–IV) and equilibrium 

termination (III–V) under the condition of [PR3]0 = [Zn(OTf)2]0. 

 

In conclusion, we report that the anionic polymerization of acrylamides proceeded in a 

living/controlled manner at high temperatures under open-air conditions catalyzed by the commercially 

available and recyclable Zn(OTf)2-based LP. This was successful because Zn(OTf)2/PPh3 and the 

propagating enol zincate are tolerant to air/moisture and protic reagents but are significantly selective for 

propagation. We successfully demonstrated user-friendly and practically applicable catalysts that 

overcome scientific and technical difficulties in current living/controlled anionic and radical 

polymerizations.   
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