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ABSTRACT: Skeletal remodeling of unstrained azacycles such as pyrrolidine remains a formidable challenge in synthetic chemis-
try. To achieve such remodeling, continuous development of the cleavage of inert C–N bonds is essential. In this study, we intro-
duce an effective strategy for the reductive cleavage of C–N bond in N-benzoyl pyrrolidine, leveraging a combination of Lewis acid 
and photoredox catalysis. This method involves single-electron transfer to the amide, followed by site-selective cleavage at C2–N 
bond. Cyclic voltammetry and NMR studies demonstrated that the Lewis acid is crucial for promoting the single-electron transfer 
from the photoredox catalyst to the amide carbonyl group. This protocol is widely applicable to various pyrrolidine-containing mol-
ecules and enables inert C–N bond cleavage including C–C bond formation via intermolecular radical addition. Furthermore, the 
current protocol successfully converts pyrrolidines to aziridines, g-lactones, and tetrahydrofurans, demonstrating the potential to 
expand synthetic strategies in skeletal remodeling. 

■ INTRODUCTION 
Cyclic amines, particularly pyrrolidines, stand as pivotal struc-
tures within both natural products and synthetic building 
blocks, serving as cornerstones in the synthesis of myriad N-
containing molecules, profound biological and medicinal rele-
vance (Figure 1A).1 Historically, the chemical transformation 
of these motifs has enriched the synthetic toolkit, offering a 
cascade of valuable derivatives ranging for therapeutics to 
biological agents. Recently, peripheral functionalization 
through late-stage C–H functionalization has become a mod-
ern and popular method, offering versatile and efficient ways 
to embellish these amines.2–7 In contrast to such peripheral 
functionalization, “skeletal remodeling”, which involves de-
construction and re-editing the core ring structure, has recently 
garnered significant attention as a new approach in organic 
synthesis.8–13 Skeletal remodeling can be divided into two 
phases: the cleavage of inert bonds and further transformations. 
This allows for the conversion of pyrrolidine frameworks into 
different-sized cyclic amines through insertion or contraction 
reactions, or into carbocycles through replacement reactions. 
Therefore, this method of modifying ring systems can have a 
substantial impact by enabling access to diverse structurally 
edited amines and unexplored chemical spaces.14 

However, the establishment of versatile skeletal remodeling 
of pyrrolidines still faces significant challenges, particularly in 

the first phase involving C–N bond cleavage.15 For example, 
ring-opening reactions via homolytic cleavage using radicals 
are well known for smaller rings such as aziridines and azet-
idines, driven by ring strain.16–24,25,26 These methods, however, 
are not applicable to pyrrolidines, making the process more 
challenging (Figure 1B).27 Although still limited to date, in-
genious examples to tailor the unstrained pyrrolidine systems 
have been developed, which can be categorized into three 
mechanistically distinct approaches. 

One approach is nucleophilic substitution of quaternary 
ammonium salts, von Braun type reactions (Figure 1C).28,29 
This protocol was recently improved by using chlorofor-
mates,30 or difluorocarbene3132 as more competent reagents. 
This transformation even facilitates the total synthesis of com-
plex alkaloids33,34. Additionally, BAr3-catalyzed ring opening 
has recently emerged as another approach exploiting ammoni-
um intermediates.3536 Another traditional example is the a-
oxidation of cyclic amine followed by hemiaminal(ether) for-
mation, where the resulting aldehyde further undergoes func-
tionalization via oxidation and decarboxylative 
processes.8,11,37–44 These oxidative approaches have recently 
been highlighted by a series of elegant works from the Sar-
pong group.8,11–13,45 
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Figure 1. (A) Chemical transformation of pyrrolidines. (B) Ring strain of cyclic amines. (C) 1st phase: Ring opening of unstrained cyclic 
amines. (D) Skeletal remodeling of pyrrolidines (1st and 2nd phases). 

Contrasting to the above two strategies based on the elec-
tron-rich nature of amines, reductive C–N bond cleavage has 
been less employed. Early examples represented hydrogenoly-
sis of cyclic amines using molecular hydrogen with transition 
metals.46 Thereafter, single-electron reduction of carbonyl 
handle affording aminoketyl radical, has gained as a new al-
ternative of reductive C–N bond cleavage. Pioneered by Szos-
tak and Procter, the ring opening of N-acyl pyrrolidines using 
TmI2 (E°(TmIII/II) = – 2.2 V vs. SCE) more reducing than SmI2 
was achieved.47 More recently, Yu and coworkers reported a 
protocol for the reductive ring opening of N-Boc pyrrolidines 
with aryl or ester group at C2-position employing consecutive 
photo-induced electron transfer (ConPET).48 These highly 
reductive approaches have faced the challenge that the choice 
of functionalization after reductive ring opening remains lim-
ited to transformations involving carbanion intermediates. 
This limitation is likely due to the resulting radical being more 
susceptible to further reduction than the parent compound. The 
requirement for strong reduction conditions and stoichiometric 
reductant could further reduce the accompanying carbon radi-
cal into a carbanion. We assumed that successfully avoiding 
multiple reduction could engage the reductive opening of cy-
clic amines in radical-mediated functionalization.  

To this end, we envisioned that restricted single-electron 
transfer (SET), which is difficult with stoichiometric reductant 
or conPET strategy, would provide access to radical-mediated 
transformations. To avoid the problematic further reduction of 
the susceptible carbon radical (–0.3 ~ –1.3 V vs. SCE),49 we 
focused on redox-neutral and catalytic approach enabled by 
photoredox catalysis. Generally, the reduction of amide re-
quires highly reducing power far beyond the range of standard 
photocatalysts. However, aromatic amide possesses a relative-
ly less negative reduction potential, making them a feasible 
option (E1/2 = –2.3 V vs. SCE).50 Thus, we envisioned that 
employing highly reducing photoredox catalyst for the reduc-
tion of aromatic amides would be a successful combination to 
achieve radical-based C–N bond cleavage of pyrrolidines.  

In this study, we report the successful generation of carbon 
radicals using a combination of zinc triflate and a photoredox 
catalyst. This approach not only facilitated carbon–carbon 
bond formation with alkenes and alkynes but also enabled the 
skeletal remodeling of pyrrolidines into aziridines, g-lactones, 
and tetrahydrofurans (Figure D). 

■ RESULTS AND DISCUSSION 
We commenced our investigation by screening reaction 

conditions in the ring-opening reaction of N-benzoyl-2-
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methylpyrrolidine 1a (Table 1). Irradiation with blue LEDs 
(λmax = 456 nm) in the presence of Ir(ppy)3 (E1/2

red(IrIII*/IrIV)= –
1.73 V vs. SCE)51 and γ-terpinene yielded no product (Table1, 
Entry 1). We attributed this result to the difficulty of single-
electron amide reduction and tested several Lewis acids to 
activate the amide carbonyl group. The desired acyclic product 
2a was obtained, albeit in a considerably low yield accompa-
nied by unreacted 1a (Table 1, Entries 2–4). The yield of 2a 
was markedly improved when Zn(OTf)2 was used (Table 1, 
Entry 5). Relevant additives, Zn(OAc)2 and TfOH, were less 
effective compared to Zn(OTf)2 (Table 1, Entries 6 and 7). To 
our delight, we found that the combination of Zn(OTf)2  and 
Ir(4-Fppy)3 (E1/2

red(IrIII*/IrIV) = –1.91 V vs. SCE) dramatically 
improved the conversion, providing 2a in 92% yield  
Table 1. Optimization of the Reaction Conditions.a 

 

Entry Photocatalyst Lewis acid Solvent 2a /% 
1 Ir(ppy)3 none CH2Cl2 0 
2 Ir(ppy)3 BF3·OEt2 CH2Cl2 5 
3 Ir(ppy)3 TMSOTf CH2Cl2 6 
4 Ir(ppy)3 Sc(OTf)3 CH2Cl2 1 
5 Ir(ppy)3 Zn(OTf)2 CH2Cl2 30 
6 Ir(ppy)3 Zn(OAc)2 CH2Cl2 trace 
7 Ir(ppy)3 TfOH CH2Cl2 13 
8 Ir(4-Fppy)3 Zn(OTf)2 CH2Cl2 92 
9 Ir(dFppy)3 Zn(OTf)2 CH2Cl2 0 
10 Ir(4-Fppy)3 Zn(OTf)2 THF 2 
11 Ir(4-Fppy)3 Zn(OTf)2 DMF 0 
12b Ir(4-Fppy)3 Zn(OTf)2 CH2Cl2 84 
13c Ir(4-Fppy)3 Zn(OTf)2 CH2Cl2 0 
14 Ir(4-Fppy)3 none CH2Cl2 0 

 
a Conditions: 1a (0.10 mmol), 1.0 mol % Photocatalyst, 5.0 

mol % Lewis acid, γ-terpinene (3.0 equiv) in solvent (0.10 M), 
blue LEDs (456 nm), 12 h, and under a N2 atmosphere. Yields 
were determined by 1H NMR analysis. b 1,4-Cyclohexadiene was 
used instead of γ-terpinene. c Without irradiation. d (E1/2 
(IrIV/IrIII*) and E1/2 (IrIV/IrIII) V vs. SCE).51 

(Table 1, Entry 8). Switching to Ir(dFppy)3 (E1/2
red(IrIII*/IrIV)= 

= –1.28 V vs. SCE) failed to produce the desired product (Ta-
ble 1, Entry 9). THF and DMF were not suitable, presumably 
because the interaction between Zn(OTf)2  and these solvents 

hampered the desired transformation (Table 1, Entries 10 and 
11).52 Replacing γ-terpinene with 1,4-cyclohexadiene (1,4-
CHD) slightly reduced the yield (84%) of 2a (Table 1, Entry 
12). This result may attributed to the faster HAT rate of γ-
terpinene than 1,4-CHD.53 Control experiments revealed the 
requirement for both visible light and Lewis acid (Table 1, 
Entries 13 and 14). 

With the optimal conditions in hand, we evaluated the sub-
strate scope of the reductive ring opening of pyrrolidines 
(Scheme 1). Esters (1b–1d) and amides (1e and 1f) at the C2-
position on pyrrolidine were tolerated under these conditions, 
and the ring-opened products 2 were obtained in excellent 
yields, except for 2e, which was insoluble to CH2Cl2 and ob-
tained in a moderate yield by using a CH2Cl2/DMF mixed 
solvent. Prolinol derivatives (1g–1i) could be readily convert-
ed. Pyrrolidine 1j possessing quaternary carbon at the C2-
position was less reactive compared to 1c, but prolonged reac-
tion time to 24 h led to an increase in the yield of 2j (90%). 
Scheme 1. Scope of the Ring Opening of Pyrrolidines.a 

 
a Conditions: 1 (0.20 mmol), 1.0 mol % Ir(4-Fppy)3, 5.0 mol % 

Zn(OTf)2, γ-terpinene (3.0 equiv) in CH2Cl2 (0.10 M) under a N2 
atmosphere and blue LEDs (456 nm) irradiation for 12 h. Isolated 
yields. b CH2Cl2/DMF (0.10 M, 9:1). 
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sole product in a good yield. This regioselectivity could be 
attributed to the stability of the resulting radical intermediate.57 
Proline containing dipeptides (1m–1q) participated in this 
protocol and the corresponding products were obtained in 
moderate to excellent yields (53–95%). Oxidizable methionine, 
and nucleophilic serine and tyrosine residues were all accom-
modated, demonstrating the high level of chemoselectivity of 
this catalytic system. Notably, one pyrrolidine of 1q remained 
intact under the reaction conditions, probably due to different 
susceptibilities for the reduction between aromatic and aliphat-
ic amides. 
To provide insight into the mechanistic details of this reduc-

tive C–N bond cleavage, we performed a radical clock exper-
iment (Figure 2A). Treatment of pyrrolidine 1r with a cyclo-
propyl moiety afforded olefin 2r in a good yield, suggesting 
the intermediacy of cyclopropylcarbinyl radical in the ring 
opening of pyrrolidine. We next examined the effect of N-acyl 
groups in this reaction (Figure 2B). 2-Methyl substituted pyr-
rolidines bearing three different N-acyl substituents, 1a, 1s, 
and 1t were subjected to the established conditions. 1a was 
converted into the corresponding product 2a in 88% isolated 
yield. In contrast, no reaction was observed when acetyl pyr-
rolidine 1s and trifluoro acetyl pyrrolidine 1t were used as the 
starting materials. We presumed that, in the cases of 1s and 1t, 

single-electron transfer from the excited photocatalyst to am-
ide carbonyl did not occur. To gain insights into the interac-
tion between Zn(OTf)2 and pyrrolidines 1a, 1s, and 1t, we 
examined the sensitivity of 13C NMR to the addition of 
Zn(OTf)2 (Figure 2C). The result indicated that amide carbon-
yl carbon of 1a and 1s undergo a downfield chemical shift 
with increasing the amount of Zn(OTf)2. In contrast, no 
change was observed in the experiment for 1t. These results 
are consistent with the successful reduction of benzoyl pyrrol-
idine 1a facilitated by the coordination of Zn(OTf)2 to the 
amide carbonyl. On the other hand, no reaction progress was 
observed with 1s despite the successful coordination of 
Zn(OTf)2. To better understand the different reactivity be-
tween 1a and 1s, we measured cyclic voltammetry (CV) (Fig-
ure 2D). The reduction peak of 1a was observed at –2.68 V, 
while no apparent peak was detected with 1s. Considering that 
the acetyl group is more difficult to reduce compared to the 
benzoyl group with similar tertiary amide, the reduction peak 
of 1s seems to be far from the measurable range under the 
present conditions. Taken together, coordination Zn(OTf)2 to 
amide carbonyl of 1a would facilitate single-electron transfer 
and enable the present reductive C–N bond cleavage. 
 
 

Figure 2. Mechanistic investigations. (A) Radical clock experiment. (B) Substituent effect of N-acyl group. (C) NMR studies. (D) Cyclic 
voltammetry experiments. See the Supporting Information for the details of the experiments. 

A plausible mechanism for the ring opening reaction is out-
lined in Figure 3. First, an excited state photoredox catalyst 
*IrIII is generated under the irradiation of blue LEDs (IrIII→
*IrIII). Single-electron transfer (SET) from *IrIII to 1’, a com-
plex of 1 and Zn(OTf)2, occurs, followed by the ring opening 
of pyrrolidine to furnish a radical intermediate (*IrIII→IrIV). 
We believe that β-scission of the generated aminoketyl radical 
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vation of a significantly lower reactivity of piperidine under 
this ring opening conditions (see the Supporting Information). 
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leading to zinc imidate along with a γ-terpinene-derived radi-
cal, which would subsequently be oxidized to a cation by IrIV 

(IrIV→ IrIII). Finally, proton transfer from the γ-terpinene-
derived cation to the zinc imidate would provide the desired 
ring-opened product 2 along with regeneration of Zn(OTf)2.  
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Figure 3. Plausible Mechanism. 

To further explore the radical reactivity of this catalytic sys-
tem, we investigated C–C bond formation through intermolec-
ular radical addition (Scheme 2). The reaction of pyrrolidine 
1b with α-methylstyrene (3a) in the absence of γ-terpinene 
furnished lactone 4a via a sequence of steps involving ring 
opening/radical addition to 3a, oxidation of the generated ben-
zyl radical, cation-mediated cyclization, and proton transfer.58 
This transformation highlighted the utilization of photoredox 
catalysis, which enables restricted single-electron transfer. In 
addition to 3a, stylene (3b), 1-fluoro-4-vinylbenzene (3c), and 
prop-1-en-2-ylbenzene (3d) were tolerated in this lactone for-
mation reaction. Additionally, treatment of pyrrolidine 1c with 
allyl sulfone 3e afforded alkene 5 via the extrusion of an aryl 
sulfonyl radical.59 Furthermore, 1-ethynyl-4-methylbenzene(6) 
was also accommodated in the radical addition reaction, and 
the (Z)–isomer of styrene 7 was predominantly obtained from 
pyrrolidine 1b. The regioselectivity may be a consequence of 
E–Z isomerization, which is supported by experiments of a 
similar p-system under the current reaction conditions (see the 
Supporting Information).60 This sequence of exploration un-
derscores the versatility and efficiency of our catalytic system 
in facilitating a variety of radical-mediated transformations, 
expanding the scope of potential synthetic applications. 
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cal rotation measurements. This protocol successfully produc-
es optically active compounds, leveraging the stereochemistry 
derived from L-hydroxyproline. This ability to manipulate the 
stereochemistry and achieve high yields underscores the ro-

bustness and versatility of our method in generating diverse 
and enantiomerically pure heterocycles.  
 

 

Scheme 3. Skeletal Remodeling via Ring Opening of Hydroxy Pyrrolidine Derivatives.  

 

 ■ CONCLUSIONS 
In conclusion, we have developed a reductive C–N bond 

cleavage of N-benzyl pyrrolidines using photoredox catalysis 
with Lewis acid. This reaction enabled unique transformations 
via a radical mechanism, which were previously unattainable 
through traditional reductive pyrrolidine C–N bond cleavage, 
using widely available starting materials. In the context of 
amide bond activation, the present protocol represents a rare 
example of σC–N bond cleavage.27,47,61–64 The critical role of 
Lewis acid was elucidated by NMR studies and cyclic volt-
ammetry. Additionally, we successfully synthesized g-lactones, 
aziridines, and tetrahydrofurans through skeletal remodeling 
reactions starting from hydroxyproline derivatives. Ongoing 
efforts in our laboratory are focused on exploring new trans-
formations of nitrogen-containing compounds using photore-
dox catalysis, further expanding the synthetic utility of this 
approach.  
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