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Abstract 
The successful integration of large language models (LLMs) into laboratory workflows 
has demonstrated robust capabilities in natural language processing, autonomous task 
execution, and collaborative problem-solving.1-4 This offers an exciting opportunity to 
realize the dream of autonomous chemical research on demand. Here, we report a 
robotic AI chemist powered by a hierarchical multi-agent system, ChemAgents, based 
on an on-board Llama-3-70B LLM, capable of executing complex, multi-step 
experiments with minimal human intervention. It operates through a Task Manager 
agent that interacts with human researchers and coordinates four role-specific agents—
Literature Reader, Experiment Designer, Computation Performer, and Robot 
Operator—each leveraging one of four foundational resources: a comprehensive 
Literature Database, an extensive Protocol Library, a versatile Model Library, and a 
state-of-the-art Automated Lab. We demonstrate its versatility and efficacy through six 
experimental tasks of varying complexity, ranging from straightforward synthesis and 
characterization to more complex exploration and screening of experimental 
parameters, culminating in the discovery and optimization of functional materials. Our 
multi-agent-driven robotic AI chemist showcases the potential of on-demand 
autonomous chemical research to drive unprecedented efficiencies, accelerate 
discovery, and democratize access to advanced experimental capabilities across 
academic disciplines and industries.  
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Main 
The chemistry laboratories of the future are poised to undergo a significant 
transformation, largely driven by the advent of large language models (LLMs) and their 
integration into everyday tasks and workflows. These models, with billions of 
parameters and pre-trained on extensive hybrid corpora, exhibit robust cognitive 
abilities in natural language processing. They demonstrate remarkable capabilities in 
semantic understanding, question answering, content generation, and code 
development across various tasks involving open human-machine interaction5-10. These 
capabilities are catalysing unprecedented opportunities for the intelligent 
transformation of chemical and materials research, giving rise to the development and 
deployment of a wide variety of LLM-powered research methods and tools3,4,11-17. One 
of the most exciting aspects where LLMs will have significant impact on chemistry and 
materials science is accelerating research and discovery by human-LLM collaboration. 
For example, GPT-410 has been integrated into an iterative process of discovering new 
metal-organic frameworks (MOFs)4, operating through a cooperative workflow 
between GPT-4 and a human chemist. Through structured prompting of GPT-4 and in-
text learning informed by human feedback, the human-LLM collaboration yielded the 
discovery of an isoreticular series of MOFs, each synthesized using distinct strategies 
and optimal conditions.  
 
LLM-powered “agents” offer robust capabilities in natural language processing, 
autonomous task execution, and collaborative problem-solving18-24. Their integration 
with external tools and platforms enables them to perform a wide range of tasks across 
various domains, including chemistry, where they are revolutionizing research and 
discovery processes2,25-28. One such example is ChemCrow2, a GPT-4-powered agent 
designed to streamline the reasoning process for various common chemical tasks, 
including organic synthesis, drug discovery, and materials design. It operates by 
sequentially prompting GPT-4 with instructions, guiding it to reason about the current 
state of the task, consider its relevance to the final goal, and plan the next steps 
accordingly. ChemCrow has proven to be an effective assistant to expert chemists, 
while also lowering the entry barrier for non-experts by offering a simple interface to 
access accurate chemical knowledge. More generally, LLM-powered agents are 
autonomous systems that leverage the capabilities of LLMs to interpret, process, and 
respond to textual inputs in a manner that mimics human-like understanding and 
reasoning. Their integration with external tools and platforms enables them to offer 
robust capabilities in autonomous task execution and collaborative problem-solving, 
thereby enhancing productivity, accelerating innovation, and democratizing access to 
advanced research tools.  
 
Parallel to the rapid adoption of LLMs in chemical and materials research, robotics has 
also made significant strides in laboratory automation, providing a diverse array of 
systems tailored to meet the complex demands of autonomous chemistry research. 
These include, but are not limited to, automated platforms that handle high-throughput 
experimentation29-37, benchtop fixed robotic arms that perform precise manipulations38-
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42, and mobile robots that navigate laboratory environments to execute and coordinate 
complex tasks43-45. More sophisticated setups feature dual-arm robots capable of 
complex, coordinated tasks that mimic a human chemist's dexterity46, as well as multi-
robot systems that collaborate seamlessly to optimize workflow efficiency and output47. 
Naturally, the integration of automated robotic hardware with LLM techniques48-54 has 
emerged as a new research direction in autonomous chemistry research1,55,56. For 
instance, Boiko et al. built Coscientist1, a GPT-4-driven AI system capable of semi-
autonomously designing, planning, and executing experiments through internet and 
document searches, code execution, and experimental automation.  
 
Despite these recent advancements in autonomous chemical research driven by LLMs, 
when confronted with complex experimental scenarios, such as multi-step, multi-
station, and/or multi-robot setups, the challenge arises: How can one effectively employ 
LLMs to construct an automated system capable of proficiently executing complex 
chemical tasks on demand? It is impractical to task LLMs with overly complex 
assignments in a single request. Likewise, in autonomous chemistry, it is impractical to 
prompt an LLM once or within a single conversation to perform a series of experimental 
tasks, which can involve interpreting the given problem, generating testing hypotheses, 
planning experimental procedures, implementing instructions for robots, adjusting 
hypotheses, making decisions for subsequent experiments, and much more. 
 
To address this challenge, we have developed an approach featuring ChemAgents, a 
hierarchical LLM-based multi-agent system designed to meet diverse experimental 
demands. By enabling collaboration and coordination among agents, each with a unique 
role and associated abilities (Figure 1), ChemAgents amplifies the effectiveness of 
single LLM agents, allowing them to collectively tackle complex tasks and achieve 
defined objectives57-61. Using Llama-3-70B, these agents—Literature Reader, 
Experiment Designer, Computation Performer, and Robot Operator—receive textual 
instructions, perform specific operations (e.g., using external tools, writing code, etc.), 
and produce suitably formatted outputs that can be used directly as input instructions 
by other agents or interpreted by human researchers. A Task Manager agent coordinates 
the role-specific agents, integrating external software tools and robotic hardware to 
autonomously plan, manage, and execute complex chemical research tasks.  
 
Underpinning ChemAgents are four foundational resources of the robotic AI chemist: 
a database of scientific literature, a library of experimental protocols, a library of 
machine learning models (many of which are pre-trained), and an autonomous 
chemistry lab with robots and automated experimental stations. Here, we demonstrate 
the versatility and performance of our multi-agent-driven robotic AI chemist in 
handling three categories of experimental tasks with increasing levels of complexity: 
(1) performing the synthesis of required compounds and/or performing required 
characterizations of given compounds (referred to as “make & measure”); (2) exploring 
and/or screening experimental parameters of desired functional materials (referred to 
as “exploration & screening”); and (3) combining literature mining, computational 
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modelling, and closed-loop optimization for the discovery of functional materials 
(referred to as “discovery & optimization”), as depicted in Figure 1. 
 

 
Figure 1: The multi-agent-driven robotic AI chemist’s architecture. The LLM-based multi-
agent system, ChemAgents, comprises a Task Manager agent, which manages four role-specific 
agents: Literature Reader, Experiment Designer, Computation Performer, and Robot Operator. 
Each role-specific agent uses built-in tools and operates on one of four foundational resources: 
Literature Database, Protocol Library, Model Library, and Automated Lab. 
 
 
The ChemAgents architecture  
We use the open-source Llama-3-70B as the LLM basis, implemented in Huawei's 
open-source AI framework MindSpore62. The ChemAgents architecture consists of a 
central coordinating entity, the Task Manager agent, that interacts with human 
researchers and manages four role-specific agents—Literature Reader, Experiment 
Designer, Computation Performer, and Robot Operator. The Task Manager has its own 
preset system prompt, within which we define its role, tasks, specific functions, and 
interface descriptions for all entities it can use (including the lower-ranking agents and 
their tools), as well as message formats for workflows and communications. By 
leveraging the capabilities of LLM and LangGraph, an extended library of LangChain, 
the Task Manager interacts with human researchers in natural language. It interprets the 
demand description, plans and decomposes tasks, and instructs and manages the role-
specific agents to use the corresponding foundational resources to perform specified 
operations, facilitating an automated experimental workflow for the demand 
description. 
 
Each role-specific agent has its own LLM instance(s) and built-in tools, operating on 
one of the four foundational resources of the system (Figure 1). The Literature Reader 
uses an external natural language processing (NLP) tool, detailed elsewhere by us63, to 
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mine the Literature Database and accumulate knowledge pertinent to given 
experimental objectives. The Experiment Designer receives instructions, from the Task 
Manager, on intended experiments, plans experimental tasks, and generates step-by-
step procedures by leveraging the Protocol Library. The Robot Operator translates 
experimental procedures from the Experiment Designer into codes and commands for 
operating the Automated Lab’s robots and experimental stations, facilitating and 
completing the robotic execution of chemical experiments. The Computation Performer 
searches for suitable pre-trained machine learning models in the Model Library, using 
them as provided or enhancing them by expanding the model and incorporating 
additional training data. This agent also includes a Bayesian optimizer, which itself is 
an LLM-based agent managed by the Computation Performer and can be deployed for 
iterative optimization tasks. 
 
Generating experimental designs from scientific literature 
We constructed a local Literature Database containing titles and abstracts of 
approximately 1.2 million scientific publications in chemistry and materials science 
subjects, downloaded from Crossref. These publications cover a wide variety of 
research subjects, topics, and fields, as depicted by the word cloud in Figure 2a, with 
larger font sizes indicating more frequent occurrences of words in the database. To mine 
this Literature Database and analyse the resulting data to distil knowledge, we built the 
Literature Reader agent.  
 
The Literature Reader uses two built-in tools: (1) LiteratureSearch, which performs 
searches in the Literature Database according to input keywords and returns relevant 
literature data; and (2) LiteratureMine, which employs an unsupervised syntactic 
distance analysis approach for mining literature data, capable of extracting information 
about chemical substances, physicochemical properties, chemical/material functions, 
and experimental conditions63. The Literature Reader functions in the following steps: 
It receives keywords from the Task Manager and then uses the LiteratureSearch tool to 
collect relevant publication titles and abstracts. These are subsequently passed to the 
LiteratureMine tool, which processes the data and generates statistics. These statistics 
can serve as prior knowledge for designing chemical experiments.  
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Figure 2: The robotic AI chemist’s literature mining and analysing capabilities. a, 
Visualization of knowledge domains contained in the Literature Database, with larger text sizes 
indicating more frequent occurrences. b, Architecture of the Literature Reader agent: step 1 
involves searching the scientific literature database, and step 2 entails the use of the literature-
mining tool.  
 
 
Generating experimental procedures from protocols 
A key foundational resource for our robotic AI chemist is a Protocol Library, which has 
been accumulated over the past few years from experiments conducted in the 
Automated Lab. This library includes procedural templates for previous experiments as 
well as protocols derived from various configurations of the 20 experimental stations 
in the lab, even if not all configurations have yet been used. These protocols are stored 
in the XML format and describes experimental steps in natural language. The 
experimental stations encompass liquid dispensing, solid dispensing, magnetic stirring, 
drying, infrared spectroscopy, X-ray diffraction, photocatalysis, electrocatalysis, and 
more (see Supplementary Information for full details). Together, these protocols and 
stations define the experimental capabilities of the Automated Lab in chemical and 
material synthesis, characterization, and performance testing. 
 
Figure 3a illustrates the architecture of the Experiment Designer agent. It operates as a 
multi-agent system itself, integrating two LLM-based agents: a Protocol writer and a 
Protocol critic. The Protocol writer functions through a pre-prompted LLM, using two 
built-in tools: (1) ProtocolSearch, which searches the Protocol Library based on 
keywords and returns the best-matching experimental template, and (2) StationQuery, 
which allows the Protocol writer to query detailed information about the available 
stations in the Automated Lab, such as specific functions and associated parameters. 
The Protocol critic is another LLM instance with its own preset prompts. These prompts 
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outline its specific tasks to check and correct experimental procedures against 
predefined expert rules, based on the operational constraints of various stations (see 
Supplementary Information for these expert rules). 
 
The Experiment Designer operates as follows: First, the Protocol writer receives a 
description of the intended experiments from the Task Manager. It then invokes the 
ProtocolSearch tool to look for the best-matching template within the Protocol Library. 
If a match is found, the Protocol writer references the relevant template, adjusting the 
steps and parameters to formulate an experimental procedure tailored to the specific 
requirements. If no existing template applies, the Protocol writer invokes the 
StationQuery tool to get the list of available automated stations, plans the experimental 
workflow, and generates an experimental procedure relying solely on the capabilities 
of the LLM. Next, the Protocol critic engages in a reflection process to check the 
experimental procedure generated by the Protocol writer. It reviews, critiques, and 
improves the procedure in accordance with predefined expert rules. Finally, the 
Protocol critic formats the output to ensure the experimental procedure align with both 
the intended experiments and the lab’s capabilities. Figure 3b shows part of a generated 
experimental procedure, which can be fed into the Robot Operator agent and compiled 
into robot-executable codes for conducting automated chemical experiments. 
 

 
Figure 3: The robotic AI chemist’s experiment design capabilities. a, Architecture of the 
Experiment Designer agent. b, Example of a generated experimental procedure.  
 
 
From experimental procedures to automated execution of experiments 
Our Automated Lab encompasses two robots and 20 automated stations with agent-
machine interaction interfaces and a backend control system for all the hardware. 
Compared to our previous robotic AI chemist system44,45, we now have two robots 
(Extended Data Figure 1): a fully mobile robot and a benchtop robotic arm. The mobile 
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robot moves freely within the laboratory, primarily handling tasks involving multiple 
instruments. The benchtop robot, placed on a platform at the centre of the lab, moves 
laterally on tracks and handles characterization and performance testing instruments on 
the platform, including Raman spectroscopy, X-ray diffraction, infrared spectroscopy, 
UV-vis spectroscopy, fluorescence spectroscopy, and electrochemical testing. The 
backend control system schedules tasks, manages data, and communicates with robots 
and stations via the HTTP protocol. To enhance scalability and flexibility, we have 
abstracted and encapsulated the operational methods of the robots and stations, 
establishing standard operation commands and a common interface specification. These 
commands encompass eight types of high-level Robot API interfaces in Python format 
(see Supplementary Information for details), which cover operations including visual 
positioning, motion planning, experimental operations, and instrument communication. 
These API interfaces enable the utilization of the hardware by the Robot Operator 
agent's codes, ensuring accurate and efficient execution of experimental operations. 
 
Figure 4a illustrates the architecture of the Robot Operator agent. It is a multi-agent 
system, integrating three LLM-based agents—Code writer, Code critic, and Code 
proofreader—with the Automated Lab. The Code writer is a pre-prompted LLM 
instance equipped with a built-in tool: RobotAPIQuery, which is used to obtain the 
available high-level API functions for robots. The Code critic is another pre-prompted 
LLM instance, responsible for checking, correcting, critiquing, and improving the 
codes against predefined expert rules on robot codes (detailed in the Supplementary 
Information). The Code proofreader also utilizes the RobotAPIQuery tool and is tasked 
with performing final code checks for grammatical, spelling, and formatting errors 
according to the robot API interface specifications and Python code standards. 
 
The Robot Operator functions as follows: First, the Code writer receives the 
experimental procedure generated by the Experiment Designer. It then invokes the 
RobotAPIQuery tool to obtain the list of available APIs for robots and writes a Python 
code leveraging the capabilities of the LLM. Next, the Code critic reviews and improves 
the code in accordance with predefined expert rules. The improved code is then passed 
to the Code proofreader, who again invokes the RobotAPIQuery tool to retrieve the list 
of available APIs for robots and proofreads the code for further enhancement. Finally, 
the Automated Lab receives the final code for the execution of automated chemical 
experiments. Figure 4b shows an example of a partial robot code for various operations 
at the magnetic stirring station, involving robot movement, visual positioning, and rack 
placement and retrieval (code block 3), as well as for sequential liquid dispensing 
operations (code block 6). 
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Figure 4: The robotic AI chemist’s experiment execution capabilities. a, Architecture of the 
Robot Operator Agent. b, Example of code blocks for using the magnetic stirring and liquid 
dispensing stations.  
 
 
Enabling discovery and optimization by leveraging computational capabilities 
Most on-demand experimental tasks requested of our robotic AI chemist by human 
researchers follow a sequential make-measure-test fashion (e.g., measuring the infrared 
spectrum of a molecule) or involve exploring a prescribed design space (e.g., 
performing a full factorial experiment of certain variables). For such tasks, it is 
sufficient for the Task Manager to only call upon the Experiment Designer and the 
Robot Operator. However, research tasks that necessitate data-driven discovery or 
closed-loop iterative optimization (e.g., discovering high-performance catalysts in an 
expansive search space) require additional computational capabilities. 
 
To address this need, we have compiled a library of machine learning models, most of 
which are pre-trained models from our previous publications or specifically developed 
by us for general use by the robotic AI chemist. Each pre-trained model provides 
auxiliary functions for processing input data, ensuring consistency in data 
preprocessing (such as normalization and handling missing values), and can be used for 
direct prediction. These models come with annotations detailing their technical 
specifications and origins, making them accessible for queries by human researchers or 
LLM-based agents. Additionally, the library includes open-source models that can be 
trained on-the-fly with experimental data collected by the robotic AI chemist, upon 
requests by specific research tasks. 
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Figure 6 illustrates the architecture of the Computation Performer agent. It integrates a 
pre-prompted LLM with two built-in tools, a Bayesian optimizer, and a deep learning 
computing platform. The two built-in tools are: (1) ModelSearch, which performs 
searches in the Model Library using keywords and returns a matching model, and (2) 
ModelFuse, which expands a pre-trained neural-network model by appending 
additional hidden layers to create a fused model. The Bayesian optimizer is an LLM-
based agent, pre-prompted to write Bayesian optimization code using the task 
description provided to the Task Manager by the human researcher; the completion of 
its tasks relies solely on the capabilities of the LLM. The deep learning computing 
platform provides the Computation Performer with a complete Python environment 
necessary for running machine learning codes and obtaining results. 
 
The Computation Performer operates as follows: First, the Computational task manager 
receives input information, including experimental task keywords, a detailed task 
description, and (if applicable) robotic experimental results. Then, it invokes the 
ModelSearch tool to obtain a suitable pre-trained model. Based on the specific task, it 
determines the subsequent actions to be taken and executes them sequentially to 
generate machine learning codes. This process may involve the use of the ModelFuse 
tool and the Bayesian optimizer, depending on the task specification. Finally, prediction 
results are obtained by executing the generated code on the deep learning computing 
platform.  
 

 
Figure 5: The robotic AI chemist’s computational capabilities. Architecture of the 
Computation Performer agent.   
 
 
On-demand autonomous chemical research  
Our multi-agent-driven robotic AI chemist can perform a variety of experimental tasks 
on demand, with the primary limitation being the availability and capabilities of 
automated experimental stations in the laboratory. It generates suitable workflows upon 
understanding task descriptions provided by human researchers, judiciously selecting 
and combining only the necessary agents and stations according to the needs of specific 
workflows. To demonstrate this, we instructed the robotic AI chemist to carry out six 
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experimental tasks with varied levels of sophistication and complexity (Figure 6a–f), 
all employing the Experiment Designer and Robot Operator agents, with the last and 
most complex task also employing the Literature Reader and Computation Performer 
agents. The results are detailed below. 
 
“Make & measure” tasks. These are the most straightforward type of experimental 
tasks for the robotic AI chemist. Upon receiving a task description, the Task Manager 
interprets and understands the instructions before passing on the necessary information 
to the Experiment Designer, which then identifies and uses an appropriate experimental 
protocol to generate a suitable experimental procedure. This procedure is translated into 
the required code-based instructions by the Robot Operator to execute robotic synthesis 
and testing in the Automated Lab, obtaining experimental results that are returned to 
the Task Manager. Figure 6a–c reports experimental results of three “make & measure” 
tasks. 
 
Task 1 involved characterizing three azobenzene molecules using Fourier-transform 
infrared (FT-IR) spectroscopy. Azobenzenes are a class of organic molecules 
characterized by the presence of an N=N double bond linking two phenyl rings. They 
are known for their photoswitchable properties, which allow them to change their 
molecular structures and chemical properties upon irradiation. The Task Manager was 
instructed to measure the IR spectra of three azobenzene molecules, using the following 
prompt:  
 
“You have been assigned a scientific research task to measure the infrared spectra of 
azobenzene molecules. You need to conduct one measurement for each of the following 
solid powders: azobenzene, 1-(phenylazo)naphthalen-2-amine, and 4,4'-
dihydroxymethylazobenzene.” 
 
Upon receiving this task description, the robotic AI chemist successfully planned, 
coordinated, and collected high-quality FT-IR spectra for the molecules. The results 
showed the expected characteristic peaks of stretching vibrations of N=N in the range 
of 1600–1500 cm⁻¹, as well as the stretching vibrations of C=C and C–H of the benzene 
ring in the range of 1500–1400 cm⁻¹ and 3100–3000 cm⁻¹, respectively (Figure 6a).  
 
Task 2 involved synthesizing researcher-specified metal oxides and then characterizing 
them using powder X-ray diffraction (PXRD). The robotic AI chemist synthesized six 
requested metal oxides, namely ZrO₂, ZnO, WO₃, Mn₃O₄, CuO, and Fe₂O₃, before 
collecting their PXRD patterns (Figure 6b). The successful syntheses of the metal 
oxides were confirmed by comparing experimentally collected PXRD patterns with 
their corresponding PDF cards (Supplementary Fig. S3). Task 3 involved using lead 
halide perovskite (APbX3) quantum dots (PQDs) to achieve a wide gamut of high-
purity colours through their tuneable emission wavelengths and sharp 
photoluminescence profiles. This was done by combining different types of A+Pb2+(X-

)3 (A = CH3NH3, (NH2)2CH, or Cs; X = Cl, Br, or I). Per the task description, the robotic 

https://doi.org/10.26434/chemrxiv-2024-w953h ORCID: https://orcid.org/0000-0002-0382-5863 Content not peer-reviewed by ChemRxiv. License: CC BY-NC-ND 4.0

https://doi.org/10.26434/chemrxiv-2024-w953h
https://orcid.org/0000-0002-0382-5863
https://creativecommons.org/licenses/by-nc-nd/4.0/


AI chemist successfully prepared PQD inks of four colours (i.e., blue, green, yellow, 
and red) following predefined recipes of APbX3 mixtures. These inks were then cast 
into thin films, and the fluorescence emission spectra of the films were measured, 
displaying the intended high-purity colours (Figure 6c).  
 
“Exploration & screening” tasks. These tasks necessitate more advanced LLM 
capabilities compared to the “make & measure” ones. For instance, the Task Manager 
must have the ability to interpret task descriptions that require a deeper understanding 
of domain-specific knowledge, such as comprehending and executing instructions to 
“perform a full factorial experiment”. This involves recognizing the concept of a 
factorial experiment and understanding the importance of systematically varying 
multiple factors to evaluate their effects. Similarly, the Experiment Designer must 
demonstrate flexibility and creativity in adapting existing protocols. This can involve 
assigning different values to variables based on experimental requirements and 
customizing protocols by expanding or combining them to accommodate more complex 
experimental designs. For example, it might need to integrate multiple experimental 
steps from different protocols or adjust procedural details to align with specific research 
goals. Tasks 4 and 5 fall within this category of on-demand research tasks.  
 
Task 4 involved the robotic AI chemist performing a full factorial experiment to 
synthesize graphitic carbon nitrides (g-C3N4) and test them for hydrogen evolution 
reaction (HER) performance. For demonstration, the robotic AI chemist was instructed 
to consider three heating temperatures (500, 550, and 600 ℃) and three heating 
durations (3, 4, and 5 hours). Measuring the HER performance of the resulting g-C3N4 
materials served to illustrate the different sample qualities produced under the various 
synthesis conditions, highlighting the importance of screening these synthesis 
conditions to optimize the HER performance of g-C3N4. As shown in Figure 6d, the 
results indicate degradation or over-sintering of g-C3N4 at higher temperatures across 
all heating durations, particularly evident at 600 ℃. Additionally, it is evident that 
increasing the heating time negatively affected the HER performance at all three 
temperatures.  
 
Task 5 explored the photocatalytic degradation of organic pollutants in water using 
bismuth oxyhalides (BiOX, where X = Cl, Br, or I). These compounds have abundant 
availability, low toxicity, and suitable band gaps for visible light absorption, making 
them promising photocatalysts for various applications. Specifically, the robotic AI 
chemist was instructed to investigate the effect of halogen atom species in bismuth 
halide on the photocatalytic degradation of tetracycline (TC). Figure 6e shows that 
BiOBr exhibited the fastest photocatalytic degradation of TC, followed by BiOCl and 
then BiOI. The superior performance of BiOBr in degrading TC can be attributed to its 
suitable band gap (~2.7 to 3.1 eV), which is narrower than that of BiOCl (~3.5 eV), 
enabling it to absorb light more efficiently. Despite having the narrowest band gap (~1.7 
to 1.9 eV), BiOI exhibited the lowest photocatalytic activity, likely due to a faster 
recombination of electron-hole pairs. 
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Figure 6: On-demand autonomous chemical research. a, Task 1: measured FT-IR spectra of 
three azobenzene molecules. b, Task 2: measured PXRD patterns of six metal oxides. c, Task 
3: normalized fluorescence emission spectra of perovskite quantum dots films displaying 
different colours, shown as insets. d, Task 4: measured HER performances (ranging from 9.28 
× 10-5 to 2.10 × 10-3 mmol/g) for g-C3N4; the symbol sizes are proportional to the corresponding 
HER performances. e, Task 5: measured photocatalytic degradation of tetracycline in water by 
bismuth oxyhalides. f, Task 6: 2D UMAP embedding of the 101 MO-HECs’ compositional 
space, with symbol colours indicating the value ranges to which their measured overpotentials 
(in mV) belong; labels 1 and 2 indicate the BO-discovered catalyst and the best catalyst from 
the random sampling, respectively. 
 
“Discovery & optimization” tasks. These are the most advanced research tasks that 
the robotic AI chemist can currently accomplish, requiring the use of all four role-
specific agents and their corresponding foundational resources, as illustrated in Figure 
1. A typical workflow involves (1) the Literature Reader generating experimental 
designs from the Literature Database, (2) the Experiment Designer creating 
experimental procedures from the Protocol Library, (3) the Robot Operator generating 
codes and commands for execution of experiments in the Automated Lab, and (4) the 
Computation Performer using pre-trained models from the Model Library to analyse 
data and generate optimization targets. As an example, we tasked the robotic AI chemist 
with discovering metal-organic high-entropy catalysts (MO-HECs) for the oxygen 
evolution reaction (OER). The process began with a single prompt to the Task Manager:  
 
“A scientific research task has been assigned to you to discover high-performance 
metal-organic high-entropy catalysts (MO-HECs), comprising five metallic elements, 
for the oxygen evolution reaction (OER). Please use the Literature Reader to identify 
prevalent metals for OER in the literature and select the top five recommendations. The 
automated laboratory is equipped with the necessary precursor solutions and other 
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required chemicals. Please select 100 quinary metal compositions by random sampling, 
with each metal's proportion ranging from 5% to 35%, and conduct their syntheses and 
overpotential measurements. After obtaining the experimental data from the 100 
automated experiments, use the Computation Performer to optimize the experiments. 
Use the compositions and measured overpotentials of these 100 experiments, together 
with a pre-trained model, to build a fused model that predicts overpotentials from 
compositions. Then, use this fused model in conjunction with Bayesian optimization to 
search for the composition that gives the lowest predicted overpotential. The 
constraints for Bayesian optimization are that the metal proportions must range from 
5% to 35% and sum up to 100%. After the Computation Performer provides the results, 
your final experiment is to synthesize and test this optimal composition experimentally.”  
 
When instructed by the Task Manager to query the Literature Database for the most 
prevalent metallic elements related to OERs, the Literature Reader identified cobalt 
(Co), nickel (Ni), iron (Fe), manganese (Mn), and copper (Cu) as the top five 
recommendations. The Experiment Designer then identified an appropriate 
experimental protocol and generated a detailed procedure. This procedure included the 
preparation of required metal compositions for MO-HECs, their synthesis, separation, 
and sample preparation for electrochemical testing. Extended Data Figure 1b illustrates 
the key robotic operations throughout this experimental procedure. 
 
The robotic AI chemist synthesized 100 MO-HECs with randomly chosen metal 
compositions and measured their overpotentials, all of which were above 300 mV at 10 
mA cm-2. Following the task description quoted above, the Computation Performer was 
then deployed to select a suitable pre-trained model from the Model Library, which 
predicts OER activity descriptors from metal composition. The Computation Performer 
generated a “fused” model by appending one hidden layer and a new output layer to the 
neural network architecture of the pre-trained model. This fused model was trained 
using the 100 experimental samples (compositions with measured overpotentials), 
tuning only the weights of the new hidden layer. As a result, the fused model predicted 
experimentally measured overpotentials for given metal compositions by correlating 
OER activity descriptors with compositions and overpotentials. 
 
The Computation Performer used this trained fused model, in conjunction with its 
Bayesian optimizer, to conduct virtual experiments to identify metal compositions 
imparting reduced overpotentials to MO-HECs. Specifically, the Computation 
Performer ran a Bayesian optimization: when a specific composition was evaluated, the 
fused model acted as an “oracle” to provide its predicted overpotential. After the 
optimal composition with the lowest overpotential was found, it was passed on to the 
Experiment Designer and Robot Operator for experimental synthesis and testing. The 
MO-HEC with the optimal metal composition exhibited an overpotential of 266.1 mV 
at 10 mA cm-2, a significant improvement over the 100 MO-HECs with randomly 
chosen metal compositions. 
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Figure 6f depicts a two-dimensional (2D) UMAP projection of the metal-composition 
space formed by the 101 experimentally measured MO-HECs. In this plot, points that 
are closer together represent compositions that are more similar based on Euclidean 
distance. This visualization highlights that the composition of the optimal catalyst 
identified leveraging the robotic AI chemist’s computational capabilities is significantly 
different from that of the best catalyst among the 100 randomly selected samples. 
Additionally, the 2D UMAP embedding reveals that catalysts with similar compositions 
(i.e., those close to each other in the plot) can exhibit vastly different overpotential 
values. This lack of a strong composition-activity correlation underscores the challenge 
of discovering high-performance catalysts in this chemical space while highlighting the 
efficacy of our approach in identifying such catalysts. Furthermore, Supplementary Fig. 
S9 confirms that the optimal MO-HEC remained highly stable, showing less than a 2% 
reduction in performance over 500 hours of continuous operation.  
 
 
Outlook  
In this work, we present our latest advancement in the development and implementation 
of a multi-agent-driven robotic AI chemist, leveraging the capabilities of LLMs, 
specifically Llama-3-70B, and ChemAgents, a hierarchical multi-agent system. 
ChemAgents integrates various specialized LLM-based agents capable of performing 
complex research tasks both individually and collaboratively. It comprises an Task 
Manager agent that interacts with human researchers and manages four role-specific 
agents—Literature Reader, Experiment Designer, Computation Performer, and Robot 
Operator. This architecture enhances the effectiveness of single agents through 
collaboration and coordination, allowing them to collectively tackle complex tasks and 
achieve defined objectives. Underpinning ChemAgents are four foundational 
resources: a comprehensive Literature Database, an extensive Protocol Library, a 
versatile Model Library, and a state-of-the-art Automated Lab. These resources enable 
the robotic AI chemist to perform a wide range of tasks from literature mining and 
experimental procedure generation to computational modelling and robotic execution 
of experiments. 
 
The robotic AI chemist demonstrated its versatility in handling a variety of 
experimental tasks with varying levels of complexity. Six experimental tasks were 
conducted, encompassing "make & measure," "exploration & screening," and 
"discovery & optimization" workflows. These experiments highlighted ChemAgents's 
adaptability and precision in generating experimental procedures, executing robotic 
experiments, and utilizing computational models for data-driven discovery and 
optimization. Notably, the robotic AI chemist successfully navigated the vast chemical 
space of possible quinary compositions to identify high-performance metal-organic 
high-entropy catalysts (MO-HECs) for electrochemical oxygen evolution reactions. 
Through literature mining, computational modelling, and Bayesian optimization, the 
system identified and experimentally validated an optimal MO-HEC composition, 
achieving a substantial improvement in overpotential performance. 
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The development of the multi-agent-driven robotic AI chemist marks a significant step 
towards fully autonomous chemical research. This advancement enables the execution 
of complex, multi-step experiments with minimal human intervention, thereby opening 
new avenues for scientific inquiry. As autonomous chemistry evolves from isolated 
autonomous labs43,44 to coordinated, cloud-based systems64, and, in the future, to 
advanced networks of Intelligent Scientist Systems65, our multi-agent-driven robotic AI 
chemist aligns closely with this trajectory and will help accelerate these transitions. The 
system’s ability to autonomously plan, coordinate, manage, and execute chemical 
research tasks promises to drive unprecedented efficiencies and innovations in research. 
Additionally, it democratizes the capability to conduct autonomous chemical research, 
making advanced robotic experimental methodologies and capabilities accessible to a 
diverse and broad range of researchers. This democratization not only broadens 
participation in autonomous chemical research but also fosters a more inclusive and 
collaborative scientific community, paving the way for accelerated discoveries and 
technological advancements. 
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Extended Data Figure 1: The Automated Lab. a, Depiction of the two experiment-
conducting robots: a fully mobile robot and a benchtop robotic arm. b, Examples of key robotic 
operations along the autonomous workflow for sample synthesis and electrochemical testing. 
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