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Molecules under strong or ultra-strong light-matter coupling present an intriguing route to modify chemical
structure, properties, and reactivity. A rigorous theoretical treatment of such systems requires handling
matter and photon degrees of freedom on an equal quantum mechanical footing. In the regime of molecular
electronic strong or ultra-strong coupling to one or a few molecules, it is desirable to treat the molecular
electronic degrees of freedom using the tools of ab initio quantum chemistry, yielding an approach referred
to as ab initio cavity quantum electrodynamics (ai-QED), where the photon degrees of freedom are treated
at the level of cavity quantum electrodynamics. We analyze two complementary approaches to ai-QED:
(1) a parameterized ai-QED, a two-step approach where the matter degrees of freedom are computed using
existing electronic structure theories, enabling the construction of rigorous ai-QED Hamiltonians in a basis
of many-electron eigenstates, and (2) self-consistent ai-QED, a one-step approach where electronic structure
methods are generalized to include coupling between electronic and photon degrees of freedom. Although
these approaches are equivalent in their exact limits, we identify a disparity between the projection of the
two-body dipole self-energy operator that appears in the parameterized approach and its exact counterpart
in the self-consistent approach. We provide a theoretical argument that this disparity resolves only under the
limit of a complete orbital basis and a complete many-electron basis for the projection. We present numerical
results highlighting this disparity and its resolution in a particularly simple molecular system of helium hydride
cation, where it is possible to approach these two complete basis limits simultaneously. In this same helium
hydride system, we examine and compare the practical issue of computational cost required to converge
each approach towards the complete orbital and many-electron bases limit. Finally, we assess the aspect of
photonic convergence for polar and charged species, finding comparable behavior between parameterized and
self-consistent approaches.

I. INTRODUCTION

Strong interactions between molecular electronic and
photonic degrees of freedom (i.e., electronic strong and
ultra-strong coupling) can fundamentally alter chemical
structure, reactivity, and phenomenology.1–23 Predictive
theoretical and computational models for molecules un-
der electronic strong coupling must capture the quantum
nature of electronic and photonic degrees of freedom. In
the limit of molecular electronic strong or ultra-strong
coupling to one or a few molecules, it is desirable to
treat the molecular electronic degrees of freedom using
the tools of ab initio quantum chemistry, yielding an ap-
proach referred to as ab initio cavity quantum electrody-
namics (ai-QED), where the photon degrees of freedom
are treated at the level of cavity quantum electrodynam-
ics. Two complementary approaches have emerged for ai-
QED: (1) parameterized CQED20,23–27 (pQED), a two-
step approach where the matter degrees of freedom are
computed using existing electronic structure theories, en-
abling one to build rigorous ai-QED Hamiltonians in a
basis of many-electron eigenstates, and (2) self-consistent
CQED19,28–51 (scQED), a one-step approach where elec-
tronic structure methods are generalized to include cou-
pling between electrons and photon degrees of freedom.
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Although these approaches are equivalent in their ex-
act limits, it is practically impossible to reach these exact
limits for the vast majority of physically relevant systems.
Outside of their exact limits, the variety of approxima-
tions inherent in electronic structure calculations makes
it quite difficult to assess these two approaches on equal
footing. In this work, we attempt to provide a fair assess-
ment of these two approaches based upon simple analysis
of their underlying formalisms, and through comparable
numerical results approaching exact limits. To this end,
we implement variational approaches to pQED and sc-
QED using full configuration interaction (FCI) to param-
eterize the former and a self-consistent QED-FCI scheme
for the latter. Analysis of the formalism of both ap-
proaches shows that these approaches are indeed equiva-
lent in the limit of a complete orbital and many-electron
basis, but have a key disparity in a quadratic light-matter
coupling term, known as the dipole self energy, outside
of this limit. While scQED utilizes the exact form of the
dipole self energy operator in a given orbital basis, the
projected dipole self energy that arises in pQED is inex-
act except for in a complete orbital and many-electron
basis. We present numerical results highlighting this dis-
parity and its resolution in a particularly simple molecu-
lar system of helium hydride cation, where it is possible
to approach these two complete basis limits simultane-
ously. In this same helium hydride system, we examine
and compare the practical issue of computational cost re-
quired to converge each approach towards the complete
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orbital and many-electron bases limit. Finally, we assess
the aspect of photonic convergence for polar and charged
species, finding comparable behavior between parameter-
ized and self-consistent approaches.

II. THEORY

We will discuss two complementary variational ap-
proaches to ai-QED that seek to find accurate eigen-
states of the Pauli-Fierz (PF) Hamiltonian52,53 repre-
sented in the length gauge and within the dipole and
Born-Oppenheimer approximations. Here we write down
the Pauli-Fierz Hamiltonian for a molecular system cou-
pled to a single photonic mode in atomic units as

ĤPF = Ĥe + ωb̂
†
b̂−

√︃
ω

2
d̂(b̂

†
+ b̂) +

1

2
d̂
2
. (1)

In Eq. 1, Ĥe is the standard electronic Hamiltonian

within the Born-Oppenheimer approximation54, ωb̂
†
b̂ is

the bare Hamiltonian for the photon mode where ω rep-

resents the frequency and b̂
†
and b̂ are raising and lower-

ing operators for the photon mode. The final two terms
capture interactions between the photonic and electronic
degrees of freedom. In these interaction terms, known as
the bilinear coupling and the quadratic dipole self energy,

d̂ = λ · µ̂ couples the field associated with the photon
mode to the molecular dipole operator55.

The formulation of several ai-QED methods (e.q.
QED-Hartree–Fock, QED-CC, QED-CASCI) has been
performed after transforming Eq. 1 to the coherent-state
basis36,42,44,56,

ĤCS = Ĥe+ωb̂
†
b̂−
√︃
ω

2
[d̂e−⟨d̂e⟩](b̂

†
+ b̂)+

1

2
[d̂e−⟨d̂e⟩]2.

(2)
This follows from a unitary transformation of the Pauli-
Fierz Hamiltonian,

ĤCS = ÛCSĤPFÛ
†
CS, (3)

where the Unitary coherent state transformation is de-
fined as

ÛCS = exp
(︂
z(b̂

†
− b̂)

)︂
. (4)

The parameter z may be computed as

z =
−⟨d̂⟩√
2ω

. (5)

Often, ⟨d̂⟩ is computed for a given electronic reference
state in, for example, the QED-HF reference in scQED
formulations.35,36 Here we will also investigate the CS
transformation of the projected Pauli-Fierz Hamiltonian

for a pQED formulation, where ⟨d̂⟩ will be computed in
the adiabatic many-electron basis. We note that within

the Born-Oppenheimer approximation, the nuclear con-

tribution in ⟨d̂⟩ exactly cancels with the nuclear contri-

bution to d̂, hence we write Eq. 2 with d̂e and ⟨d̂e⟩ to
denote only the electronic contribution to both terms.

We can approach the variational solution to Eq. 1 or
Eq. 2 in two complementary ways. The approach denoted
pQED will first find the adiabatic eigenstates that define
Ĥe|ψα(R)⟩ = Eα(R)|ψα(R)⟩ using standard quantum
chemistry tools, where R denotes the coordinates of the
nuclei which are fixed within the Born-Oppenheimer ap-
proximation. In a subsequent step, one builds a Hamil-
tonian matrix from Eq. 1 or Eq. 2 in the basis of direct
products between these adiabatic eigenstates and pho-
tonic Fock states. The approach denoted scQED will
seek the eigenstates of Eq. 1 or Eq. 2 directly in a prod-
uct basis of many-electron states (Slater determinants in
this work) and photonic Fock states.

Both approaches can reach an exact limit. For pQED,
the exact limit can be achieved when one builds Eq. 1
or 2 in the complete basis of exact adiabatic eigenstates
and photonic Fock states. Of course, it is practically
impossible to reach this limit for most molecular sys-
tems, so a practical variational approach will consider
building the pQED Hamiltonian in a truncated basis of
many-electron states. In practice, this basis of adiabatic
eigenstates is not only incomplete, but the states them-
selves are inexact because they results from an approx-
imate quantum chemistry method. The approximations
inherent in practical quantum chemistry calculations in-
clude truncation of the single-particle basis (e.g. using a
finite number of Gaussian-type orbital basis functions),
and truncation of the many-electron space through, for
example, truncation of the excitation rank in a config-
uration interaction (CI) ansatz. The exact limit of the
scQED approach includes a complete single-particle basis
for the electronic subsystem, a complete many-electron
basis (through, e.g., a FCI ansatz that includes all excited
electronic configurations, often represented as Slater de-
terminants or configuration state functions), and a com-
plete photonic Fock space, which is also not practical in
general. Our goal in this current paper is to study the
convergence properties of both methods towards their ex-
act limits, and to point out quantitative differences that
arise outside of the complete basis limit.

1. pQED

In the pQED approach, we can build Eq. 1 or 2 in
a product basis of adiabatic electronic states |ψα⟩ and
photonic Fock states |n⟩ corresponding to n photons in
the cavity mode, such that the coupled eigenstates can be
expressed as linear combinations of these product basis
states:

|Ψep⟩ =
∑︂
n

∑︂
α

Cα,n|ψα⟩ ⊗ |n⟩. (6)

https://doi.org/10.26434/chemrxiv-2024-4xc02-v3 ORCID: https://orcid.org/0000-0001-8814-4444 Content not peer-reviewed by ChemRxiv. License: CC BY 4.0

https://doi.org/10.26434/chemrxiv-2024-4xc02-v3
https://orcid.org/0000-0001-8814-4444
https://creativecommons.org/licenses/by/4.0/


3

Here, the dependence of the adiabatic many-electron
states on the nuclear coordinate R is implied. We briefly
review the expressions that arise in the pQED approach
leading to a matrix representation of Eq. 1 in a truncated
basis of adiabatic electronic states; the salient differences
that arise in the matrix form of Eq. 2 are pointed out at
the end of this development.

We define the following projection operator,

P̂ =

N∑︂
α

|ψα⟩⟨ψα|, (7)

that defines the truncation of the full electronic Hilbert
space. We can also define the complementary projector
Q̂ such that these two operators obey

1̂ = P̂ + Q̂, (8)

where the resolution of the identity is satisfied by the
complete electronic Hilbert space. Following the discus-
sion by Huo and co-workers, we can think of the trun-
cated version of Eq. 1 as arising from transformation
with a projected Power-Zienau-Woolley (PZW) operator
from the minimal coupling Hamiltonian57. The projected
PZW operator has the form

UPZW = e−
i
ℏ P̂µ̂P̂·Â, (9)

where P̂µ̂P̂ denotes the matter dipole operator projected
onto the electronic subspace, and Â is the vector poten-
tial operator, which only acts on the photonic subspace
and is not projected. From this perspective, we can write
the projected Hamiltonian as follows:

HPF = He +Hcav +Hblc +Hdse, (10)

where the caligraphic operators denote they have been
projected into a subspace defined by P̂; that is, H =
P̂ĤP̂. It is important to note that the projector only
acts on matter operators, so we need only consider the
impact of truncation on Ĥe, Ĥblc, and Ĥdse. The pro-
jected molecular electronic Hamiltonian has the form

P̂ĤeP̂ =
∑︂
α

Eα|ψα⟩⟨ψα| (11)

where Eα = Eα(R) are the energy eigenvalues of the adi-
abatic eigenstates noted in Eq. 6. The bilinear coupling
terms has the form

P̂ĤblcP̂ = −
√︃
ω

2
P̂ d̂P̂

(︂
b̂
†
+ b̂
)︂

= −
√︃
ω

2

∑︂
αβ

dαβ |ψα⟩⟨ψβ |
(︂
b̂
†
+ b̂
)︂
, (12)

where dαβ = ⟨ψα|d̂|ψβ⟩ results from dotting the coupling
vector into the transition dipole moment between adia-
batic states α and β or the total dipole moment of state
α when α = β; this quantity also depends explicitly on
the nuclear coordinates, but we are suppressing the de-
pendence on R in our notation for simplicity. The transi-
tion dipole moments are purely electronic, while the total
dipole moments have both an electronic and nuclear con-
tribution. Finally, the dipole self energy has the form

P̂ĤdseP̂ =
1

2
P̂ d̂P̂P̂ d̂P̂

=
1

2

∑︂
αβγ

dαγdγβ |ψα⟩⟨ψβ |. (13)

If we build a matrix from the projected Pauli-Fierz
matrix (here denoted HPF) in the basis given in Eq. 6,
we have the general structure

HPF =

⎡⎢⎢⎢⎢⎢⎢⎢⎣

E+D d 0 . . . 0 0

d E+D+Ω
√
2d . . . 0 0

0
√
2d E+D+ 2Ω . . . 0 0

...
...

...
. . .

...
...

0 0 0 . . . E+D+ (N − 1)Ω
√
Nd

0 0 0 . . .
√
Nd E+D+NΩ

⎤⎥⎥⎥⎥⎥⎥⎥⎦
. (14)

Here the elements of E are given by

Eαn,βm = ⟨n|⟨ψα|He|ψβ⟩|m⟩
= Eαδαβδnm, (15)

the elements of D are

Dαn,βm = ⟨n|⟨ψα|Hdse|ψβ⟩|m⟩

=
1

2

∑︂
γ

dαγdγβδnm, (16)
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the elements of d are

dαn,βm = ⟨n|⟨ψα|Hblc|ψβ⟩|m⟩

= −
√︃
ω

2
dαβηnm (17)

where ηnm =
√
m+ 1δn,m+1 +

√
mδn,m−1. The elements

of Ω are

Ωαn,βm = ⟨n|⟨ψα|Hcav|ψβ⟩|m⟩
= mωδαβ . (18)

The structure of the matrix in Eq. 14 reflects the Kro-
necker delta functions that appear in the respective block
equations. The structure of the matrix of the projected
version of Eq. 2 is comparable to that in Eq. 14 with
the only substantive difference being that the matrix el-

ements of P̂ d̂P̂ are offset by ⟨d̂⟩, i.e. dαβ − ⟨d̂⟩δαβ . We

have a choice in what state to compute ⟨d̂⟩, and in this
work, we choose the ground state of the uncoupled sys-
tem unless otherwise specified.

A. scQED

In the self-consistent approach, one adapts their quan-
tum chemistry method to directly include the terms be-

yond Ĥe in Eq. 1 or Eq. 2. In this approach, we begin
with the exact matter operators, which will be denoted
in ordinary font, not caligraphic font like the projected
matter operators in the previous subsection.

A variational scQED approach can be formulated
based on the following configuration interaction ansatz
for the mixed electronic-photonic eigenstates:

|Ψep⟩ =
∑︂
n

∑︂
I

CI,n|ΦI⟩ ⊗ |n⟩, (19)

where |ΦI⟩ represents an electronic Slater determinant,
|n⟩ is a photon-number state, and CI,n is an expansion
coefficient44. Then, a variational scQED approach can
be formulated as a matrix diagonalization problem where
Eq. 1 or Eq. 2 is built in the basis of product states in
Eq. 19. The matrix representation of Eq. 1 (here denoted
HPF−CI) has a similar structure as Eq. 14:

HPF−CI =

⎡⎢⎢⎢⎢⎢⎢⎢⎣

A+∆ G 0 . . . 0 0

G A+∆+Ω
√
2G . . . 0 0

0
√
2G A+∆+ 2Ω . . . 0 0

...
...

...
. . .

...
...

0 0 0 . . . A+∆+ (N − 1)Ω
√
NG

0 0 0 . . .
√
NG A+∆+NΩ

⎤⎥⎥⎥⎥⎥⎥⎥⎦
. (20)

The elements of A are

AIn,Jm = ⟨n|⟨Φe
I |Ĥe|Φe

J⟩|m⟩
= ⟨Φe

I |Ĥe|Φe
J⟩δnm. (21)

The elements of ∆ are

∆In,Jm =
1

2
⟨n|⟨Φe

I |d̂
2
|Φe

J⟩|m⟩

=
1

2

(︂
⟨Φe

I |dê
2
|Φe

J⟩+ 2dn⟨Φe
I |dê|Φe

J⟩+ d2nδIJ

)︂
δnm,

(22)

where dê denotes the electronic contribution to d̂ and dn
denotes the nuclear contribution. The matrix elements

of G are

GIn,Jm = −
√︃
ω

2
⟨n|⟨Φe

I | d̂ (b̂
†
+ b̂)|Φe

J⟩|m⟩

= −
√︃
ω

2
⟨Φe

I |d̂|Φe
J⟩ηnm. (23)

Finally, the elements of Ω are given by

ΩIn,Jm = ⟨nP|⟨Φe
I |ωb̂

†
b̂|Φe

J⟩|mp⟩ = mωδIJδnm. (24)

More explicit expressions for these matrix elements, as
well as those for the elements corresponding to Eq. 2,
can be found in Ref. 44.
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B. Dipole Self Energy in pCQED vs scQED

A key difference between practical implementations of
pQED and scQED resides in the treatment of the dipole
self energy, specifically arising from the product of elec-

tronic operators in dê
2
.

In the scQED approach, we are not starting with any
specific state truncation in mind, and so our scQED
Hamiltonian is written in terms of exact electronic op-

erators. In first quantization, we can expand dê
2
as

dê
2
=
∑︂
i̸=j

de(i) de(j) +
∑︂
i

[de(i)]
2. (25)

where i and j represent different electronic coordinates;
hence we see that the dipole self energy operator con-
tains both a one-electron contribution and a two-electron
contribution. The one-electron contribution can be rec-
ognized as the negative of the quadrupole operator mul-
tiplied by coupling vector components. A practical sc-
QED approach will depend on introducing an orbital ba-
sis (e.g. an orthonormal spin orbital basis). In this case,
we can write the the right-hand side of Eq. 25 in second-
quantized notation as

dê
2

=
∑︂
pqrs

dpqdrsâ
†
pâ

†
râsâq −

∑︂
pq

Qpqâ
†
pâq. (26)

where â† and â represent fermionic creation and annihi-
lation operators, respectively. The symbols dpq and Qpq

represent modified electric dipole and electric quadrupole
integrals44. We can see that this form of the dipole self
energy operator employed in the scQED approach main-
tains the exact structure to within the discretization error
introduced by a finite orbital basis.

Let us turn to the projected dipole self energy operator
that arises in pQED, which as we saw in Eq. 13, contains
a product of projected modified dipole operators:

P̂dêP̂P̂dêP̂

=
∑︂
αγδβ

|ψα⟩⟨ψα|dê|ψγ⟩⟨ψγ |ψδ⟩⟨ψδ|dê|ψβ⟩⟨ψβ |

=
∑︂
αγβ

|ψα⟩⟨ψα|dê|ψγ⟩⟨ψγ |dê|ψβ⟩⟨ψβ |

=
∑︂
αγβ

dαγdγβ |ψα⟩⟨ψβ |. (27)

Notably, the projected dipole self energy is missing the
quadrupole terms that are present in the exact dipole self
energy operator. Thus, in addition to the discretization
error that arises from a finite orbital basis, the exact
structure of the dipole self energy is lost upon projec-
tion onto an incomplete electronic subspace. We will see
that this generally leads to a different variational prob-
lem whereby the pQED energies can converge to different
solutions than the scQED approach.

We now show that this difference resolves itself in
the limit of a complete orbital and many-electron ba-
sis. First, we will show that the quadrupole term in the
exact dipole self energy operator vanishes in the limit
of a complete orbital basis. As a first step, we utilize
the anticommutation relations in the two-electron part
of Eq. 26:∑︂

pqrs

dpqdrsâ
†
pâ

†
râsâq

= −
∑︂
pqrs

dpqdrsâ
†
p[δqr − âqâ

†
r]âs

=
∑︂
pq

dpqâ
†
pâq

∑︂
rs

drsâ
†
râs −

∑︂
pqr

dprdrqâ
†
pâq. (28)

We can now substitute the last line of Eq. 28 into Eq. 26:

dê
2
=
∑︂
pq

dpqâ
†
pâq

∑︂
rs

drsâ
†
râs

−
∑︂
pq

(︄∑︂
r

dprdrq +Qpq

)︄
â†pâq (29)

As a second step, we can insert a resolution of the identity
into

∑︁
r dprdrq when the orbital basis is complete, which

gives

∞∑︂
r

dprdrq = −Qpq, (30)

which means that when the orbital basis is complete, the
quadrupole contribution to the dipole self energy van-
ishes, and we have

d̂
2

e =
∑︂
pq

dpqâ
†
pâq

∑︂
rs

drsâ
†
râs. (31)

Finally, we note that in the pQED approach, when the
dipole self energy is projected onto an incomplete elec-

tronic subspace, the product of d̂ operators is replaced
by product of matrix elements of those operators. How-
ever, in the limit that the electronic subspace is complete,
we have P̂ = 1̂ and we resolve the projected dipole self

energy into a product of d̂ operators:

P̂dêP̂P̂dêP̂ = dêdê. (32)

Thus we conclude that the exact and projected dipole self
energy operators agree in the limit that both the com-
plete orbital and many-electron basis limits have been
reached.

III. COMPUTATIONAL DETAILS

The selection of model systems for comparing the
convergence behavior of pQED and scQED approaches
includes a 2-electron system (helium hydride cation,
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HeH+), a 4 electron system (lithium hydride, LiH) that
is neutral but polar, and a 10 electron system (hydroxide
anion, OH−); for all cases we consider closed-shell singlet
states. We represent the HeH+ systems in the cc-pVXZ58

basis sets with X ∈ D,T,Q to systematically approach
the complete orbital basis limit, we represent LiH in a
6-311G basis set59, and OH− in a 6-31G basis set. We
perform all calculations, including computing the adia-
batic many electron states and dipole matrix elements for
pQED calculations, and the scQED calculations, utlizing
the qed-ci package developed by the authors60 which ob-
tains electron integrals through the psi4numpy interface
with the psi4 quantum chemistry package61,62.
A glossary of abbreviations and terms used to discuss

the results is provided in Table I below.

pQED General approach where Eq. 1 or 2
are built in a product basis of adi-
abatic electronic states and photonic
Fock states

scQED General approach where Eq. 1 or
2 are built in a product basis of
Slater determinants and photonic
Fock states

pPF(Nel, Np) Projection of Eq. 1 onto a basis of Nel

adiabatic many electron states andNp

photonic Fock states
PF-FCI-Np Self-consistent variational solution to

Eq. 1 in a product basis of all excited
Slater determinants and Np photonic
Fock states

pCS(Nel, Np) Projection of Eq. 2 onto a basis of Nel

adiabatic many electron states andNp

photonic Fock states
CS-FCI-Np Self-consistent variational solution to

Eq. 2 in a product basis of all excited
Slater determinants and Np photonic
Fock states

pRabi(Nel, Np) Projection of Eq. 1 without the dipole
self energy term onto a basis of Nel

adiabatic many electron states andNp

photonic Fock states
Rabi-FCI-Np Self-consistent variational solution to

Eq. 2 without the dipole self energy
in a product basis of all excited Slater
determinants and Np photonic Fock
states

TABLE I. Glossary of acronyms used to describe different
methodologies used in this work.

IV. RESULTS

A. Helium Hydride ion (HeH+)

HeH+ is a 2-electron system as shown in Figure 1
that has a permanent ground-state dipole moment and
a dipole-allowed optical transition (S0 → S2 with tran-
sition energy of 26.1 eV), which will permit us to study

FIG. 1. Schematic of the HeH+ coupled to a cavity mode
polarized along the internuclear axis (z) and tuned to the first
optically allowed transition from S0 → S2 at approximately
26 eV.

the behavior of the dipole self-energy on the ground and
polariton states using scQED and pQED approaches as
we approach the complete basis limit. We optimize the
geometry of this system at the FCI/cc-pVTZ level; at
this level, the equilibrium bond length is approximately
0.776 Angstroms and the dipole moment has a magni-
tude of 1.73 Debye along the internuclear axis. We study
the ground state and polariton states at the PF-FCI and
pPF levels using cc-pVXZ basis sets, where X is D, T,
and Q, to progress towards the complete orbital basis
limit.

We first report the absolute energy error of the
pPF(Nel,10) relative to PF-FCI-10 for each basis set,
where Nel is the number of many-electron basis states
used to parameterize the pPF Hamiltonian (see Figure 2).
We find Np = 10 is more than sufficient to converge the
photonic Fock space, and so PF-FCI-10 provides the ex-
act energies for this system in a given orbital basis. We
see that the energy error decreases as we increase Nel in a
given orbital basis, and also decreases with increasing size
of the orbital basis. The energy error of pPF(Nel,10)/cc-
pVDZ converges to ∼10 microHartrees in the limit that
all of the FCI states are used to parameterize the Hamil-
tonian, while the energy error of pPF(Nel,10)/cc-pVQZ
converges to 0.1 microHartrees in the comparable limit
(see Figure 2). These results are consistent with the argu-
ment that the projected dipole self approaches the exact
dipole self-energy in the limit that both the orbital and
many-electron basis are complete. We also note that t
he fraction of electronic states needed for energy conver-
gence increases from around 50 percent in cc-pVDZ to
80 percent in cc-pVQZ.

Similarly, In Figure 3, the curves represent the abso-
lute energy error vs coupling strength of the pPF(Nel,10)
ground-states in each basis set, where we have fixed Nel

at the value where we observed the energy converge in
Figure 2. All methods show errors of less than a mi-
croHartree for coupling strengths smaller than ∼0.01
atomic units but show increasing errors as the coupling
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FIG. 2. Absolute error of pPF(N,10) relative to PF-FCI-10
computed within the cc-pVDZ, cc-pVTZ, and cc-pVQZ basis
sets, where we plot this error as a function of the percentage of
the FCI electronic states used to parameterize the pPF(N,10)
method. The photon frequency in each case is tuned to the
S0 → S2 transition, and λz is fixed at 0.02 atomic units.

strength increases. For pPF(2880,10)/cc-pVQZ, we see
microHartree error with the largest coupling strength
(λz = 0.1), and we see ∼100 microHartree error for
pPF(60,10)/cc-pVDZ at this coupling strength. Be-
cause the dipole self-energy is quadratic in the coupling
strength, we expect to see that the disparity between
pQED and scQED will become more dramatic as the
coupling strength increases. The progression shown in
Figure 3 shows that differences between the exact and
projected dipole self-energy operators have not been fully
resolved even when using a cc-pVQZ orbital basis and
2880 many-electron states.

In Figures 4, 5, and 6, we show both ground state
and polariton excitation energies of the HeH+ system
computed in all three basis sets with the pPF and PF-
FCI approaches for varying values of coupling strength.
The ground state energies are plotted relative to the un-
coupled ground state, Eg(λ)−Eg(λ = 0). The excitation
energies are defined as the energy of a polariton state at
a given coupling strength minus the ground state energy
at the same coupling strength, Epol(λ) − Eg(λ). An in-
teresting feature of this study is that the pPF (ground
state and polariton) energies are consistently a lower
bound on the PF-FCI energies, and each approaches cor-
responding PF-FCI energy from below as we approach
the complete basis limit. We emphasize that because
the projected dipole self-energy is inexact outside of the
complete basis limit, pPF and PF-FCI approaches pro-
vide a variational approach for two distinct Hamiltoni-
ans, and so we cannot make any concrete arguments
about which should provide a lower bound in general.
We do observe in these cases, that pPF(60,10)/cc-pVDZ
ground-state and polariton energies are visibly lower than

FIG. 3. Absolute error of pPF(N,10) relative to PF-FCI-10
computed within the cc-pVDZ, cc-pVTZ, and cc-pVQZ basis
sets as a function of coupling strength. For each pPF(N,10)
result, we chooseN based on the smallest number of electronic
states for which the energy error was converged with λz =
0.02 atomic units.

the PF-FCI-10/cc-pVDZ energies (see Figure 4). While
the pPF(468,10)/cc-pVTZ and pPF(2880,10)/cc-pVQZ
also provide ground state and polariton energies below
their PF-FCI-10 counterparts, the difference is not visi-
bly discernible (see Figures 5 and 6). We also note that
progression of the Rabi splitting with increasing cou-
pling strength is very comparable between the pPF and
PF-FCI results for all basis sets. The pPF(60,10)/cc-
pVDZ result underestimates the Rabi splitting by about
17 meV (∼ 6 · 10−4 Hartrees) relative to PF-FCI-10/cc-
pVDZ, whereas the pPF(2880,10)/cc-pVQZ result under-
estimates the splitting by less than 5 meV (∼ 2 · 10−4

Hartrees) relative to PF-FCI-10/cc-pVQZ. We expect
that both methods should agree quite closely in the Rabi
splitting because this feature of the polariton states is
dominated by the bilinear coupling, and the projected
bilinear coupling remains the same form as it’s exact
counterpart. However, the systematic convergence of the
Rabi splitting with increasing basis set size is suggestive
of the fact that the dipole self energy can play a quan-
titative role in determining the energies of the polariton
states, and the error in the projected dipole self energy
does not exactly cancel when taking the difference be-
tween the polariton energies. We should also note that
the errors in the Rabi splitting could be sensitive to the
state truncation for the pPF methods that were chosen
based on the converngence of the ground state, not the
polariton states.

Now that we have shown how the disparity between
the pQED and scQED resolves in the complete basis set
limit, we can ask a pragmatic question of which requires
less computational effort to converge. For this compari-
son, we use the same direct CI algorithm for the scQED
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Rabi Splitting (eV) Error (meV)
Basis Set PF-FCI pPF

cc-pVDZ 2.922 2.905 -17.26
cc-pVTZ 3.033 3.026 -7.64
cc-pVQZ 3.041 3.037 -4.76

TABLE II. Comparison of Rabi splitting as predicted by PF-
FCI-10/cc-pVXZ and pPF(Nel, 10)/cc-pVXZ methods for
HHe+ when ℏω = 26 eV and λz = 0.1 atomic units. The error
reported in meV is defined as the Rabi splitting predicted by
the pPF approach minus the Rabi splitting predicted by the
PF-FCI approach.

FIG. 4. Relative energy of the ground-state and excita-
tion energies of polariton states of HHe+ as a function of
coupling strength computed at the PF-FCI-10/cc-pVDZ and
pPF(60,10)/cc-pVDZ levels.

energies as we do for for the Nel energies and dipole mo-
ments required for the pQED results. Although we are
typically only interested in a few low-energy eigenstates
of Eq. 1 or Eq. 2, as we saw in Figure 2, one often needs to
project the pPF Hamiltonian on many more states than
the number of eigenstates that are of interest when the
coupling is strong. Because the scQED approach solves
Eq. 1 or Eq. 2 directly in a coupled basis, we need only

FIG. 5. Relative energy of the ground-state and excita-
tion energies of polariton states of HHe+ as a function of
coupling strength computed at the PF-FCI-10/cc-pVTZ and
pPF(468,10)/cc-pVTZ levels

solve for the number of roots of interest. The germane
question is then how does the effort of solving for the
Nel adiabatic states required for the lowest Nep coupled
states from pQED compare to directly solving for the
lowest coupled Nep states from scQED.

In Table III, we report the timings to solve for Nep =
10 coupled states of HeH+ under the same conditions as
in Figure 2 using PF-FCI-10/cc-pVXZ compared to the
time required to solve for Nel = 40, 312, and 1296 states
at the FCI/cc-pVDZ, FCI/cc-pVTZ, and FCI/cc-pVQZ
levels. We choose these Nel as 40% of the total roots of
the FCI matrix at each basis set, which is approaching
the upper limit of what can be performed with our direct
CI approach. We note that for the study in Figure 2, we
performed full diagonalization of each FCI matrix, not
direct CI; this is because the iterative eigensolver used in
the direct CI approach generally becomes unsuitable for
finding 50% or more of the total eigenvalues of a given
matrix. We see that in the cc-pVDZ basis set, it is faster
to compute the lowest 40 roots of the FCI matrix than to
compute the lowest 10 coupled states. However, the time
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FIG. 6. Relative energy of the ground-state and excita-
tion energies of polariton states of HHe+ as a function of
coupling strength computed at the PF-FCI-10/cc-pVQZ and
pPF(2880,10)/cc-pVQZ levels

required for finding the FCI roots increases by roughly 2
orders of magnitude as we progress from cc-pVDZ to cc-
pVTZ and again to cc-pVQZ, whereas the time to solve
for the lowest 10 coupled PF-FCI roots increases by only
1 order of magnitude for the same progression. Thus, we
see it is approximately 10x faster to find the lowest 10
roots with PF-FCI-10/cc-pVTZ as compared to finding
312 FCI/cc-pVTZ roots, and it is approximately 100x
faster to find the lowest 10 roots with PF-FCI-10/cc-
pVQZ than to find the lowest 1296 FCI/cc-pVQZ roots.
This scaling is suggestive that it will generally be more
computationally facile to directly solve for a small num-
ber coupled states in a scQED approach than to solve for
a large number of uncoupled states to perform subsequent
pQED calculations for the same system size. However, as
is implied by Fig 3, state truncation does not yield a sig-
nificant error when the coupling is relatively small, and
so there may be many practical cases of moderate cou-
pling when pQED can be more computationally facile.

PF-FCI pPF
Basis Set Np tconvergence (s) Nel tconvergence

cc-pVDZ 10 3.4 · 10−2 40 2.4 · 10−2

cc-pVTZ 10 4.2 · 10−1 312 3.5 · 100
cc-pVQZ 10 9.2 · 100 1296 4.0 · 102

TABLE III. Comparison of the time to converge the Davidson
iterations for the coupled electronic-photonic roots of the PF-
FCI method and the FCI electronic roots of the pPF method
for cc-pVDZ, cc-pVTZ, and cc-pVQZ basis sets. For each
pPF case, we converge Nel roots chosen to be 40% of the
total number of FCI states in that basis. For each PF-FCI
case, we solve for the lowest 10 coupled roots with Np = 10
photonic Fock states.

FIG. 7. Schematic of the LiH coupled to a cavity mode po-
larized along the internuclear axis (z) and tuned to the first
optically allowed transition from S0 → S1 at approximately
3.29 eV.

B. Lithium hydride (LiH)

The LiH molecule provides a 4-electron system that has
a permanent ground-state dipole moment and a dipole-
allowed optical transition (S0 → S1 with transition en-
ergy of 3.29 eV) refer Figure 7. Although we can no
longer afford to perform full diagonalization to obtain
all FCI many-electron states for the cc-pVXZ series, we
can perform FCI (and QED-FCI) in a split-valence triple
zeta basis set (6-311G) and obtain hundreds of many-
electron states. We will use this system to illustrate the
behavior of the pQED and scQED methods in incom-
plete orbital and many-electron basis limits under strong
coupling with λ = (0, 0, 0.05) atomic units.
We first compute the ground state potential energy

scan of Li at the pPF(500,2)/6-311G, pPF(500,10)/6-
311G, where the latter is fully converged with respect
to the size of the electronic and photonic spaces. While
we again see that the pPF(500,10)/6-311G energies are
a lower bound to the PF-FCI-10/6-311G energies, we
see that the pPF(500,2)/6-311G energies are an up-
per bound to the pPF-FCI-10/6-311G energies (see Fig-
ure 8). This suggests that the photonic Fock space
is incomplete in the latter case. In prior work on sc-
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FIG. 8. The ground-state potential energy scan of LiH
coupled to a cavity mode with λ = (0, 0, 0.05) a.u. and
(ℏω = 3.29eV at the pPF(500,2)/6-311G, pPF(500,10)/6-
311G, and PF-FCI-10/6-311G levels.

FIG. 9. The ground-state potential energy scan of LiH
coupled to a cavity mode with λ = (0, 0, 0.05) a.u. and
(ℏω = 3.29eV at the pPF(500,10)/6-311G, pCS(500,2)/6-
311G, and PF-FCI-10/6-311G levels.

QED approaches, we showed that scQED approaches
based on Eq. 2 lead to faster convergence of the pho-
tonic Fock space. In Figure 9 we consider the same po-
tential energy scan and compare the pCS(500,2)/6-311G
and pPF(500,10)/6-311G levels to pPF-FCI-10/6-311G.
In this case, we see that the pCS(500,2)/6-311G ener-
gies are indistinguishable from the pPF(500,10)/6-311G
energies, suggesting that the same convergence of the
photonic Fock space can be realized from the coherent
state transformation in pQED approaches as has been
observed in scQED approaches.

Finally, we perform the same scan with pQED and sc-

FIG. 10. The ground-state potential energy scan of LiH
coupled to a cavity mode with λ = (0, 0, 0.05) a.u. and
ℏω = 3.29eV at the pRabi(500,2)/6-311G, pRabi(500,10)/6-
311G, and Rabi-FCI-10/6-311G levels.

QED approaches that neglect the dipole self-energy op-
erator altogether, which we term pRabi and Rabi-FCI
approaches, respectively, to denote the analogy to the
Rabi Hamiltonian. In these approaches, the only cou-
pling between the electronic and photonic degrees of free-
dom arises through the bilinear coupling term. We com-
pute the coupled LiH scan at the pRabi(500,2)/6-311G,
pRabi(500,10)/6-311G, and Rabi-FCI-10/6-311G levels.
Here we see that the the pRabi(500,2) results are an
upper bound to both the pRabi(500,10) and Rabi-FCI-
10 results, which again suggests an incomplete photonic
Fock space. However, unlike the pPF and PF-FCI results
we have examined so far, the pRabi and Rabi-FCI results
are indistinguishable in the limit of a complete photonic
Fock space. This is consistent with the proposition that
the projected bilinear coupling operator agrees with the
exact counterpart in a given orbital basis as long as it is
projected onto a complete many-electron subspace.

C. Hydroxide ion (OH−)

The OH− anion is a charged model system repre-
sented within the 6-31G basis set with a bond length
of 0.9 Angstroms coupled to a photon with frequency
ℏωcav = 5.96 eV (0.219 Hartrees) polarized along the z-
axis with λz = 0.05 atomic units. We note that this field
does not couple directly to a transition in the molecule;
while there is a dipole allowed transition at 5.96 eV,
in this coordinate system, it does not have a transition
dipole moment along the polarization axis of the field.
Therefore, the coupling occurs through the permanent
dipole moment of the molecule. The number of elec-
tronic states used for pCS and pPF calculations are Nel

= 50 and we consider this molecule both with its center
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FIG. 11. Schematic of the OH− displaced from the cavity
origin. The cavity mode has energy of ℏω = 5.96 eV with
λz = 0.05 atomic units, polarized along the internuclear axis
of the molecule.

of mass located at the cavity origin and displaced by 20
Å from the cavity origin along the z axis, which aligns
with the permanent dipole moment and the polarization
axis of the field (see Figure 11). Charged molecules have
origin dependent dipoles44,63 and this property can leads
to numerical difficulties wherein PF-FCI can show origin-
dependent energies when the photonic Fock space is in-
complete. Our motivation is to examine the behavior
of the pPF and PF-FCI methods with systematically in-
creasing photonic Fock spaces, and also to investigate if
the pCS method is fully origin invariant just like the CS-
FCI method. In Figure 12, we show the origin-dependent
energy error for different levels of photonic Fock space
truncation using PF-FCI-Np, pPF(50,Np), CS-FCI-Np

and pCS(50,Np) methods all in the 6-31G basis set. In
particular, we define the origin dependent error as the
ground state energy of the displaced system minus the
ground state energy of the system at the origin for the
same level of truncation. We observe that both PF-FCI
and pPF approaches show a remarkably similar origin de-
pendence that converges at the same rate as the photonic
Fock space is increased (see Figure. 12). Furthermore, we
observe that the pCS and CS-FCI methods are robustly
origin invariant (see Figure 12).

V. CONCLUDING REMARKS

In this work, we have provided a theoretical and nu-
merical comparison of two complementary approaches
to ai-QED: (1) parameterized CQED (pQED), a two-
step approach where the matter degrees of freedom are
computed using existing electronic structure theories, en-
abling one to build rigorous ai-QED Hamiltonians in a
basis of many-electron eigenstates, and (2) self-consistent
CQED (scQED), a one-step approach where electronic
structure methods are generalized to include coupling be-
tween electrons and photon degrees of freedom. Using
simple theoretical arguments, we have identified a dis-
parity between the projection of the two-body dipole self
energy operator that appears in the pQED approach and

FIG. 12. Origin dependent energy error of different ap-
proaches to computing the OH− ground state coupled to a
cavity mode with λ = (0, 0, 0.05) a.u. and ℏω = 5.96 eV
where the ions center of mass is displaced by 20 Å from the
cavity origin.

its exact operator counterpart in the scQED approach.
We provided a simple theoretical argument that this dis-
parity resolves only under the limit of a complete orbital
basis and in the limit of a complete many-electron basis
for the projection. We provided numerical results high-
lighting this disparity and its resolution on simple molec-
ular systems where it is possible to approach these two
complete basis limits simultaneously. We also examined
and compared the practical issue of computational cost to
converge each approach towards the complete orbital and
many-electron basis, suggesting that in for light-matter
coupling strengths that require a large number of elec-
tronic states to converge pQED approaches, directly solv-
ing for coupled states in scQED approaches will likely be
more computationally efficacious. We also examined sev-
eral situations that highlight that pQED and scQED can
show remarkably similar convergence behavior with re-
spect to the photonic Fock space. These findings should
prove extremely useful context for the further develop-
ment and selection of both approaches to strong light-
matter coupling.
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33R. Jestädt, M. Ruggenthaler, M. J. T. Oliveira, A. Rubio,
and H. Appel, “Light-matter interactions within the ehren-
fest–maxwell–pauli–kohn–sham framework: fundamentals, im-
plementation, and nano-optical applications,” Advances in
Physics 68, 225–333 (2019).

34J. Flick and P. Narang, “Ab initio polaritonic potential-energy
surfaces for excited-state nanophotonics and polaritonic chem-
istry,” J. Chem. Phys. 153, 094116 (2020).

35J. McTague and J. J. Foley IV, “Non-hermitian cavity quan-
tum electrodynamics–configuration interaction singles approach
for polaritonic structure with ab initio molecular hamiltonians,”
J. Chem. Phys. 156, 154103 (2022).

36T. S. Haugland, E. Ronca, E. F. Kjønstad, A. Rubio, and
H. Koch, “Coupled cluster theory for molecular polaritons:
Changing ground and excited states,” Phys. Rev. X 10, 041043
(2020).

37U. Mordovina, C. Bungey, H. Appel, P. J. Knowles, A. Rubio,
and F. R. Manby, “Polaritonic coupled-cluster theory,” Physical
Reviews Research 2, 023262 (2020).

38J. Yang, Q. Ou, Z. Pei, H. Wang, B. Weng, Z. Shuai, K. Mullen,
and Y. Shao, “Quantum-electrodynamical time-dependent den-
sity functional theory within gaussian atomic basis,” J. Chem.
Phys. 155, 064107 (2021).

39J. Yang, Z. Pei, E. C. Leon, C. Wickizer, B. Weng, Y. Mao,
Q. Ou, and Y. Shao, “Cavity quantum-electrodynamical time-
dependent density functional theory within Gaussian atomic ba-
sis. II. Analytic energy gradient,” J. Chem. Phys. 156, 124104
(2022).

40M. L. Vidal, F. R. Manby, and P. J. Knowles, “Po-
laritonic effects in the vibronic spectrum of molecules
in an optical cavity,” The Journal of Chemical Physics
156, 204119 (2022), https://pubs.aip.org/aip/jcp/article-
pdf/doi/10.1063/5.0089412/18289379/204119 1 5.0089412.pdf.

41N. Vu, G. M. McLeod, K. Hanson, and A. E. I. DePrince, “En-
hanced diastereocontrol via strong light–matter interactions in
an optical cavity,” J. Phys. Chem. A 126, 9303–9312 (2022).

42M. D. Liebenthal, N. Vu, and A. E. DePrince III, “Assessing the
effects of orbital relaxation and the coherent-state transforma-
tion in quantum electrodynamics density functional and coupled-
cluster theories,” J. Phys. Chem. A 127, 5264–5275 (2023).

43M. Bauer and A. Dreuw, “Perturbation theoretical approaches
to strong light–matter coupling in ground and excited electronic
states for the description of molecular polaritons,” J. Chem.
Phys. 158, 124128 (2023), https://pubs.aip.org/aip/jcp/article-
pdf/doi/10.1063/5.0142403/16794111/124128 1 online.pdf.

44N. Vu, D. Mejia-Rodriguez, N. P. Bauman, A. Panyala, E. Mutlu,
N. Govind, and J. J. I. Foley, “Cavity quantum electrodynam-
ics complete active space configuration interaction theory,” Jour-
nal of Chemical Theory and Computation 20, 1214–1227 (2024),
pMID: 38291561, https://doi.org/10.1021/acs.jctc.3c01207.

45B. M. Weight, S. Tretiak, and Y. Zhang, “Diffusion quantum
monte carlo approach to the polaritonic ground state,” Phys.
Rev. A 109, 032804 (2024).

46Z.-H. Cui, A. Mandal, and D. R. Reichman, “Variational
lang–firsov approach plus møller–plesset perturbation theory
with applications to ab initio polariton chemistry,” J. Chem. The-
ory Comput. 20, 1143 (2024).

47Y. E. Moutaoukal, R. R. Riso, M. Castagnola, and H. Koch, “To-
wards polaritonic molecular orbitals for large molecular systems,”
(2024), arXiv:2406.15052 [physics.chem-ph].
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