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Abstract 
 

Optical sensors/probes are powerful tools to identify and image (biological) molecules. Because of their 

optoelectronic properties, nanomaterials are often used as building blocks. Such nanosensors are 

assembled from an optically sensitive nanomaterial, a (biological) recognition unit, and linker chemistry that 

connects them. To transduce the chemical interaction with the analyte into an optical signal, the interplay 

between surface chemistry and nanomaterial photophysics has to be optimized. Understanding these 

aspects promises major opportunities for tailored sensors with optimal performance. However, this requires 

methods to create and explore the wide range of possible chemical permutations. Indeed, many current 

approaches are limited in throughput. This affects the chemical design space that can be studied, the 

application of machine learning approaches as well as fundamental mechanistic understanding. Here, we 

provide an overview of selection-limited and synthesis-limited approaches to create and identify molecular 

nanosensors. We discuss bottlenecks and highlight opportunities of non-classical recognition strategies 

such as corona phase molecular recognition as well as the requirements for high throughput and scalability. 

Fluorescent carbon nanotubes are powerful building blocks for sensors and their huge chemical design 

space makes them an ideal platform for high throughput approaches. Therefore, they are the focus of this 

article, but the insights are transferable to any nanosensor system. Overall, this perspective aims to provide 

a fresh perspective to overcome current challenges in the nanosensor field. 
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Introduction 
To feed the predicted world population of 9.7 billion people in 2050, it is required to raise the food production 

by ≈ 40 % between 2012 and 2050.[1] To address this challenge, novel technologies such as remote 

monitoring of plant health is required.[2–4] Moreover, the SARS CoV-2 pandemic demonstrated that we need 

rapidly adaptable sensing technologies to contain the spread of infectious diseases.[5] Nanomaterial-based 

sensors are uniquely suited for such applications because nanomaterials possess tunable optoelectronic 

properties.[6] Additionally, they can be chemically tailored for sensing by modifying them with (biological) 

recognition units.[7–9]  

 

During the last few years, the field of nanosensors has seen tremendous progress and many novel 

functionalization techniques have been developed.[7,10] While the large chemical space provides room for 

explorative work and optimization, it is challenging to sample it efficiently. In this context, rational 

approaches provide one mean for efficient functionalization.[11] On the other side, high throughput 

approaches promise potential for analytes that are difficult to address with traditional recognition units such 

as antibodies e.g. to detect small molecules. 

 

In this article, we provide our perspective on optical nanosensor design and the challenges to efficiently 

create sensors with a desired performance. This is, in our opinion, the central challenge because it 

determines how far sensors can be optimized, how deep our understanding of molecular recognition goes, 

and whether machine learning methods can be efficiently applied.[10]  

 

One particularly well-suited class of nanomaterials are single-walled carbon nanotubes (SWCNTs). 

Semiconducting SWCNTs are one dimensional, photostable nanomaterials that fluoresce in the near-

infrared (NIR) tissue transparency region. This spectral range is highly interesting for applications in 

biological environments as background signals are reduced.[12–14] They can be functionalized 

covalently[15,16] or non-covalently.[7] Especially non-covalent approaches that form a novel organic corona 

phase present a straightforward design to achieve high throughput. This article therefore highlights 

SWCNT-based nanosensors, but the insights and general concepts are applicable to other nanosensor 

classes as well.  

 

In the first part of this perspective, we introduce how the different approaches, that are used to create 

nanosensors affect the scalability and develop categories for high throughput methods (synthesis-

limited/selection-limited). In Section 2, we discuss the main building blocks that are required for 

nanosensors and how they in turn affect the throughput. Section 3, provides examples that showcase 

progress in synthesis-limited approaches as well as open questions and challenges for the future. In this 

context, we also provide a detailed summary of corona phase molecular recognition approaches and 

discuss how selection-limited approaches can further increase throughput. Finally, we provide our 
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perspective on the use of computational methods and discuss how sensor integration can be used to further 

fine-tune sensors. 

 

 

1. Scalability of Nanosensor Engineering 
 

Optically active nanomaterials are versatile building blocks for sensing approaches. Typically, they possess 

a high photostability. As photobleaching can be excluded, these material enable testing of many conditions 

and become interesting for for high throughput approaches. To turn a material into a sensor, the surface is 

commonly modified to selectively interact with an analyte (Figure 1a, see also section 2). The optical 

properties as well as chemical tunability ask for large-scale sampling of the physical and chemical design 

space.[17] 

 

 
Figure 1: High throughput approaches to create nanosensors. (a) Nanosensors translate binding of analytes into 

optoelectronic changes. (b) In synthesis-limited approaches, a nanosensor library is assembled, analytes are added to 

the known nanosensors and the response is measured e.g. in a well-plate format (‘screening’). Typically, the limiting 

step is assembly/synthesis. (c) Selection-limited approaches isolate sensors with desirable signal change or binding 

behavior from a pool of sensor candidates prior to the identification of the nanosensor. In this process, the surface 

functionalization of a nanosensor can be selected from a large library or further modified via mutation. An iteration of 

this process leads to a selective enrichment of optimized sensors. Typically, the limiting step is selection/identification. 

In the simplest case, nanomaterials with different shapes, sizes, and/or compositions are separately 

modified with different surface modifications. Subsequently, different target analytes are added, and their 

optical response is monitored to select suitable combinations for further optimization (Figure 1b). Using 
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such a format, it is possible to understand molecular recognition of different hybrid nanomaterials and 

identify combinations that are not selective on their own but form through their interaction with selective 

binding pockets.[18–20] When available, it is possible to include rational design, chemical intuition, and 

computational predictions as guidelines for an efficient sampling. However, these principles can be difficult 

to apply for nanomaterials as the combinations are limitless and the interactions on the surface of a material 

can be complex. For example, SWCNT-based sensors are often modified with single stranded DNA. A 

typical 30 base long oligo nucleotide allows 430 different permutations. When confined to a nanomaterial, 

DNA behaves significantly different and forms hydrogen bonds that would be not typical in solution.[21,22] 

Moreover, there are multiple oligonucleotides on a single SWCNT e.g. ≈ 265 (GT)15-oligonucleotides,[23] 

which further increases the number of possible permutations to (430)265. A small panel of such sensors with 

different interfaces (corona phases) can be synthesized and tested against a panel of different analytes. 

Most often, the bottleneck of such a high throughput approach is sensor preparation/assembly. Therefore, 

we propose to call this type of strategy a synthesis-limited high throughput approach as the rate-limiting 

step is a synthesis of different sensors (Figure 2). 

 

 
Figure 2: Design space and analyte numbers of SWCNT-based sensors using synthesis-limited approaches. 

In the corona phase molecular recognition (CoPhMoRe) approach, sensors with chemically distinct corona phases are 

screened against analytes and interfering molecules. So far, the approach is limited by the preparation of sensors with 

different surface chemistries. It represents a synthesis-limited high throughput approach. Here, numbers from published 

papers using this approach are shown (summarized in Table 1). 

To circumvent the challenges of rational design, researchers drew inspiration from bioengineering 

approaches and developed methods that optimize the screening process. In contrast to synthesis-limited 

methods, the sensor optimization of such selection-limited approaches proceeds over multiple iterations in 

which suitable surface modifications are either enriched from a random library or actively modified in an 

attempt to further improve the sensors (Figure 1c).[24,25] 

 

We use this terminology and classification to show that they are different in terms of what one could call 

the rate-determining step. For synthesis-limited high throughput approaches the current bottleneck is the 

assembly of many different sensors. In screening-based approaches, multiple different sensors are 
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synthesized in one pot and create a pool of sensor candidates. This allows for a much higher number of 

nanosensors but it also means that one does not know the exact design of the sensors with the highest 

performance, affinity, etc. Therefore, the rate-limiting step is typically identification/selection and we call it 

a selection-limited approach. To allow for the identification of the sensors, the surface chemistry of this 

approach must fulfill synthetic conditions e.g. primers need to be incorporated (see Section 3.2.). 

Conceptualizing these two different approaches is important to understanding bottlenecks in the 

development of nanosensors and in general the biosensor field. It pinpoints to the steps in developing novel 

nanosensors that are crucial and need most attention from the field.  

 

2. Potential Materials and Sensor Design 
 

Some materials have properties that enable scalability more easily. To create a (optical) nanosensor, 

optically active (e.g. fluorescent) materials are combined with recognition units that permit molecular 

recognition (Figure 3). To link both components, a suitable linker strategy is required. As the sensor 

response of most nanosensors is caused by a perturbation of the nanoparticle environment (corona) upon 

binding, the following section will briefly introduce the main “components” as well as the main properties 

that affect sensing. 

 

 

Figure 3: Factors affecting the scalability of nanosensor assembly. Nanosensors are typically composed of an 

optically sensitive nanomaterial, a recognition unit that interacts with an analyte, and a linker chemistry that connects 

both. Very often the linker and the recognition unit are the same and the physiochemical processes are connected. The 

ease of chemical modification/permutation affects the scalability. 

Nanomaterials. Nanoscale objects often exhibit size-dependent properties. Of those materials, metallic 

nanoparticles represent, due to the high tunability of size and optical properties, the most frequently used 

imaging modality.[26,27] Pure metals (Au, Cu, Ag, …) are electronically conducting and their optical properties 

depend on surface plasmon resonance (SPR) effects.[28,29] Consequently, changes in their optical 

properties are typically due to a change in an oscillating electric field, e.g. coupling effects between 

materials with different resonances.28 In contrast, quantum dots are metal chalcogenides (CdSe, PbS, 

InAs, …) with a size-dependent band gap that determines their optical properties.[30–34] A smaller version, 
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carbon-based derivative are carbon dots. Carbon dots are spherical nanomaterials with a diameter between 

1 and 10 nm. Their π-system absorbs light in the ultra-violet UV range and emits light in the visible. Similarly 

to carbon dots, single-walled carbon nanotubes (SWCNTs) also possess inherent fluorescent 

properties.[35,36] However, semiconducting SWCNTs are fluorescent in the near-infrared (NIR) and can be 

excited at different wavelengths that correspond to the respective energy transitions (Typically E11: NIR; 

E22: VIS; E33: UV). Moreover, SWCNTs are photostable and do not bleach.[37] The nature of the fluorescence 

in SWCNTs is excitonic.[38] Excitons in SWCNTs have a size on the order of nm and diffuse over the length 

of a few hundred nanometers.[39–41] This renders the fluorescence of SWCNTs highly sensitive to their 

chemical surrounding, which is a key advantage to other fluorescent materials that are relatively inert. The 

introduction of quantum defects (sometimes called organic color centers) to SWCNTs provides an 

additional opportunity to tune the fluorescent properties of SWCNTs and provides a handle for further 

functionalization.[15,16,42,43] 

 

Linker. To functionalize a nanomaterial for (bio-)sensing, recognition units need to be connected to the 

nanomaterial. In this context, conjugation methods with high yields are often used to ensure efficient 

functionalization.[44] Examples include traditional chemical strategies such as reactions between 

maleimides and thiols, carboxyl groups and amines, the reactions between alkynes and azides (CuAAC, 

SPAAC) as well as the functionalization of gold nanoparticles with thiols.[8,45,46] For an overview of different 

bioconjugate techniques see.[33,44,47] Additionally, the introduction of protein handles (biotin/streptavidin, 

His-, SNAP-, Halo-, Clip-tags, …) and DNA-based approaches relying on hybridization, or the formation of 

selective interfaces allow for rapid assembly of nanosensors. While functionalizing a nanomaterial, it is 

important to remember, that the optical properties of a material can be affected by its functionalization. For 

example, the introduction of quantum defects with low defect densities leads to novel fluorescent features 

that can be used to tune the quantum yield[48,49] and sensing properties of SWCNTs.[50–52] An extensive 

functionalization of a nanoparticle can, however, lead to the loss of its fluorescent properties, if the 

fluorescence is affected by the surface modification. Similarly, the controlled fixation of anchor-structures 

on the surface of highly sensitive nanoparticles can be used as a tailored passivation strategy to improve 

selectivity and stability.[11,53] By constraining a recognition unit to such an anchor, the conformational 

freedom of a recognition unit can be further influenced.[54]  Such approaches furthermore may therefore 

influence the binding affinities and allow for an optimization of the signal translation and selectivity before 

the introduction of recognition units thereby providing an interesting opportunity for high throughput 

approaches.  

 

Recognition units. To render a nanomaterial sensitive to a specific analyte class, an analyte needs to 

interact and modify the fluorescent properties of a nanomaterial. Nanomaterials are therefore modified with 

recognition units that provide some selectivity toward the analyte. Classical examples of such interactions 

are antibodies and aptamers that are optimized to bind to a respective analyte.[11,55–57] Additionally, smaller 
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fragments[54,58] or non-traditional recognition units such as nucleic acids and functional polymers can be 

interesting because they can form selective corona phases (CoPhMoRe)[13] on the nanomaterial that serves 

both recognition and signal transduction. While the attachment of an antibodiy (-fragment), aptamer or 

nucleic acid allows for maximum rationality in the approach, the throughput is often limited by a low number 

of available recognition units and the relatively high cost associated with the previous optimization. 

Additionally, most nanomaterials are only affected by perturbations in their direct vicinity. Consequently, 

the precise orientation of the recognition unit can be important for the performance of a nanosensor which 

renders larger recognition units difficult to implement in high throughput approaches. This said, most larger 

screenings are based on evolving “non-rational” corona phases.[59] These corona phases contain polymers 

that adsorb on the nanomaterial, as well as analytes that binds to this complex interface. Consequently, an 

evolution of adsorption-based surface modifications and methods combining such adsorption-based 

approaches with a rational design are highly desirable. 

 

3. High throughput Strategies 
 

As for all high throughput approaches, the scalability of sensor preparation and their characterization is an 

important factor for synthesis-limited as well as selection-limited approaches. In this section, we will present 

an overview of design considerations and conditions for high throughput screenings. 

 

3.1. Synthesis-Limited High throughput Approaches 
 

From a synthetic perspective, the design of a nanosensor library is mainly determined by the chemical 

properties of the nanomaterial. Since a complete overview would be beyond the scope of this perspective, 

interested readers are directed toward several excellent reviews.[10,60–62] For example, gold nanoparticles 

can be easily modified via thiols. In contrast, sp2-hybridized particles such as SWCNTs can be modified via 

non-covalent, adsorption-based functionalization via π-stacking and covalent functionalization via 

nucleophilic, electrophilic, or radical reactions. Due to their ease of functionalization and their high sensitivity 

toward their chemical environment (coronae) SWCNTs are interesting building blocks that are i) easy to 

modify chemically and ii) able to translate binding events into optical signals (Figure 4). Furthermore, 

SWCNTs have historically been used abundantly with non-rational design concepts that are easily scalable 

in screening approaches. We will therefore, discuss differences in high throughput methods by using 

SWCNT-based sensors as an example. 
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Figure 4: Implications of the sensor synthesis and optical readout for scalability of sensor engineering. The 

sensor functionalization determines the chemical interactions between nanosensors and different analytes. This 

interplay is responsible for the generated optical read-outs. Both aspects affect the scalability of any high throughput 

strategy.  

 

3.1.1. Serial Single Sensor Screening 
 

SWCNT-based sensors can be generated via rational design, screening methods, or selection methods.  

While rational design allows for a maximum degree of control and more scalable methods have been 

developed recently,[11,42,63] there is up to our knowledge no example of a rational bottom-up assembly with 

covalently functionalized SWCNTs that would allow to be scaled towards a high throughput approach. 

Instead, SWCNTs are in the context of screenings most often functionalized non-covalently via the 

adsorption of different polymers. When confined to the surface of a SWCNT, these polymers can form 

complex interfaces that act as a universal receptor which that selectively bind the analyte. (Figure 5a). 

 

Compared to other methods, this corona phase molecular recognition (CoPhMoRe, Figure 5b-d) can be 

used to generate sensors to hypothetically any analyte (Table 1). The achievable selectivity should scale 

with the library and size, which highlights again why scalability is a central question for biosensor 

engineering. In most examples, 10-40 interfaces are tested against a library of approx. 5-50 analytes (Table 

1, Figure 2). These numbers can be explained by the serial preparation of such nanosensors that include 

pipetting, sonication, functionalization and centrifugation steps that are difficult to upscale.  

Often, the thereby generated sensors are sensitive in the µM-nM range. However, depending on the optical 

set-up, sample volume, and functionalization approach, the generation of sensors with sensitivities in the 

pM-fM are feasible. To investigate the influence of functional groups on the surface coverage, 

hydrodynamic radius, and the interactions leading to molecular recognition of an analyte, it is possible to 

simulate the three-dimensional corona phase with molecular dynamics and docking experiments.[65] 
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Figure 5: Synthesis-limited screening approaches. (a) Corona phase molecular recognition (CoPhMoRe) concept. 

Physisorption of a biopolymer on a nanomaterial creates a novel organic phase (corona) that is – together with the 

nanomaterial – capable of recognizing (bio)molecules. Reprinted with permission from [20]. Copyright 2013 Nature. (b) 

Response of sensors coated with DNA (N1-N13), phospholipids (PL1-12) and amphiphilic polymers (P1-P5) against 

different neurotransmitters. Reprinted with permission from [55]. Copyright 2014 American Chemical Society. (c) 

Intensity changes of DNA- and phospholipid sensors after the addition of different proteins from blood. Reprinted with 

permission from [18]. Copyright 2016. (d) CoPhMoRe screen to identify sensors for enzymatic substrates and products. 

Note that the intensity changes of CoPhMoRe sensors (left) are independent from wavelength changes. Adapted with 

permission from [64]. Copyright 2024. The Authors. WILEY-VCH. (e) Extension of the classical CoPhMoRe concept to 

organic color centers (OCC). (f) Response of OCC-/DNA-sensors to 215 serum samples from individuals with high-

grade serous ovarian carcinoma and other diseases. Figures (e) and (f) are reprinted with permission from [19]. 

Copyright 2022 Nature. 

 

https://doi.org/10.26434/chemrxiv-2024-mf7t6 ORCID: https://orcid.org/0000-0003-0638-9822 Content not peer-reviewed by ChemRxiv. License: CC BY 4.0

https://doi.org/10.26434/chemrxiv-2024-mf7t6
https://orcid.org/0000-0003-0638-9822
https://creativecommons.org/licenses/by/4.0/


10 
 

While CoPhMoRe promises to be a universally tunable recognition sequence, one main bottleneck of using 

highly sensitive nanomaterials are small perturbations (from unspecific binding) that result in high signal 

changes. To circumvent this problem, it is possible to i) tailor the rigidity of the soft interfaces at the 

nanosensor surface[11,53] or ii) use multiple nanosensors in a multiplexed format[66]. It is possible to combine 

covalent surface modifications (sp3-defects/OCC: organic color centers) and non-covalently adsorbed 

polymers (Figure 5e,f) to expand the chemical space.[19] Additionally, different linking strategies can be 

combined and the recognition unit can be constrained to bridging anchor molecules on the surface of a 

SWCNT.[54] 

 

3.1.2. Array-Based Screening 
 

The optimization of sensors presents a key step for the generation of nanosensors and when one 

functionalization provides sufficient selectivity, a simple coating of nanosensors presents a straightforward 

approach.[67–69] However, using just one sensor may be of limited use in complex chemical environments. 

Here, ratiometric sensing approaches can improve the accuracy of a sensor by compensating for variations 

in mechanical movements and variations of excitation intensities.[70,50] Further, multiplexing of sensors 

presents interesting opportunities for sensing different analytes in complex environments.[66,71]  

 

As a lightweight and inexpensive substrate, paper has been widely used for sensing approaches. By using 

a wax printing method, it was possible to design custom SWCNT-based barcodes on paper substrates, that 

can be fixed on other substrates (Figure 6a).[72] Additionally, microarrays can be printed on substrates such 

as glass. For example, the deposition of nanoliter volumes leads to spot sizes in the order of approx. 210 µm 

with spot heights of approx. 50 nm (Figure 6b).[73] Interestingly, the sensitivity of the nanotubes is often not 

limited by the SWCNT chemistry but by the detector size needed to accommodate the image. Therefore, 

using a higher imaging magnification can sometimes increase the detection limit by one order of magnitude 

at the expense of a smaller field of view.[73] A third option is the incorporation of multiple different sensors 

into a hydrogel or another type of polymer (Figure 6c).[66] This approach is very useful in complex mixtures 

to identify bacteria based on their chemical fingerprint, which is crucial for biomedical diagnostics. Here, 

the hydrogel can also serve as another design parameter for example by affecting the diffusion of the 

analytes to the sensors. 

Overall, the main conceptual advantage of array-based techniques is the parallel analysis of multiple sensor 

responses to a single analyte by imaging instead of serial screening the responses.  
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Figure 6: Multiplexing of sensors presents opportunities for rapid signal acquisition of multiple sensors and 

improved selectivity. a) Sensor barcode of a paper-based barcode with differently functionalized SWCNTs fixed on a 

plastic strip (top). Measurement of the barcode before and after dipping the barcode in ascorbic acid. Reprinted with 

permission from [72]. Copyright 2020 American Chemical Society. b) Multiplexed microarray for real time detection of 

mouse IgM. SWCNTs are modified with chitosan polymers and further functionalized via chelation between NTA, Cu2+ 

ions, and His-tagged capture proteins. Binding to the capture protein modifies the distance of Cu2+ to the SWCNT which 

serves as proximity quenchers of the SWCNT fluorescence. Reprinted with permission from [73]. Copyright 2018 

American Chemical Society. (c) Optical identification of pathogens with a SWCNT-sensor array. Different nanosensors 

are incorporated in a hydrogel, their multiplexed response allows the differentiation of pathogenic bacteria. Adapted 

under the terms of a CC-BY 4.0. license from [66]. Copyright 2020 The Authors. 

 

3.2. Selection-Limited High throughput Methods 
 

Compared to synthesis-limited approaches, which are inherently restricted in their throughput, the iterative 

optimization of surface functionalization allows for a larger exploration of chemical space. To scale the 

throughput efficiently, the surface of nanomaterials is modified with a library of different polymers. 

Subsequently, (bio)polymers (so far DNA) that contribute to the selectivity of the sensor are either i) 

amplified over multiple selection rounds, or ii) based on their performance selected and subsequently 

modified to optimize sensors. 

 

Systematic evolution of ligands on nanomaterials (SELEC). In this process, a nanomaterial is coated 

with an analyte and a library of polymers (Figure 7a). Next, non-binding polymers are first washed away, 

and subsequently, higher affinity polymers are removed from the nanomaterial surface, amplified, and used 

in the next selection round. Over an iteration of multiple rounds (Figure 7b), it is possible to select high-

affinity binders from libraries with up to 1010 polymers. When comparing the sensor responses of sequences 

selected in the presence and absence of an analyte, Jeong et al.[24] found that those sequences that were 

selected in the presence of the analyte exhibited better sensor responses (Figure 7c). 
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Overall, SELEC assumes that the abundance of a sequence over multiple rounds is a good predictor for 

sensor sensitivity and selectivity. To allow for rapid amplification, these selections have to be (so far) nucleic 

acid based, and the sequences are amplified via polymerase chain reactions (PCR). This requires 

modification of the nucleotides with flanking regions (e.g. (C)6) and primer. As a consequence, the varied 

region can be, compared to the length of the amplification construct relatively short. Since nucleic acid 

conformations on nanoparticles are known to be dependent on self-interaction,[74,75] and the variation of as 

a few bases has been shown to alter the sensor response significantly, the conformation of the varied region 

is likely affected by the amplification regions as well as the large diversity of different nucleic acids in the 

DNA pool. Additionally, the preparation via tip sonication with the analyte as well as the separation from 

high-affinity DNA imposes certain size and stability requirements on the analytes. Nevertheless, this method 

provides up to our knowledge the highest scalability for the identification of high affinity binders from a large 

pool of (bio)polymers. Conceptually, SELEC is closely related to SELEX. Therefore, one alternative to 

SELEC approaches is the use of a preselected aptamer, which has also been used to create sensitive and 

selective sensors for serotonin.[76]  

 

 

Figure 7: Systematic evolution of ligands on nanomaterials (SELEC). a) Overview of the selection process. In 

contrast to directed evolution, the same DNA pool is used over multiple rounds, and sequences are not modified. b) 

Frequency of the final 50 sequences with the highest affinity during different selection rounds. c) Increased sensor 

sensitivity of the experimental (selection with serotonin) and the control (selection without serotonin) SELEC groups 

during the selection rounds 3-6. Figure reprinted under terms of a CC-BY-NC 4.0 license from [24]. Copyright 2019 The 

Authors. 

Directed evolution. Originally used in protein engineering, directed evolution is a process that is used to 

optimize the function of a protein by successive generations of random mutations and artificial selection or 

screening.[77] The concept is centered around the premise that the function of a protein can be tuned by 

modifying amino acids in the gene that is responsible for the desired protein functionality. [78] Lambert et 

al. [79] adapted this concept to the engineering of the optoelectronic properties of nanomaterials (Figure 8a). 

To optimize the fluorescence intensity of sensors without changing their selectivity, they i) randomly 

mutated (GT)15, a commonly used oligonucleotide for neurotransmitter detection, prepared ii) the respective 
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oligonucleotides, iii) screened and iv) choose novel sequences for the next round based on the sensors 

with enhanced fluorescence intensities. In the first round, the library consisted of 99 mutants and led to 

three mutants with enhanced properties (Figure 8b). In the second round, the best two mutants were further 

mutated (library of 10 mutants) to produce an additional two mutants with enhanced brightness. Importantly, 

the fluorescence response to dopamine was not changed compared to the original sequence and 

interestingly, it could be shown that a change of only three mutations leads to a change in the nanosensors 

optoelectronic properties.[17,79] More recently, Lambert et al. used a library of SWCNT-DNA hybrids to 

design sensors for aflatoxin and fumonisin.[80] They used directed evolution approaches to further enhance 

the sensor response by more than three-fold. Additionally, they showed that DNA shuffling can be used to 

accelerate sensor optimization. For this, they (computationally) cut well performing sequences into smaller 

fragments, shuffled them, and used the sequence to prepare novel sensors. Compared to the introduction 

of single mutations, this approach allows to evolve the hybrid from one local minimum toward a new local 

optimum with higher performance. Using combinational shuffling, it is therefore possible to sampling larger 

chemical landscapes with a minimal extension of the library size.[80] These approaches have so far a smaller 

throughput similar to the synthesis-limited approaches but novel assembly procedures and multiple 

evolution rounds can improve the numbers.  

 

Figure 8: Directed evolution of nanosensors. a) Overview of the selection process. While the evolution cycle can be 

repeated over multiple rounds, the material is typically not used again. b) Normalized increase of the fluorescence 

intensity over multiple evolution rounds. Reproduced under terms of a CC-BY-NC 3.0. license from [79]. Copyright the 

Authors. 

 

3.3. Computational Tools for Selection 
 

Despite the success of screening methods, the synthesis of novel nanosensors presents a major bottleneck 

for the scalability of high throughput approaches. To reduce the time needed for the exploration of chemical 
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space, different groups developed in-silico approaches for the prediction of suitable nanosensor 

modifications (Figure 9). Apart from prediction, computational methods can furthermore be used for 

classification and clustering of sensor data.[71,81] 

 

Figure 9: Computational approaches for the generation and analysis of nanosensors. Computational methods 

can be used to guide and accelerate high throughput approaches. Examples include methods for prediction and 

analysis of sequence patterns and sensing responses to deduce guidelines for sensor design. 

Prediction of optimal nanosensor functionalization. Due to the structure-function relationship of 

molecular recognition, the shape of a corona phase is strongly correlated with the conformation of a polymer 

on the nanomaterial.[82,83] For SWCNTs, it is known that certain sequences display high affinities to certain 

chiralities and can be used to separate them.[84–86] Finding such selective sequences is similar to the 

generation of a biosensor and early studies designed to systematically sample a DNA library for chirality 

dependent recognition via sequence pattern achieved a success rate between 7%[85] and approx. 10%.[87,88] 

To predict suitable surface modifications for biosensors, Yang et al.[87] reported the first machine learning 

approach to molecular recognition of DNA-SWCNTs. Using this model, the frequency of finding correct 

recognition sequences for the recognition of SWCNT chiralities increased above 50%. More recently, Lee 

et al.[89] presented how machine learning could distinguish high affinity ssDNA sequences and used 

molecular dynamics simulations to identify patterns of intramolecular hydrogen bonding in these 

sequences. 

 

Motivated by the early approaches of Yang et al., Gong et al.[90] generated a DNA-SWCNT library consisting 

of 1408 elements and leveraged machine learning to understand molecular recognition and sensor 

responses of different analytes on nanoparticles. Due to the high sensitivity of nanotubes to their chemical 

environment, their sensor response is strongly dependent on solution and experimental conditions. To 

ensure comparability, they defined the pH, ionic strength of the butter, the excitation flux, SWCNT 

concentration (to reduce aggregation), and time points (kinetics of sensor response) and generated data 

from a set of 176 sequences and a combination of two pH and four analytes. Using this data, local structure 

predictions were generated from a convolutional neural network (CNN) that correlated photophysical 

responses with a prediction of shorter-length DNA motifs. The CNN model was, in combination with 40 
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high-level features (HLF, e.g. melting point, dimers, molecular weight, etc.), used as independent features 

in a gradient-boosted decision tree (GBDT). The HLF was based on a vectorization via principal component 

analysis (PCA). For 6 out of 8 samples, the prediction from the GBDT showed a significant correlation to 

the actual sensor response. The implementation of HLF improved the prediction but was found to be 

uniquely correlated to different analytes. Additionally, the authors found that i) different pH conditions lead 

to different photophysical responses, ii) the stability of the corona phases influences the sensor (more 

positive sensor response with decreased DNA length, increased adenine content, decreased cytosine 

content), iii) intensity and shape sensor responses provide orthogonal information, iv) strand-strand 

interactions play a major role in the organization of the corona phase and v) molecular recognition is 

mechanistically different for different analytes and experimental conditions. 

 

Based on the premise that a high performing sequence is likely obtained from a set of completely 

randomized sequences, Kelich et al. used a SELEC approach to narrow down a DNA-pool of ≈ 1010 DNA-

sequences down to 100 sequences and train CNN models with single-wavelength data from these 

sensors.[91] The authors showed that machine learning methods can classify (Figure 10a) and predict 

(Figure 10b,c) promising DNA sequences. Additionally, the authors demonstrated separately, that a simpler 

PCA approach appears to be predictive in analysis plots, but exhibits a poor correlation between predictions 

and validation experiments. Overall, the authors identified five serotonin sensors with higher responses 

than those previously identified in experimental screening approaches. 

 

 

Figure 10: Prediction of serotonin nanosensor responses with machine learning methods. (a) ROC curve of the 

performance of a convolutional neural network (CNN) model trained with an extended data set of 113 sequences to 

classify the performance of sensors as ΔF/F < 0.9: class 0 or ΔF/F > 0.9: Class 1. (b) Prediction of 20 DNA-SWCNT 

sensors and their responses to serotonin. The prediction is based on classification and regression models. (c) 

Comparison of predicted and experimentally measured fluorescence changes for the sequences in (b). Figure reprinted 

with permission from[91]. Copyright 2022 American Chemical Society. 
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Most recently, Kelich et al.[92] showed that the incorporation of entire spectra enhances prediction 

robustness and facilitates the prediction of novel sensors. 

Additionally, Rabbani et al.[93] and An et al.[94] demonstrated a combination of machine learning and directed 

evolution. Rabbani et al.[93] showed, that an ensemble of different models can be used to further optimize 

sequences that were optimized via directed evolution for mycotoxin by 5 to 40%. In contrast, An et al.[94] 

showed a combination of directed evolution and machine learning to optimize nanosensors with improved 

sensitivity of serotonin over dopamine. Therefore, computational tools are very effective in navigating the 

huge chemical design space and proposing novel chemistries. In a certain way they are also linked to the 

high throughput capability of the experimental approaches because they are most effective with huge 

training data set.  

 

Conclusion 
 

Due to their size-dependent properties, nanomaterials can be tailored for almost any sensing application. 

Although promising, a major challenge is the effective implementation of high throughput applications to 

fine-tune sensitivity and selectivity against a panel of analytes. Herein, we provided our perspective on the 

current status of high throughput applications for nanosensing. Among the different materials, SWCNTs 

are particularly well-suited for synthesis-limited and selection-limited high throughput applications. 

However, the main bottleneck to scale up towards high throughput approaches remains their preparation 

and especially surface chemistry approaches that are compatible with upscaling. Here, selection-limited 

and computational approaches provide interesting opportunities to explore, analyze and predict large 

libraries. While larger throughputs increase the chance of finding suitable sensor properties, combinations 

of sensors can be used to enhance sensing by multiplexing.  

Studies that shed light on the mechanism of recognition and photophysical signal transduction are crucial 

for an efficient design of high throughput screening and selection approaches. For example, conformational 

changes of DNA have been linked to fluorescence changes of dopamine nanosensors[95] while redox 

processes have been ruled out.[96] Recently, it was also shown with combined Thz and fluorescence 

spectroscopy that local hydration changes are the key for engineering optimal sensor responses. [97] Such 

insights refine the design considerations of the high throughput-based approaches discussed in this 

perspective. However, one should not see them as competing approaches but rather complementary that 

benefit from each other and can inform efficient decisions for the experimental design. 

The motivation and path to high throughput by novel chemistries as well as miniaturizing arrays offer huge 

potential not only for sensor engineering but also multiplexing. In summary, we anticipate that these 

developments open novel possibilities for the most challenging biosensing applications.  
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Table 1: Overview of synthesis-limited approaches that make use of molecular recognition in the corona phase around SWCNTS (CoPhMoRe). 

PVA: Polyvinyl alcohol; PEG: Poly(ethylene glycol), PL: Phospholipid; PE: Phosphoethanolamine, RAFT: Reversible addition−fragmentation chain transfer 

(polymerization). 

Target Class Number of 

functionalizations 

Functionalization Screened 

analytes 

Best functionalization Sensitivity 

Nitroaromatics[98] 24 phases 

3 + 8 chiralities 

Bombolitin II, PVA, 

(AT)15 

42 Wavelength shift of Bombolitin II for different 

analytes. 

Selective response of 

(AT)15: TNT 

Single molecule 

Riboflavin, 

L-thyroxine, 

Oestradiol[20] 

12 Linked rhodamines (2), 

PEG-PL (1), 

other PEG-derivatives 

(3) 

DNA (1) 

Dextrane-derivatives (2) 

PVA 

Surfactants (2) 

36 + 1 control Riboflavin: Boronic-acid substituted 

Phenoxydextran 

 

L-thyroxine: Fmoc-Phe-PPEG8 

 

Oestradiol: Rhodamine isothiocyanate- 

difunctionalized PEG 

LOD not determined, range 

of Kd’s 

Neurotransmitter[55] 30 Nucleic acids (13), 

Phospholipids (12), 

Amphiphilic polymers 

(5) 

9 Dopamine: (GT)15 LOD: 11 nM 

Kd: 433 nM 

Fribrinogen from Proteins 

in Blood[18] 

20 Nucleic acids (9), PEG-

PL (11) 

 

14 Fibrinogen:Dipalmitoyl-

phosphatidylethanolamine 

(DPPE)-PEG 

Lowest concentration tested: 

0.05 mg mL-1, 

Insulin[99] 24 phases 

18 + 3 chiralities 

PEG-PL 14 N-palmitoylsphingosine-1- 

succinyl[methoxyPEG2000] 

LOD not detected 

 

20 μg/mL (during screen) 

 

Between 180 pM and 3.5 μM 

tested 

Fat soluble vitamins[72] 4 DNA 4 β-Carotene: (GT)15 Kd: 2.2 µM 
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Phosphodiesterase type 5 

inhibitor[100] 

24 RAFT polymer 23 Vardenafil: MA-ST-90 LOD: 0.02 µM – 0.2 µM 

Steroids[101] 80 phases 

16 + 5 chiralities 

RAFT polymer 11 Progesterone: P10 LOD: µM range 

Polyphenols[102] 10 DNA (8), PEG-PL (2) 10 + 1 control Gallic acid: (C)30 

Tannic acid: 18:0 PEG5000 PE 

 

Kd: 90 nM 

Auxins[103] 6 polyfluorene (PF)-, 

poly(4- 
vinylpyridine)-, 

poly(N-vinylimidazole)-

based copolymers 

12 + 1 control 1-naphthalene acetic acid: PVIMel 

2,4-dichlorophenoxyacetic acid: PF(1,3-P)HCl 

LOD: 8.2 μM (1-naphthalene 

acetic acid), 0.35 μM (2,4-

dichlorophenoxyacetic acid) 

Viral proteins (Spike + 

Nucleocapsid)[104] 

11 PEG-PL 2 (+ 

subsequent 

Saliva + BSA 

control) 

Spike: 14:0 PEG2000 PE 

Nucleocapsid: 18:0 PEG1000 PE 

LOD 350 pM (Spike),  48fM 

(Nucleocapsid) 

Onkometabolites [105] 9 DNA 15 D-2-hydroxyglutarate: (ATTT)7 Kd: 2.66 mg mL-1 

Divalent ions[106] 20 DNA 9 Cd2+: (A)15, pH 8 

Co2+: (C)30, pH 8 

Hg2+: (CCCCAT)5CCCC, pH 8 

Cu2+, (C)10, pH8 

Ni2+, (C)30, pH8 

Mn2+, (C)10, pH8 

Zn2+, (A)15, pH 8 

Pb2+, (C)15, pH 8 

Cr2+: 

TTCAATACATACGTGACCCAGTAGTTATCC, 

pH5.7 

 

LOD: 33nM (Hg2+) 

Gynecologic cancer 

markers[107] 

11 DNA 3 

+ 22 patient 

samples 

Identification via ML from spectral fingerprint Classification at 

subnanomolar concentration 

Ovarian cancer[19] 10 DNA + sp3-defects 269 patient 

samples 

Identification via ML from spectral fingerprint, 

most important sensor: 3F*(TAT)4 

87% sensitivity at 
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98% specificity (compared 

with 84% sensitivity at 98% 

specificity for the current best 

clinical screening test 

Chemotherapeutics[108] 10 DNA 4 Temozolomide and 5-aminoimidazole-4-

carboxamide: (GGGT)3 

LOD: <30 µM 

Gibberellins[109] 11 RAFT polymer 15 GA3
-K+: S-gluAPM 

GA4
-H+: N-gluAPM 

LOD: 542 nM (GA3
-K+), 2.96 

μM (GA4
-H+) 

Inflammatory cytokines[110] 164 phases 

(41 and 4 chiralities) 

RAFT polymer 19 Interleukin-6: MK2  

Enzymatic 

substrates/products [64] 

10 DNA (9) 

PEG-PL (1) 

13 + 2 

controls 

p-Phenylene/Brandowskis base: (G2T)10, TMB: 

(C)30, ONPG: (GA)15 

LOD: 2.5 nM (PPD – for HRP 

reaction in pM range) 

Viral nucleocapsid 

proteins [65] 

14 PEG-PL 7 SARS: 16:0 PEG2000 PE  

MERS: 14:0 PEG750 PE 

SARSCoV-2: 18:1 PEG5000 PE 

H1N1: 18:0 PEG5000 PE 

H3N2: 18:0 PEG2000 PE 

Lassa: 16:0 PEG750 PE  

Ebola: 14:0 PEG1000 PE 

LOD: 18.9 pM (SARS) 

3.5 pM (MERS) 

2.1 pM (SARS-CoV-2) 

7.1 pM (H1N1) 

13.3 pM (H3N2) 

16.6 pM (Lassa) 

100.5 pM (Ebola) 
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