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Abstract 

DNA-Encoded Library (DEL) technology allows the screening of millions, or even billions, of encoded 

compounds in a pooled fashion which is faster and cheaper than traditional approaches. These massive 

amounts of data related to DEL binders and not-binders to the target of interest enable Machine Learning 

(ML) model development and screening of large, readily accessible, drug-like libraries in an ultra-high-

throughput fashion. Here, we report a comparative assessment of the DEL+ML pipeline for hit discovery 

using three DELs and five ML models (fifteen DEL+ML combinations using two different feature 

representations). Each ML model was used to screen a diverse set of drug-like compound collections to 

identify orthosteric binders of two therapeutic targets, Casein kinase 1𝛼/δ (CK1𝛼/δ). Overall, 10% and 94% 

of the predicted binders and not-binders were confirmed in biophysical assays, including two nanomolar 

binders (187 and 69.6 nM affinity for CK1𝛼 and CK1δ, respectively). Our study provides insights into the 

DEL+ML paradigm for hit discovery: the importance of an ensemble ML approach in identifying a diverse 

set of confirmed binders, the usefulness of large training data and chemical diversity in the DEL, and the 

significance of model generalizability over accuracy. We shared our results via an open-source repository 

for further use and development of similar efforts.    
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Introduction 1 

Hit finding is a key step of early-stage, small-molecule drug discovery that involves identifying putative 2 

chemical matter with desired properties that bind to protein targets of interest and modulate their activity1; 3 

however, hit finding is an expensive and long process2-7. New approaches are increasingly being sought to 4 

expedite and improve the process hit finding. These new approaches include cell-based screening that 5 

gives more biologically relevant hits8,9, repurposing screening of molecules with known mechanism of 6 

actions10, and screening of ultra-large, small molecule libraries in a high-throughput fashion. One approach 7 

in the latter category is using DNA-encoded libraries (DELs) in which combinatorial synthesis of small 8 

molecules is integrated with a DNA barcoding process7,11,12. Individual DELs can range in size from millions 9 

to billions of unique small molecules depending on the number of chemistry steps and the number of 10 

building blocks included at each step. 11 

 The DEL field has been applying the technology to drug discovery for over a decade13-17.  The 12 

approach has yielded successes in the clinic, but several technical limitations have hindered further 13 

progress18-20. To address these challenges, DEL researchers have developed new methods for encoding, 14 

synthesis, pooling, and screening DELs7,21-23. However, one of the greatest challenges in deconvoluting 15 

hits from a DEL screen is resynthesizing the individual compounds “off DNA”. This is expensive and time 16 

consuming, and can have a very low success rate. More importantly, this approach limits the scalability, 17 

introduces bias, and doesn’t leverage the negative SAR or subtle patterns in the positive DEL data22,24. To 18 

overcome this, the field is moving to the use of machine learning (ML) approaches to identify novel hits 19 

from unseen chemical libraries23,25-30, with commercially available and easily synthesizable, drug-like 20 

molecules. In this way, the time from screen to validated hit is greatly reduced. Machine learning algorithms 21 

can be trained to predict the small molecules that will bind to a given target based on their chemical 22 

structures and other relevant (e.g., physicochemical) properties. The ML models can then prioritize 23 

compounds from large, low-cost chemical libraries for experimental screening, significantly reducing the 24 

time and cost of identifying initial binders from a DEL screen. 25 

Building on the above-mentioned advances and applications of ML to DELs, we sought to 26 

understand better how the composition of different DELs and different ML models trained using these DEL 27 

data impact the outcome of DEL+ML paradigm for hit discovery.  We chose to screen two well-characterized 28 

drug targets31, CSNK1A1(CK1𝛼) and CSNK1D (CK1δ), against three DELs of different sizes and chemical 29 
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compositions: MilliporeSigma DEL, HitGen OpenDEL®, and DOS-DEL32. The resulting DEL screening data 30 

were then used to train five different ML models that included both traditional models, such as Random 31 

Forest33, and Deep Neural Network models, such as Multi-Layer Perceptron34 and ChemProp35. The 32 

developed ML models were applied to a blind (i.e., unseen by the models and with unknown labels) 33 

assessment set of 140,000 compounds. Predicted binders from the blind assessment set were tested in a 34 

biophysical binding assay to confirm if they were correctly predicted as binders. We further tested molecules 35 

that were predicted not to bind to the screened targets, to understand the potential DEL+ML pipeline for 36 

filtering out true negatives. As far as the authors are aware, this work is the first such analysis of its kind. 37 

In total, 80 (10%, 80 out of 808) and 83 (94%, 83 out of 88) compounds were confirmed as binders and 38 

not-binders, respectively, in the biophysical assay. Our cross-DEL and cross-ML results analyses highlight 39 

the influence of DEL data quality, chemical space overlap between training and test datasets, ML algorithms 40 

on the outcome of a DEL+ML paradigm for hit discovery. Finally, we released the developed DEL+ML 41 

pipeline with trained models in an open-source GitHub repositories (https://github.com/broadinstitute/DEL-42 

ML-Refactor), to foster data sharing and community usage and refinement of the developed models for hit 43 

identification.  44 
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Results 45 

The DEL+ML pipeline for hit discovery  46 

Our DEL+ML workflow is built of five modules: (1) DEL screening; (2) data preparation for training ML 47 

models; (3) developing ML models; (4) prediction of hits; and (5) validation of hits in experimental assay. A 48 

schematic overview of the pipeline is illustrated in Fig. 1. 49 

Two members of the Casein kinase (CK1) protein family, CK1𝛼 (CSNK1A1) and CK1δ (CSNK1D), 50 

with broad serine/threonine protein kinase activity and demonstrated therapeutic potential31, were screened 51 

against three DNA-encoded small molecule libraries (DELs; see Methods: DNA-Encoded Libraries). These 52 

libraries are a 10 million member, peptide-like DEL from MilliporeSigma, a 1 billion member, drug-like DEL 53 

from HitGen (HitGen OpenDEL®), and an 11 million member, diversity-oriented synthesis DEL, referred to 54 

as MS10M, HG1B, and DD11M DELs, respectively. Both proteins (CK1𝛼/) were screened in the presence 55 

and absence of a potent inhibitor (also referred to as the positive control compound, BAY6888). The positive 56 

control compound is discovered in-house as part of a past drug discovery campaign and has been shown 57 

to bind to the canonical ATP-binding pocket of CK1𝛼/δ. The use of a positive control compound is the 58 

design of DEL screening resulted five different selection conditions, referred to as CK1𝛼, CK1𝛼+inhibitor 59 

(CK1𝛼+inh), CK1δ, CK1δ+inhibitor (CK1δ+inh), and blank, a beads-only control (see Methods: DEL 60 

screening). 61 

Results from five different selection conditions revealed multiple types of binders from the DELs: 62 

orthosteric (DEL molecules that are enriched for the protein-only condition but not for protein plus the 63 

inhibitor), allosteric (DEL molecules that are enriched for both the protein-only and the protein plus the 64 

inhibitor conditions) and cryptic binders (DEL molecules enriched for the protein plus the inhibitor condition 65 

but not for protein-only condition). For this study, we focused exclusively on the orthosteric binders since 66 

compounds to test and validate the ML models are not available for allosteric of cryptic binders. By 67 

informatically removing potentially allosteric and cryptic DEL binders, we identified enriched compounds 68 

that bind only in the absence of the inhibitor (i.e., orthosteric DEL binders), indicating they are competitive 69 

with the positive control compound, BAY6888. (see Methods: Stratifying enriched DEL molecules and 70 

binder types).  71 
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About 444K orthosteric DEL binders were identified for CK1𝛼 from the HG1B DEL, whereas 3.2K 72 

and 156K orthosteric DEL binders were identified out of MS10M and DD11M DELs, respectively. At the 73 

same time, for CK1δ, about 432K, 3.5K and 58K orthosteric DEL binders were identified from HG1B, 74 

MS10M and DD11M libraries, respectively (Supplementary Fig. 1). The enrichment scores for DEL 75 

compounds from the three libraries screened showed a variable distribution and range for CK1𝛼/ 76 

(Supplementary Fig. 2). Across DEL libraries, the magnitude of the enrichment is not comparable as 77 

different protocols were used to calculate the enrichment (see Methods: DEL Data deconvolution and 78 

enrichment score calculation). 79 

Five different machine learning (ML) models were trained using screening results from each of the 80 

three DELs. These models include Multi-layer Perceptron (MLP)34, Support Vector Machine (SVM)36, 81 

Random Forest (RF)33, Extra Gradient boosting (XGB)37, and Graphical Neural Network (ChemProp)35. A 82 

step-by-step workflow for ML model training, tuning, assessment is shown in Supplementary Fig. 3. The 83 

workflow was executed for fifteen DEL+ML combinations (three DELs and five ML models). A balanced 84 

training set was built using enriched, orthosteric DEL molecules and not-enriched DEL molecules from each 85 

DEL for model training (see Methods: Training datasets; Supplementary Table 1). Notably, only the DEL 86 

selection data and ML techniques described herein were used in building these models. No prior information 87 

regarding known ligand data was used in model training, and no explicit representation of the protein targets 88 

or 3D data was used. All models were tuned and then tested using an in-DEL 20% hold-out dataset (see 89 

Methods: Cross-validation and parameter tuning) and an independent validation dataset of known CK1𝛼 90 

and CK1δ binders (non-DEL compounds, see Methods: Validation and blind assessment datasets).  91 

Each ML model trained to predict CK1𝛼 and CK1δ binders was separately used to discover hits 92 

(i.e., orthosteric binders) from a blind assessment set of 140K in-house compounds (referred to as Broad 93 

Compound Collection or Broad CC). Results of chemical space analyses (Fig. 2; Methods: tSNE analysis) 94 

of training datasets generated from three DELs and the validation dataset (i.e., literature-curated38 and in-95 

house set of known binders to CK1𝛼/) in the context of Broad CC showed that the blind assessment 96 

dataset covers a large chemical space, including the space occupied by known binders. Notably, we 97 

observed a vast difference in the chemical space coverage by three different DELs, with the HG1B and 98 

MS10M showing the most and least diversity and overlap with the Broad CC (Fig. 2). An ensemble method 99 
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was applied to select compounds from the set of predicted binders by different ML models from Broad CC, 100 

simultaneously accounting for model diversity and chemical diversity (see Methods: Compound selection 101 

for experimental validation).  102 

Experimental validation followed a traditional two-step approach: a primary screen at two 103 

compound concentrations, followed by dose−response bindings assays to confirm hits from the primary 104 

screen (see Methods: Protein production and assay methods). In total, 808 compounds predicted as 105 

binders were tested in the primary biophysical assay (two doses): 237 by the MS10M DEL trained models, 106 

283 by the HG1B DEL trained models, and 288 by the DD11M DEL trained models. Of these, 126 (16%, 107 

126/808) were verified as primary hits, and 80 (10%, 80/808) were confirmed as binders in dose-dependent 108 

binding assay (Supplementary Table 2). At the same time, 83 out of 88 (94%) compounds predicted as 109 

not-binders were confirmed not to bind to the target proteins. 110 

 111 

Performance of ML models for three DEL libraries 112 

Each ML model developed in this study was tuned over five-fold cross-validation within the 80% of the 113 

training data from a DEL (positives and negatives, Supplementary Table 1) to find the optimal set of 114 

parameters for the ML algorithms (Supplementary Table 3). Parameters were tuned to achieve the best 115 

accuracy at a fixed false discovery rate of 5% or 95% precision (see Methods: Cross-validation and 116 

parameter tuning). After parameter tuning, the models were evaluated using 20% hold-out molecules in the 117 

respective DEL library. We refer to this assessment as “in-DEL hold-out test”. Finally, all models were 118 

trained on 100% of the DEL positive and negative data and were tested with a validation set of known 119 

binders (non-DEL compounds), composed of literature hits (Supplementary Table 4) and internal hits (see 120 

Methods: Validation and blind assessment datasets). We refer to this assessment as “independent 121 

validation” (results are shown in Table 1). Results of the in-DEL hold-out test and the independent test of 122 

models trained using all three DELs are shown in Fig. 3 and Table 1, respectively. Molecules were 123 

represented with 2048-bit morgen fingerprints for training MLP, SVM, RF and XGB models and graphical 124 

neural network generated features for training ChemProp (see Methods: Feature representation).  125 

The in-DEL test performances of ML models across three DELs showed that the balanced accuracy 126 

of models trained using MS10M, HG1B, and DD11M DELs on the 20% hold-out set were approximately 127 
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95%, 55%, and 90%, respectively. The ChemProp models demonstrated the highest accuracies for all in-128 

DEL hold-out tests (about 1-3% higher accuracy across DELs; Fig. 3). Interestingly, although the “in-DEL” 129 

test performance of the ML models trained using HG1B DEL was lower compared to those trained using 130 

MS10M and DD11M DELs (Fig. 3), models trained using HG1B DEL correctly identified most binders in 131 

the non-DEL validation set (Table 1). This result indicates that models trained using HG1B data, which was 132 

the largest DEL screened (1B molecules) and covered the most diverse chemical space relative to the two 133 

other DELs screened (Fig. 2), was best able to predict binders outside the in-DEL chemical space. Similar 134 

to the in-DEL hold-out test, ChemProp model showed the best performance in correctly predicting binders 135 

to CK1𝛼 (48%, 107 out of 221) and CK1 (45%, 212 out of 476) in the validation set across three DELs 136 

(Table 1), while RF was the lowest performing model. 137 

Additionally, we repeated the model training for MLP, SVM, RF and XGB by including six different 138 

physicochemical properties into the feature representation of the molecules (see Methods: Feature 139 

representation) and carried out the above-mentioned in-DEL hold-out test and independent validation. 140 

Notably, the inclusion of physicochemical properties in feature representations did not show improvement 141 

in the performance (Supplementary Fig. 4 and Supplementary Table 5). Thus, for MLP, SVM, RF and 142 

XGB models, we report results from the 2048-bit feature only in the rest of the paper. For training the 143 

ChemProp35 model, the molecules were represented using features generated by the graphical neural 144 

network, embedded in ChemProp software package. 145 

 146 

Analyses of predicted and confirmed hits identified by ML 147 

Five ML models trained using screening results from each DEL to predict binders for CK1𝛼 and CK1δ were 148 

used to nominate compounds as binders and not-binders from the blind assessment dataset, referred to as 149 

BroadCC (Broad Compound Collection), a set of 140K drug-like compounds with a broad chemical diversity 150 

(Fig. 2 and Fig. 4). The selection of compounds from predicted binders was performed to ensure the model 151 

diversity (i.e., contribution of each of five ML models was considered) and chemical diversity of compounds, 152 

that is, predicted compounds were clustered to pick a diverse set of representatives from the chemical 153 

space covered by the BroadCC compound set (see Methods: Compound selection for experimental 154 

validation). A total of 808 distinct compounds, 237, 283, and 288 from the predicted binders by models 155 
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trained using MS10M, HG1B, and DD11M, respectively, was selected for experimental validation in the 156 

primary assay.  157 

Analyses of the physicochemical properties of the selected compounds showed that most 158 

compounds had drug-like properties, with compounds selected by models trained using HitGen DEL having 159 

the most drug-like properties (Supplementary Fig. 5). About 65% of the predicted binders prioritized for 160 

experimental testing have MW  500 Da, and the fraction of compounds predicted as binders with drug-like 161 

properties increases to 83% when accounting for predictions by models trained using the HitGen DEL 162 

alone; the library composed of the most drug-like molecules. Additionally, the chemical space coverage 163 

analysis showed that the selected compounds predicted for experimental testing covered a diverse 164 

chemical space and are contributed by different ML models and DELs (Fig. 4a). To further check whether 165 

training using a specific DEL data set influences the sampling of predicted binders by ML models, we 166 

quantified the pairwise Tanimoto distance between compounds selected by pairs of DELs (e.g., 237 and 167 

283 compounds selected from the Broad CC by models trained using MS10M and HG1B DELs, 168 

respectively) and between two sets of randomly selected compounds from the Broad CC to match the 169 

above selected compounds (237 and 283 compounds). Noticeably, the cross-DEL, pair-wise distance 170 

between selected compounds were smaller compared to randomly selected sets of compounds from the 171 

BroadCC compound set (Supplementary Fig. 6), indicating that the ML predictions are different from 172 

random sampling and the training DEL data influence the ML models’ predictions of compounds and their 173 

properties and chemical space.   174 

 175 

Primary and confirmed hit rate of DEL+ML pipeline 176 

Compounds predicted as binders by the ML models and selected for experimental validation from the 177 

BroadCC dataset (Fig. 4a) were tested in a Surface Plasmon Resonance (SPR) binding assay against both 178 

CK1𝛼 and CK1δ (see Methods: Protein Production and Assay Methods). First, the compounds were tested 179 

at two concentrations (10 M and 30 M); compounds with an %Rmax > 10%, which showed an increase 180 

in response at the higher concentration, were identified as primary hits. In total, 126 (16% of 808) 181 

compounds were categorized as primary hits; of these, 42 (out of 237), 54 (out of 283), and 30 (out of 288) 182 

were predicted by models trained using MS10M, HG1B, and DD11M, respectively. Next, the primary hits 183 
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were tested in a dose-response confirmation SPR assay. Compounds resulting in an %Rmax >= 15% at 184 

50M, which showed a dose-dependent binding, were identified as confirmed binders (or hits). Overall, 80 185 

compounds were confirmed as binders out of 808 that were selected for experimental validation, resulting 186 

in a 10% hit rate. The list of confirmed binders identified for CK1𝛼/d from different DEL+ML combinations 187 

is given in Supplementary Table 2.  188 

Although the primary hit rates from MS10M (18%, 42 out of 237) and HG1B (19%, 54 out of 283) 189 

were comparable, the HG1B DEL-trained models provided the highest confirmed hit rate (15%) compared 190 

to that of 10% and 5% by MS10M and DD11M DELs (Table 2), demonstrating the effectiveness of the large 191 

HG1B DEL and its broad chemical diversity in identifying a higher number of confirmed hits. Comparing the 192 

hit rates across different ML models, we further observed that the ChemProp outperformed other ML 193 

models in identifying confirmed binders (hit rate = 16%, hit count = 32; Table 2), which is consistent with 194 

the performance evaluation results from the in-DEL test and validation set of known binders (Fig. 3 and 195 

Table 1). The ML models RF and MLP resulted the same hit rate of 11%; however, the total number of 196 

confirmed binders predicted by RF was lower compared to MLP (8 versus 24; Table 2). 197 

Concomitantly with the predicted binders, we tested 88 predicted not-binders in the confirmation 198 

assay, and 94% (83 out of 88) of those were confirmed as not binding to the target proteins. This set of 199 

confirmed not-binders includes 29 (out of 30), 14 (out of 16), and 40 (out of 42) predicted not-binders by 200 

model trained using MS10M, HG1B, and DD10M, respectively.  201 

 202 

Analyses of confirmed binders identified by DEL+ML pipeline 203 

The 80 confirmed binders of CK1/ identified in this study had molecular weights of between 400-500 Da 204 

and showed a range of binding affinities (Supplementary Table 2). Eight confirmed binders showed KD 205 

values between 20 – 50 M (3, 2, and 3 compounds identified by models trained using MS10M, DD11M, 206 

and HG1B DEL, respectively. Notably, the HitGen DEL trained models identified four compounds with KD 207 

values between 0.06 – 6 M, including a nanomolar binder to CK1/ (KD for CK1 = 308 nM and KD for 208 

CK1 = 187 nM; Table 3). Additionally, the DOS-DEL trained models identified one nanomolar binder (KD 209 

for CK1 = 161 nM and KD for CK1 = 69.6 nM; Table 3). The top two tight binders were identified by 210 

DEL+ML combinations HG1B+MLP and DD11M+ChemProp, are shown in Table 3 with their screening 211 
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results and properties. For the remaining 67 confirmed hits, the KD was greater than 50 M (Supplementary 212 

Table 2). 213 

The chemical space analyses of the confirmed binders demonstrated the utility of employing 214 

multiple different ML models contributing to sampling diverse chemical space (Fig. 4b). Specially, the 215 

chemical space of the BroadCC dataset probed by the two best performing neural network-based methods 216 

ChemProp and MLP were relatively different.  217 
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Discussion  218 

DNA-encoded library (DEL) screening is a widely used approach to identify novel small molecules that bind 219 

a specific target39-41; the technology has been shown powerful in discovering novel ligands for diverse target 220 

types (enzymes, PPIs and folding chaperones, chromatin-related, etc.)42-45 and different ligand types (e.g., 221 

covalent or non-covalent small molecules, bifunctional degraders, molecular glues)46-51. One of the key 222 

advantages of the DEL screening technology is the large amount of data detailing both binders and non-223 

binders from the screens, which is ideal for training ML models for scalable and efficient virtual screening 224 

of large, readily accessible small-molecule libraries28,29,52,53. For example, McCloskey et al.28 successfully 225 

performed ML modeling on data obtained from DEL screenings (an X-Chem in-house DEL) of three targets 226 

(sEH, ERα and c-KIT) to identify potent compounds that were contained in the DEL used for screening. 227 

Another example came from Xiong et al.53, who screened an in-house 30M-member DEL against TIGIT 228 

and then employed ML to identify TIGIT inhibitors. In this study we performed the first systematic analysis 229 

comparing three different DNA-encoded libraries (DEL) and five different machine learning models in a 230 

DEL+ML pipeline (Fig. 1), to identify novel binders to two paralog proteins (CK1𝛼/). The results provided 231 

a better understanding of how different DEL library sizes and inter-library diversity of DEL molecules as 232 

well as different ML algorithms influence hit discovery.  233 

Our analyses revealed that the library size and diversity of molecules in the library do not 234 

necessarily correlate. While the largest DEL screened in our study, HG1B (HitGen OpenDEL®, 1 billion 235 

molecules), showed the highest diversity in the chemical space coverage (Fig. 2), the chemical space 236 

coverage by DD11M (DOS-DEL)32 was significantly higher compare to MS10M (MilliporeSigma DEL, ~10 237 

million molecules), which is approximately the same size as DD11M (~11 million molecules). The observed 238 

difference in chemical space coverage by MS10M and DD11M affected the performance of ML models in 239 

correctly predicting known binders of CK1𝛼/ (non-DEL compounds). The HG1B and DD11M trained ML 240 

models consistently outperformed the same ML models trained using MS10M DEL molecules (Table 1), 241 

indicating that chemical space diversity is more important than library size when using ML models to virtually 242 

screen hits.    243 

An intriguing observation from the analyses of predictive accuracies from ML models trained on 244 

different DELs was a relatively low in-DEL accuracy from HG1B-trained models (Fig. 2), but high 245 
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performance in accurately predicting known binders to the targets (validation set) as well as predicting novel 246 

binders from the blind compound set, Broad CC (Table 1). We speculate that multiple factors contributed 247 

to this result. For one thing, the intra-DEL molecules of HG1B DEL are diverse enough to make the in-DEL 248 

test a hard problem, which also makes the ML models trained with the HG1B generalizable and robust 249 

enough to identify non-DEL, novel binders. Furthermore, the t-SNE analyses of the libraries showed that 250 

the HG1B DEL CK1𝛼/ orthosteric binders (i.e., positives) are relatively closer to the known binders 251 

(validation set comprised of literature and internal hits; Fig. 2) and to the overlapping t-SNE space of 252 

compounds in the blind assessment set (Broad CC), compared to two other DELs. Notably, although 253 

DD11M-trained models were the second-best in predicting known binders after HG1B-trained models 254 

(Table 1), most binders predicted by DD11M-trained models from the Broad CC didn’t confirm in the 255 

experimental validation (highest confirmed hit rate by HG1B-trained models, 15% and lowest hit rate by 256 

DD11M-trained models, 5%; Table 2). We speculate that the lower confirmation hit rate from the DD11-257 

trained models is attributed to comparatively less drug-like physicochemical properties of DOS-DEL 258 

molecules (Supplementary Fig. 5) and the lack of overlap between the chemical space of the DD11M 259 

library and the blind assessment set, Broad CC (Fig. 2). In summary, we observe that the intra-DEL 260 

chemical diversity of DEL molecules and the relative closeness of the DEL molecules to non-DEL 261 

compounds positively contributes to ML models’ generalizability and robustness in identifying novel binders. 262 

Concomitantly with multiple DELs, we tested multiple ML algorithms in our DEL+ML hit discovery 263 

pipeline, and compared the five different ML models’ performances using data from each DEL (Fig. 3, 264 

Tables 1-2). The neural network models (MLP and ChemProp) excelled in their performances compared 265 

to the traditional ML models (SVM, RF and XGB) in predictive accuracy, which is in line with recent 266 

studies30. In total, 24 out of 217 (11%) compounds predicted to bind by MLP and 32 out of 206 (16%) 267 

compounds predicted to bind by ChemProp were confirmed in dose-response (Table 2). However, 268 

interestingly, the confirmed hits predicted by ChemProp models were sampled mostly from a focused 269 

chemical space (Fig. 4b), overlapping with the known binders, in contrast to MLP models which sampled 270 

hits from a more diverse space. Different feature representations of molecules (2048-bit Morgan 271 

fingerprints, with and without six physicochemical properties) did not impact the outcome of the ML models 272 

(Fig. 3 and Supplementary Fig. 4). While this may not always be the case, in future studies such as those 273 
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described herein, the speed of generating fingerprints and relative performance gain will be the primary 274 

factor in selecting the feature representation. 275 

The confirmed hits discovered by our DEL+ML pipeline ranged in affinity from triple digit micromolar 276 

to double digit nanomolar with most of the molecules being weak binders (Table 3 and Supplementary 277 

Table 2). Two nanomolar binders were identified as confirmed hits, one from the MLP model trained on 278 

data from the HitGen OpenDEL and one from the ChemProp model trained on the DOS-DEL data. The 279 

majority of the in-DEL HitGen molecules had drug-like properties and most of the molecules selected by 280 

the ML models trained on the HitGen DEL data had drug-like properties (Supplementary Fig. 5). The 281 

compounds from the HitGen DEL trained models that were tested were, in general, more soluble than the 282 

compounds tested from the other library datasets. To improve the hit rate in similar studies, filtering both 283 

the DEL datasets used and the predicted binders for more drug-like compounds would be beneficial. 284 

In summary, in this study, we demonstrate the effectiveness of utilizing extensive DEL screening 285 

data in conjunction with machine learning models for the discovery of novel, drug-like hits beyond the 286 

conventional DEL chemical space. The DEL+ML workflow allowed us to probe into a drug-like existing 287 

library of easily synthesizable compounds, enabling the experimental testing of in total 808 compounds 288 

(with a 10% hit rate), which is unlikely to be the case if we were to resynthesize molecules out of a DEL 289 

screen. Additionally, our approach incorporating multiple DEL libraries and multiple ML models allowed for 290 

a comprehensive comparative assessment of DEL libraries of different sizes and chemical space coverage 291 

across traditional (RF, SVM, XGB) and non-traditional (deep-neural network-based models, e.g., 292 

ChemProp and MLP) machine learning algorithms. Our method also demonstrated the ability to identify 293 

validated not-binders to the target proteins (CK1/) as well as confirmed binders. We released the two 294 

best-performing ML models (ChemProp and MLP) in an open-source GitHub repository 295 

(https://github.com/broadinstitute/DEL-ML-Refactor/tree/main) for users to screen compounds (given 296 

SMILES strings) and generate binary predictions for the compounds to be a binder or not-binder to CK1/. 297 

Future directions for this line of research will include improving predictive accuracy for the hit discovery 298 

pipeline, identifying chemically actionable hits for drug discovery programs, and developing a hit-to-lead 299 

pipeline whose input will be the validated confirmed hits identified from a refined version of the pipeline 300 

described here and molecular docking27 to improve the ML models.  301 
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Data and code availability 

A code repository is available at https://github.com/broadinstitute/DEL-ML-Refactor. All data (results) for 

this study is provided as supplementary files.  
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Fig. 1| Schematic of the DEL+ML workflow for hit identification. Three DNA-Encoded Libraries (DEL): MS10M 

(MilliporeSigma DEL, 10M compounds), HG1B (HitGen OpenDEL®, 1B compounds), and DD11M (DOS-DEL, 11M 

compounds), were screened against two proteins CK1𝛼/δ. Both CK1𝛼/δ were screened in presence and absence of 

a potent inhibitor, resulting five selection conditions: a beads-only, no target control, CK1𝛼, CK1𝛼+inh, CK1δ, 

CK1δ+inh (Methods: DEL screening). DEL screening results were informatically processed to stratify positives 

(orthosteric binders to CK1𝛼/δ) and negatives (not binders to CK1𝛼/δ) for training five machine learning (ML) models 

(Methods: Stratifying enriched DEL molecules and binder types). These models are: Multi-layer Perceptron (MLP), 

Support Vector Machine (SVM), Random Forest (RF), Extra Gradient boosting (XGB), and Graphical Neural Network 

(ChemProp). All ML models were tested using an independent validation set of known binders to CK1𝛼/δ and applied 

to a bind assessment set of 140K compound collection for predicting binders and not-binders (Supplementary Fig. 

3; Methods: Validation and blind assessment datasets). A selected set of predicted binders and not-binders were 

finally tested in a biophysical SPR assay to identify confirmed binders and not-binders (Methods: Protein Production 

and Assay Methods).  
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Fig. 2| Chemical space comparison for DEL training dataset, validation set (known binders to CK1𝛼/δ), and 

blind assessment set screened for hit discovery. The output of t-distributed stochastic neighbor embedding (t-

SNE) analysis performed separately for three DELs, MilliporeSigma (MS10M) DEL, HitGen OpenDEL (HG1B), and 

DOS-DEL (DD11M) are shown in (a), (b), and (c), respectively. The Broad CC is the blind assessment set of 140K 

compounds used to predict hits by the ML models. The known binders or validation set include literature-curated hits 

and in-house set of binders to CK1𝛼 and CK1δ.  
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Fig 3| Comparison of in-DEL hold-out test performances of ML models. The models were trained using data 

from three DELs (80%) and tested using in-DEL hold-out set (20%). The feature representation for the molecules 

was 2048 bits Morgan fingerprints for MLP, SVM, RF, and XGB. The ChemProp model internally generated graphical 

neural network-based features to represent the molecules (Methods: Feature representation). The reported 

balanced accuracy, MCC, F1 score, and recall indicates the binary classification performance (Methods: ML 

performance evaluation metrics) of the five ML models in correctly predicting orthosteric DEL binders of CK1 and 

CK1.  
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Table 1. Validation of ML models on an independent set of known binders for CK1𝛼 and CK1δ, 

curated from literature (called "literature hits") and available in house ("internal hits"). The reported 

numbers indicate the number of correctly predicted binders for the respective target protein by the ML 

models trained using the corresponding DEL data. The feature representation for the molecules was 2048 

bits Morgan fingerprints for MLP, SVM, RF, and XGB models and graphical neural network-based features 

for ChemProp model (Methods: Feature representation). 

   
CK1𝛼 CK1δ 

  
Literature hits 

(15) 
Internal hits 

(206) 
Literature hits 

(245) 
Internal hits 

(231) 

Multi-Layer Perceptron (MLP) MS10M DEL 0 0 0 0 

HG1B DEL 1 12 25 80 

DD11M DEL 2* 22 55 27 

Support Vector machine (SVM) MS10M DEL 0 0 0 0 

HG1B DEL 0 0 5 0 

DD11M DEL 2* 7 9 6 

Random Forest (RF) MS10M DEL 0 0 0 0 

HG1B DEL 0 0 1 0 

DD11M DEL 0 0 0 0 

Extra-Gradient Boosting (XGB) MS10M DEL 0 0 0 0 

HG1B DEL 1 27 8 40 

DD11M DEL 2* 11 0 0 

Graphical Neural Network 
(ChemProp) 

MS10M DEL 0 0 1 3 

HG1B DEL 2* 105* 88 124* 

DD11M DEL 0 3 122* 39 

 
Bold indicates the best performance from a ML model across three DEL libraries. 
* indicates the best overall performance by a DEL+ML combination for a dataset. 
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Fig 4| Chemical diversity of predicted binders, selected from Broad Compound Collection (Broad CC) for 

experimental validation, and confirmed binders in biophysical assay in a dose-dependent manner. Each 

panel shows the output of t-distributed stochastic neighbor embedding (t-SNE) analysis for the blind assessment set 

(Broad CC) used to discover hits, with predicted binders selected for experimental validation in (a) and binders 

confirmed in biophysical assay in (b) highlighted in colors. The plots are separately colored by the DELs the ML 

models are trained on (left) and the ML models (right) predicted the compound as a binder. 
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Table 2. Confirmed hit (i.e., binder) count and hit rate from different DEL+ML combinations. 
 

(a) Confirmed hit count and hit rate per DEL 

DEL Number of compounds selected 
for experimental validation 

Number of compounds 
identified as confirmed binders 

Hit Rate 

MilliporeSigma (MS10M) 237 23 10% 

HitGen (HG1B) 283 43 15% 

DOS-DEL (DD11M) 288 14 5% 
    

(b) Confirmed hit count and hit rate per ML 

ML Number of compounds selected 
for experimental validation 

Number of compounds 
identified as confirmed binders 

Hit Rate 

Multilayer-Perceptron 
(MLP) 

217 24 11% 

Support Vector Machine 
(SVM) 

149 7 5% 

Random Forest (RF) 73 8 11% 

Extra Gradient Boosting 
(XGB) 

163 9 6% 

Graphical Neural Network 
(ChemProp) 

206 32 16% 

 
Bold indicates the best performance. 
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Table 3. Top binders to CK1a/d discovered by the DEL+ML pipeline. 

 
Compound CK1 CK1 ML DEL MW 

(Da) 
logP 

 
Ka  

(M-1s-1) 
Kd  
(s-1) 

KD 
(nM) 

Ka  
(M-1s-1) 

Kd  
(s-1) 

KD 
(nM) 

    

BRD1755  5.43e+08 1.67e+02 308 3.35e+05 6.25e-02 187 MLP HitGen 332.3 3.336 

 

 

 

    

BRD3340  2.49e+09 4.01e+02 161 8.09e+05 5.63e-02 69.6 ChemProp DOS-
DEL 

399.4 3.028 
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Methods 302 

DEL Selection and Data Analysis.  303 

DNA-Encoded Libraries. We screened three DNA-Encoded Libraries (DELs) with diverse properties for a 304 

comprehensive cross-DEL evaluation. These libraries were chosen based on their different underlying 305 

chemistries and building block compositions. The libraries included in this study are: (1) the MilliporeSigma 306 

10 million compound DEL comprised of peptide-like molecules (referred to as MS10M), (2) the HitGen 307 

OpenDEL library comprised of 1 billion drug-like molecules (referred to as HG1B) consisting of 15 sub-308 

libraries, and (3) the Diversity Oriented Synthesis (DOS)-DEL library15,32 comprised of approximately 11 309 

million molecules (referred to as DD11M), generated using the diversity-oriented synthesis approach. The 310 

DD11M DEL is a combined set of a 6.67M molecule DOS-DEL and a 3.7M molecule DOSEDO DEL32.   311 

 312 

DEL Screening. All DEL screens included the following five conditions: (1) streptavidin immobilization 313 

beads alone (blank), (2) CK1𝛼 captured on beads (CK1𝛼), (3) CK1𝛼 captured on beads in the presence of 314 

10uM BAY6888 (CK1𝛼+inh), (4) CK1δ captured on beads (CK1δ), and (5) CK1δ captured on beads in the 315 

presence of 10uM BAY6888 (CK1δ+inh). The base buffer, screening buffer, blocking buffer, and DEL buffer 316 

used for the DEL screens of the MS10M DEL (Sigma DYNA002-5VL) and the HG1B (HitGen) were the 317 

same. All buffer components were prepared from powder in nuclease-free water (Growcells UPW-1000). A 318 

base buffer of 50 mM HEPES pH7.5, 50 mM NaCl, 10 mM MgCl2, 0.5 mM TCEP, and 2% DMSO was 319 

prepared. The screening buffer was prepared by adding TWEEN-20 (Cytiva Life Sciences) to the base 320 

buffer to a final concentration of 0.05%. Blocking buffer was prepared by adding to the base buffer TWEEN-321 

20 to a final concentration of 0.05% and D-biotin (MilliporeSigma #B0301) to a final concentration of 100 322 

uM. DEL buffer was prepared by adding to the base buffer TWEEN-20 to a final concentration of 0.05% 323 

and herring sperm DNA (MilliporeSigma #D7290) to a final concentration of 0.01 mg/ml. The elution buffer 324 

used for screening the MS10M DEL was 10mM Tris pH 8.5, 0.05% TWEEN-20 in nuclease-free water. The 325 

elution buffer used for screening the HG1B DEL was the same as the screening buffer. 326 

Protein was immobilized by incubating 250 pmol of protein and 15 ul of streptavidin Dynabeads 327 

slurry (ThermoFisher #65001) at room temperature for 45 minutes with mixing. DEL selections that included 328 

BAY6888 used a compound concentration of 10 uM in DEL buffer with a final DMSO concentration of 2%. 329 
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The MS10M DEL screens were performed using the manufacturer's protocol. The HG1B screens were 330 

performed similarly. After the 1st round of elution, the elution sample (50 uL) was divided into two portions: 331 

5 uL reserved for the following QC/PCR amplification, while 45 uL was mixed with a freshly prepared 332 

immobilized protein under the identical screening condition. The incubation, washing, and elution steps 333 

were repeated. A total of three rounds of selection were performed. The elution from each round was 334 

analyzed by qPCR along with a standard curve provided by the DEL kit manufacturer. The results were 335 

used to calculate the copy number of each sample. In subsequent steps, samples with copy numbers 336 

between 107 and 108, corresponding to the 2nd round of selections, were used. 337 

PCR amplification of the eluted samples was performed using a standard PCR protocol and PCR 338 

primers provided by the manufacturer. PCR products were purified from 2% agarose gel using a Qiagen 339 

Gel Extraction Kit (#28706X4). All samples for the selections performed with the MS10M and HG1B DELs 340 

were sent to Azenta Inc. for sequencing. Azenta prepared the samples for sequencing by adding closing 341 

DNA tags that encoded the specific selection condition of each sample (ex. CK1𝛼 with 10uM BAY6888). 342 

Sequencing was performed using Illumina HiSeq sequencing with 2x150 base pairs, ~350 million PE reads, 343 

and a single index. 344 

The DEL screening with DOS-DEL was conducted using a KingFisher Duo Prime (Thermo 345 

Scientific) in a 96-well deepwell plate (Thermo Scientific 95040452) at room temperature. The buffers used 346 

are ‘B Buffer’ containing 25 mM HEPES pH 7.4, 150 mM NaCl, 10 mM MgCl2, and 0.05% Tween-20 (w/v); 347 

‘S Buffer’ containing 25 mM HEPES pH 7.4, 150 mM NaCl, 10 mM MgCl2, 0.05% Tween-20 (w/v), and 348 

0.3 mg/mL Ultrapure Salmon Sperm DNA (ThermoFisher Scientific 15632011). Dynabeads™ MyOne™ 349 

Streptavidin C1 (ThermoFisher #65001, 20 µL per sample) were washed three times with B buffer before 350 

protein immobilization. The proteins (CK1𝛼 or CK1δ) were diluted to 2.5 µM in B buffer (100 µL per sample) 351 

and immobilized to the washed beads (1 h, medium mix). The beads were washed once with B buffer 352 

(200 µL), once with S buffer (200 µL), and once with S buffer containing 2% DMSO or 10 uM BAY6888 (2% 353 

DMSO, 200 µL) (3 min each, medium mix). The beads were transferred to the DOS-DEL library (1 million 354 

copies per library member, 100 µL in S buffer containing 2% DMSO or 10 uM BAY6888) and incubated 355 

(1 h, medium mix). The beads were then washed once with S buffer containing 2% DMSO or 10 uM 356 

BAY6888 (200 µL) and twice with B buffer containing 2% DMSO or 10 uM BAY6888 (200 µL) (3 min each, 357 
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medium mix). The beads were transferred to B buffer (100 µL) and heated (95°C, 5 min) to elute DEL 358 

compounds into the supernatant. The supernatant (20 μL) was restriction digested by StuI (0.1 μL, NEB 359 

R0187) in 1× SmartCutter buffer (56.5 μL, NEB B7204S) per sample (37°C, 1 h) and cleaned up using the 360 

ChargeSwitch PCR Clean-Up Kit (Thermo Scientific CS12000). The barcodes of the eluted DEL were PCR 361 

amplified using i5 index primer (3 μL of 10 μM stock in water), i7 index primer (3 μL of 10 μM stock in water), 362 

cleaned up elution samples (19 μL), and Phusion® High-Fidelity PCR Master Mix with HF Buffer (NEB 363 

M0531L) (25 μL of 2×). The PCR method is as follows: 95°C for 2 min; 19 cycles of 95°C (15 s), 55°C (15 364 

s), 72°C (30 s); 72°C for 7 min; hold at 4°C. The PCR products were pooled in equimolar amounts, and the 365 

187 bp amplicon was gel purified using 2% E-Gel EX Agarose Gels (ThermoFisher Scientific G401002) 366 

and the QIAquick Gel Extraction Kit (Qiagen 28704). The DNA concentration was measured using the Qubit 367 

dsDNA BR assay kit and sequenced using a HiSeq SBS v4 50 cycle kit (Illumina FC-401-4002) and HiSeq 368 

SR Cluster Kit v4 (Illumina GD-401-4001) on a HiSeq 2500 instrument (Illumina) in a single 50-base read 369 

with custom primer CTTAGCTCCCAGCGACCTGCTTCAATGTCGGATAGTG and 8-base index read with 370 

custom primer CTGATGGAGGTAGAAGCCGCAGTGAGCATGGT. 371 

 372 

DEL Data deconvolution and enrichment score calculation. DEL data deconvolution (i.e., decoding 373 

DNA sequence to retrieve the structure of the small molecule) for three different libraries was performed 374 

differently.  375 

For MS10M DEL, the data deconvolution was performed by the provider of the DEL using an in-376 

house bioinformatic pipeline developed by DyNAbind GmbH. That pipeline was used to calculate Z-scores 377 

for molecules present in the sequencing output (see Equation 1; hit count = the number of times a molecule 378 

is present in the sequencing output,  = mean,  = standard deviation, and cond = a selection condition). 379 

We were supplied with the chemical structures and corresponding Zscores of all molecules with Z-scores 380 

> 5. 381 

𝑍𝑚𝑜𝑙,𝑐𝑜𝑛𝑑 =  
ℎ𝑖𝑡 𝑐𝑜𝑢𝑛𝑡𝑚𝑜𝑙,𝑐𝑜𝑛𝑑 − (ℎ𝑖𝑡 𝑐𝑜𝑢𝑛𝑡𝑠𝑐𝑜𝑛𝑑)

𝜎ℎ𝑖𝑡 𝑐𝑜𝑢𝑛𝑡𝑠𝑐𝑜𝑛𝑑

                             (1) 382 

 383 
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Data deconvolution for the HG1B DEL was carried out using YoDEL (https://www.cephalogix.com), 384 

a comercial Python-based application. Using the YoDEL software package, we calculated the hit count and 385 

effect size per DEL molecule present in the sequencing output using Equation 2.  386 

𝐸𝑓𝑓𝑒𝑐𝑡 𝑆𝑖𝑧𝑒𝑚𝑜𝑙 =  
𝑘𝑐𝑜𝑢𝑛𝑡 − 𝑝𝑜𝑖𝑙𝑎𝑚𝑑𝑎

√𝑝𝑜𝑖𝑙𝑎𝑚𝑑𝑎

                             (2) 387 

Here, 388 

kcounts = number of counts observed for a given condition 389 

poilambda = (tagct / Ntotaltags)  nselectioncount 390 

tagct = number of tags encoding the combination of interest 391 

Ntotaltags = total number of encoding tag combinations within the library 392 

nselectioncount =   number of sequences collected for the library + selection condition 393 

 394 

DOS-DEL data deconvolution was performed following the published methods15,29, resulting in a 395 

calculated enrichment ratio of all molecules present in the sequencing output, reported as the lower bound 396 

of 95% confidence interval.  397 

 398 

Stratifying enriched DEL molecules and binder types. For each DEL library, MS10M, HG1B and 399 

DD11M, we obtained DEL screening results for five selection conditions, CK1𝛼, CK1𝛼+inhibitor 400 

(CK1𝛼+inh), CK1δ, CK1δ+inhibitor (CK1δ+inh), and a beads-only control (blank). For the CK1𝛼 and CK1δ 401 

conditions, 2.5uM of the target protein was added to the assay. For the CK1𝛼+inh and CK1δ+inh conditions, 402 

10uM of a known orthosteric inhibitor, 10uM BAY6888, was also added. For the blank condition, no protein 403 

or inhibitor was added. To select enriched DEL binder molecules and build datasets for training ML models, 404 

we set a threshold on the enrichment score or effect size (see Methods: DEL Data deconvolution and 405 

enrichment score calculation) above which a molecule was classified as a “binder” for a given selection 406 

condition (CK1𝛼, CK1𝛼+inh, CK1δ, CK1δ+inh). The enrichment scores and thresholds differed across the 407 

three DELs, but were consistent across all selection conditions within each DEL. 408 

 For MS10M, a DEL molecule was considered enriched if the following two conditions were met (as 409 

recommended by the DEL provider): (1) molecule’s Z-score >= 5.0 in the selection condition with protein 410 

and (2) molecule’s Z-score in the selection condition with protein > molecule’s Z-score in the blank 411 
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condition. In total, 17,050 out of 10M molecules in MS10M DEL were identified as enriched. The HG1B 412 

consisted of 1B molecules. After deconvolution of DEL screening results, we obtained hit counts and effect 413 

size for 2.5M molecules. Then, we selected the top 25% of 2.5M molecules with an effect size > 0 in each 414 

of the selection conditions in presence of the protein (CK1𝛼, CK1𝛼+inh, CK1δ, CK1δ+inh) and filtered out 415 

any molecules with an effect size >= 0 in the blank condition, to obtain the set of enriched molecules 416 

(Supplementary Fig. 1). For DD11M DEL, 582K molecules were retrieved after deconvolution. Similar to 417 

HG1B DEL, we selected the top 25% of the molecules and filtered out any molecule with an enrichment 418 

ratio >= 0 in the blank condition, to generate the set of enriched DD11M molecules (Supplementary Fig. 419 

1).  420 

After filtering the enriched molecules, we stratified sets of molecules enriched in the presence of a 421 

target protein (CK1𝛼 or CK1δ) but not enriched in the condition containing target protein plus inhibitor; these 422 

molecules were classified as orthosteric binders to the target. In contrast, molecules enriched in the 423 

presence of a target protein plus inhibitor (CK1𝛼+inh or CK1δ+inh) but not enriched in the presence of the 424 

target protein alone were classified as cryptic binders to the target. Molecules enriched both in the presence 425 

and absence of the inhibitor are classified as allosteric binders to the target. The counts and distribution of 426 

enrichment scores for orthosteric, allosteric and cryptic DEL binders from three DEL libraries is shown in 427 

Supplementary Fig 1-2.  428 

 429 

Machine Learning: Datasets, Models, and Performance Evaluation  430 

Training datasets. We adopted a general approach for preparing the positive (“DEL binder molecules”) 431 

and negative datasets (“DEL not-a-binder molecules”) from each of the three DELs for developing ML 432 

models. In this study, our goal was to train ML models to identify orthosteric binders of CK1𝛼/d. Therefore, 433 

the positive datasets composed of orthosteric DEL binders only (see Methods: Stratifying enriched DEL 434 

molecules and binder types). The positive datasets for CK1𝛼 and CK1δ were prepared separately out of 435 

each DEL, whereas a single negative dataset was prepared from each DEL.  436 

For MS10M, all orthosteric binders and partially competitive orthosteric binders were combined to 437 

generate the set of positives. Partially competitive binders included binders that were enriched in both 438 

presence and absence of the inhibitor but the Z-score in absence of the inhibitor was two-fold higher than 439 
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that in presence of the inhibitor. The final sets of positives for CK1𝛼 and CK1δ comprised of 3,620 and 440 

4,232 molecules, respectively. To prepare the negative set, we downsampled approximately 9.99M 441 

molecules with Z-Score < 5.0 to 10K molecules (see Methods: Downsampling approach), to generate a 442 

relatively balanced datasets of positives and negatives. For HG1B DEL, orthosteric DEL binders for CK1𝛼 443 

and CK1δ were downsampled from 444K and 432K, respectively (Supplementary Fig. 1), to prepare 444 

positive sets for each paralog protein comprising of 350K molecules. To prepare the negative dataset from 445 

HG1B, we first picked molecules with an effect size > 0 in blank condition and effect size = 0 in four other 446 

conditions, resulting 384k molecules (out of 2.5M molecules that came out of the DEL screening). We then 447 

downsampled the set of 384k molecules to a diverse set of 100k molecules (see Methods: Downsampling 448 

approach). An additional set of 250k molecules from the HG1B library, in which all the enriched molecules 449 

were removed, were sampled to prepare a combined negative set of 350k molecules. For DD11M, we 450 

identified 156K orthosteric DEL binders to CK1𝛼 and 58K orthosteric DEL binders to CK1δ (Supplementary 451 

Fig. 1). At the same time, 98K molecules were identified as not enriched (molecules with an enrichment 452 

ratio > 0 in blank condition and enrichment ratio = 0 in each condition with protein). To generate a balanced 453 

set of positives, we downsampled the CK1𝛼 orthosteric binders from 156K to 98K and used the full negative 454 

set. For CK1δ, we downsampled the negative set from 98K to 58K to match the size of our positive set. 455 

The number of molecules in positive and negative datasets used to train ML models are listed in 456 

Supplementary Table 1. 457 

 458 

Cross validation and parameter tuning. Five-fold cross validation was performed for each model 459 

developed in this study to determine the parameters for the ML models (Supplementary Fig. 3). Model 460 

parameters were tuned for a fixed false discovery rate, FDR <= 5%. For cross-validation, 80% of the DEL 461 

positive and negative datasets were used for training the models and the remaining 20% (hold-out test set) 462 

of the DEL positive and negative molecules were used for evaluating the model performance. The splitting 463 

of the training and test sets for cross-validation was performed using Sci-Kit learn’s RandomizedSearchCV 464 

interface. For MS10M DEL, we ran cross-validation on the entire positive and negative dataset 465 

(Supplementary Table 1). Due to computational constraints, for HG1B and DD11M DELs, we conducted 466 
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cross-validation using a 25k sub-sample of the data. Final parameters used for model training are reported 467 

in Supplementary Table 3.  468 

 469 

Validation and blind assessment datasets. In addition to cross-validation within the training datasets, we 470 

tested the ML models on a set of known binders to CK1𝛼 and CK1δ, referred to as the validation dataset. 471 

The validation datasets comprised of first, known binders in the literature collected from Pharos database38 472 

(15 and 254 binders for CK1𝛼 and CK1δ, respectively; referred to as literature hits; Supplementary Table 473 

4) and second, binders identified from our previous screening campaigns (206 and 231 binders for CK1𝛼 474 

and CK1δ, respectively; referred to as internal hits). The internal hits included had an IC50 <1 μM in a 475 

biochemical assay and Kd < 10 μM in a biophysical SPR assay. The blind assessment of ML models was 476 

performed on an internal compound collectionof 140K drug-like molecules with a diverse chemical space 477 

coverage (referred to as blind assessment set or Broad CC) (Fig. 4). 478 

 479 

Downsampling approach. The downsampling approach included performing clustering of molecules using 480 

MiniBatch KMeans algorithm, implemented in Sci-Kit Learn54, based on their molecular fingerprints (FPs) 481 

generated from their SMILES (Simplified Molecular Input Line Entry System) strings. Using KMeans, 482 

molecules were grouped into 100 clusters and a represented set of molecules were selected from each 483 

cluster to generate a diverse, downsampled set of molecules. The number of representative molecules 484 

selected from each cluster varied based on the target number of molecules in the downsampled set.  485 

 486 

Machine Learning algorithms. In this study, five different ML algorithms were used to develop models for 487 

the binary classification tasks of identifying an orthosteric binder versus not a binder. The algorithm included 488 

Random Forest (RF)33, Support Vector Machine (SVM)36, Multi-Layer Perceptron (MLP)34, and Extra 489 

Gradient Boosting (XGB)37, and a Graphical Neural Network based tool called ChemProp35. We used open-490 

source libraries to implement each of these models. For RF and SVM, we used Sci-Kit Learn54 and RapidsAI 491 

CuML implementations. For MLP, we used Sci-Kit Learn54 and Tensorflow55. For XGB, we used XGBoost37.  492 

 The cross-validation performance of RF models improved with increased number of estimators and 493 

maximum depth of the trees. For XGB models, three parameters were tuned: the maximum depth, 494 
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subsample, colsample_by_tree, and alpha. For MLP, we tuned epochs, L2 regularization (alpha), and 495 

hidden layer sizes. Additionally, we experimented with different learning rates, optimizers, and activation 496 

functions and concluded that the “Adam” optimizer and “ReLU” worked best. For the SVM models, we found 497 

that the Radial Basis Function kernel outperformed the polynomial kernel and that the higher the C (10+) 498 

and the lower gamma (<0.001), the better the performance. Moreover, a higher gamma and lower C also 499 

caused SVM training to take more time. The ChemProp models were generated using the default, 500 

recommended parameters. The final set of parameters used for training all ML models are given in 501 

Supplementary Table 3.  502 

 503 

Feature representation. We used two different feature representations for the molecules to train all ML 504 

models except ChemProp35. These two feature representations are: (1) 2048 bits Morgan Fingerprints (with 505 

radius = 2, MFP2) and (2) MFP2 and six physicochemical properties commonly used in drug discovery 506 

screenings (molecular weight, MW; log of the calculated partition coefficient, log P; topological polar surface 507 

area, TPSA; the number of hydrogen bond acceptors, HBA; the number of hydrogen bond donors, HBD; 508 

and the number of rotatable bonds, RBond). For training the ChemProp35 model, the molecules were 509 

represented using features generated by the graphical neural network, embedded in the ChemProp 510 

software package (https://github.com/chemprop/chemprop). 511 

 512 

ML performance evaluation metrics. We evaluated the performance by balanced accuracy, Matthew’s 513 

correlation coefficient (MCC), F1-score and recall. The definitions are given below: 514 

Precision = TP / (TP+FP), 515 

Recall/Sensitivity=TP / (TP+FN), 516 

Specificity=TN / (TN+FP), 517 

Balanced accuracy = (Sensitivity + Specificity) / 2, 518 

F1-score = 2  Precision  Recall / (Precision + Recall), 519 

MCC = (TP  TN – FP  FN ) / sqrt ((TP+FP)  (TP+FN)  (TN+FP)  (TN+FN)) 520 

Here, TP, FP, TN, and FN stand for true positive rate, false positive rate, true negative rate and false 521 

negative rate, respectively. 522 

 523 
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tSNE analysis. To analyze the chemical space covered by the set of molecules (DELs, test, and blind 524 

assessment sets; Fig. 2 and Fig. 4), we applied t-SNE, a statistical method for visualizing high-dimensional 525 

data, to the 2048-bit Morgan fingerprints of the molecules. The t-SNE method clusters molecules in the 526 

two-dimensional embedding space according to the relative pairwise distances between all compounds in 527 

the dataset. As a result, the absolute distances between molecules in the embedding space primarily 528 

convey how similar two molecules are relative to the other molecules in the dataset.  529 

 530 

Compound selection for experimental validation. ML models, separately trained to predict CK1𝛼 and 531 

CK1δ orthosteric binders were applied on the blind assessment set of 140K drug-like compounds (referred 532 

to as “Broad CC set”). The selection of compounds for experimental validation in SPR assay out of the 533 

predicted binders was performed using following two criteria, to ensure model diversity and chemical 534 

diversity. First, we selected a set of molecules with the highest predicted confidence values from each ML 535 

model. Second, all predicted binders were clustered based on structural similarity and the two molecules 536 

with the highest-confident predictions were picked from each cluster. The number of compounds included 537 

for testing from each of these categories was constrained by the throughput of the SPR assay. The 538 

combined set of compounds resulting from the aforementioned steps was further filtered to remove any 539 

duplicates. The final set of predicted binders selected for testing in SPR was 237, 284, and 284 compounds 540 

predicted by models trained using MS10M, 1HGB, and DD11M DEL data, respectively. All compounds 541 

were tested for binding to both CK1𝛼 and CK1δ. The ML model and chemical diversity of the compounds 542 

selected for testing in SPR, and their physicochemical properties are illustrated in Fig. 4 and 543 

Supplementary Fig. 5, respectively.   544 

 545 

DEL+ML GitHub repository. We released the pretrained MLP and ChemProp model checkpoints for all 546 

DEL libraries in this study (https://github.com/broadinstitute/DEL-ML-Refactor). The corresponding feature 547 

extractor and t-SNE visualization script are also provided. Users can follow the README in the repository 548 

to use our pretrained models to score their molecules. We also released the model training data from HG1B 549 

DEL for the community to conduct future research.  550 

 551 
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Protein Production and Assay Methods. 552 

Protein preparation and QC. Human CK1δ (1-294)-FLAG-Avi was expressed in E.coli and purified 553 

as previously described (https://pubs.acs.org/doi/epdf/10.1021/jm201387s). Human His-TVMV-CK1𝛼(1-554 

304)-FLAG-Avi was expressed in Trichoplusia ni (insect) cells. The cell pellet was resuspended in lysis 555 

buffer (30 mM Tris, 250 mM NaCl, 5% glycerol, pH 8.0 containing Roche EDTA-free protease inhibitor 556 

tablets) using sonication. The cell lysate was first purified using nickel affinity chromatography. Protein 557 

bound to the column was eluted using a 10-250 mM imidazole gradient in a lysis buffer. After adding TVMV 558 

protease (1mg per 50 mg protein), the sample was dialyzed against the dialysis buffer (30 mM Tris, 15 mM 559 

NaCl, pH 8.0) overnight at 4˚C. The dialyzed sample was then analyzed using SDS-PAGE to determine if 560 

the His-tag was removed entirely. The digested sample was further purified using cation exchange 561 

chromatography (SEC) by loading on a Mono S 10/100GL column (Cytiva Life Sciences). Bound protein 562 

was eluted from the column using 0 to 1M NaCl gradient in 30 mM Tris, pH 8.0. Fractions containing the 563 

cleaved CK1𝛼 were concentrated until the sample volume was suitable for size-exclusion chromatography 564 

using a HiLoad 16/60 Superdex 200 pg (Cytiva Life Sciences). The SEC running buffer was 30 mM TRIS, 565 

250 mM NaCl, and pH 8.0. 566 

Site-specific biotinylation of the Avi-tagged protein was carried out using a commercial BirA kit 567 

(Avidity BirA500) following the manufacturer's protocol. SEC purification using a Superdex 75 10/300 GL 568 

column (Cytiva Life Sciences) was performed to remove ATP and buffer exchange into 30 mM HEPES pH 569 

7.5, 300 mM NaCl, 0.5 mM TCEP, and 5% glycerol for storage at -80˚C. 570 

 571 

SPR to measure the affinity of BAY6888. SPR was performed on Biacore S200 using streptavidin (SA) 572 

chip and the running buffer: 10 mM HEPES pH 7.5, 150 mM NaCl, 5 mM MgCl2, 0.5 mM TCEP, 0.05% 573 

P20, 5% DMSO. Both proteins were immobilized to ~ 1000 RU. Since BAY6888 has slow kinetics, a single-574 

cycle setup was used with a contact time of 120s, a dissociation time 900s, and a 30 uL/min flow rate. 575 

BAY6888 was prepared in a dose-response series in a 5-point, 3-fold dilution at a top concentration of 100 576 

nM. Three injections of the buffer were performed before injections of BAY6888 to ensure a stable 577 

background. The SPR results were consistent with historical results showing BAY6888 had a KD of 578 

approximately 2nM against both CK1𝛼 and CK1δ. 579 
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 580 

ADP-Glo kinase assay. The kinase biochemical assay was performed using a commercial ADP-Glo kinase 581 

assay kit (Promega #V9101) following the manufacturer’s protocol. The assay buffer used was 50 mM 582 

HEPES pH 7.5, 50 mM NaCl, 10 mM MgCl2, 0.5 mM TCEP, 0.01%(w/v) BSA, 0.01% (v/v) Triton X-100, 583 

1% DMSO. The substrate used was a synthesized peptide (KRRRALpSVASLPGL) which was 30 uM in the 584 

assay reaction. The concentration of CK1𝛼 and CK1δ was 10 nM and the concentration of ATP was 500 585 

uM. The ATP hydrolysis activity of CK1𝛼 and CK1δ was measured in solution and after immobilization on 586 

streptavidin coated Dynabeads (ThermoFisher #65001). Both proteins are biochemically active under both 587 

conditions thus the subsequent DEL screening was performed using immobilized protein. 588 

 589 

Protein Immobilization for Primary and Confirmation SPR assays. SPR measurements were collected 590 

at 25°C using a Series S sensor chip pre-immobilized with streptavidin (SA) preconditioned with three 591 

consecutive injections of 1M NaCl in 50 mM NaOH, per manufacturer conditioning instructions. First, the 592 

sensor chip was equilibrated in a running buffer of 20 mM HEPES pH 7.5, 150 mM NaCl, 5 mM MgCl2, 0.5 593 

mM TCEP, 0.05% (v/v) Tween 20 and 5% DMSO. Next, the biotinylated avi-tagged CK1𝛼 and CK1δ 594 

proteins were captured at 5 μL/min to density levels depending on the molecular weight of the compounds 595 

tested. (For the primary screen, the final surface density of biotinylated CK1𝛼 and CK1b was approximately 596 

2500 RU; for the confirmation screen, the final surface density was about 7400 RU.) 597 

 598 

Primary SPR assay. The primary assay was performed on the Biacore 8K SPR instrument (Cytivia). The 599 

SPR running buffer was 20 mM HEPES pH 7.5, 150 mM NaCl, 5 mM MgCl2, 0.5 mM TCEP, 0.05% (v/v) 600 

Tween 20 and 5% DMSO. Selected compounds were injected at a flow rate of 30 μL/min in 2 doses (10 601 

μM and 30 μM). Association and dissociation phases were monitored for 60 s and 120 s, respectively. All 602 

data were double referenced against a SA surface and blank injections of buffer. The Biacore Insight 603 

Evaluation Software was used to process and analyze the data. Primary hits were selected for testing in 604 

the confirmation assay based on two criteria: a %Rmax > 10 RU’s and a 2-3 increase in response going from 605 

10μM to 30μM compound concentration.  606 

 607 

https://doi.org/10.26434/chemrxiv-2024-2xrx4 ORCID: https://orcid.org/0000-0001-7700-4374 Content not peer-reviewed by ChemRxiv. License: CC BY-NC 4.0

https://doi.org/10.26434/chemrxiv-2024-2xrx4
https://orcid.org/0000-0001-7700-4374
https://creativecommons.org/licenses/by-nc/4.0/


 34 

Confirmation SPR Assay. The confirmation assay was performed on the Biacore S200 SPR instrument 608 

(Cytiva). The SPR running buffer was 20 mM HEPES pH 7.5, 150 mM NaCl, 5 mM MgCl2, 0.5 mM TCEP, 609 

0.05% (v/v) Tween 20 and 5% DMSO.  The primary hits were tested in a 6-point, two-fold concentration 610 

series with a top concentration of 50 μM.  Some compounds were retested at different top concentrations 611 

that were adjusted based on their affinities. Each dose was injected sequentially from low to high 612 

concentration in a multi-cycle kinetic format (flow rate 30 μL/min, contact time 60 s, dissociation time 120 613 

s). Three buffer injections were performed before each compound to ensure a stable background. The 614 

control compound BAY6888 tested at a top concentration of 100 nM in a 5-point two-fold serial dilution. 615 

BAY6888 was run last as a control in a single-cycle kinetics mode (flow rate 50 μL/min, contact time 120 s, 616 

dissociation time 600 s). Affinities were calculated using a 1:1 equilibrium binding fit. 617 
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