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ABSTRACT: The computational study of the binding of a ligand to a target protein provides mechanistic insight into the molecular 
determinants of this process and can improve the success rate of in silico drug design. All-atom molecular dynamics (MD) simulations 
can be used to evaluate the binding free energy, typically by thermodynamic integration, and to probe binding mechanisms, including 
the description of protein conformational dynamics. The advantages of MD come at a high computational cost, which limits its use. 
Such cost could be reduced by using coarse-grained models, but their use is generally associated with an undesirable loss of resolution 
and accuracy. To address the trade-off between speed and accuracy of MD simulations, we describe the use of the recently introduced 
multi-eGO atomic model for the estimation of binding free energies. We illustrate this approach in the case of the binding of benzene 
to lysozyme by both thermodynamic integration and metadynamics, showing multiple binding/unbinding pathways of benzene. We 
then show equally accurate results for the binding free energy of dasatinib and PP1 to Src kinase by thermodynamic integration. 
Finally, we show how we can describe the binding of the small molecule 10074-G5 to Aβ42 by single molecule simulations and by 
explicit titration of the ligand as a function of concentration.  These results demonstrate that multi-eGO has the potential to signifi-
cantly reduce the cost of accurate binding free energy calculations and can be used to develop and benchmark in silico ligand binding 
techniques.

INTRODUCTION 
The	study	of	ligand	binding	plays	a	pivotal	role	in	the	under-
standing	of	biochemical	pathways	and	in	drug	design.	Lig-
ands,	which	can	be	small	molecules,	peptides,	or	other	mac-
romolecules,	interact	with	specific	targets	modulating	their	
conformations,	interactions	and	biological	activity1–3.		
Characterizing	a	ligand-receptor	interaction	is	a	three-level	
problem	(structure,	thermodynamics	and	kinetics)	that	in-
volves	the	characterization	of	the	bound	configuration	(the	
pose),	of	the	stability	of	the	interaction	(the	binding	free	en-
ergy),	and	of	the	kinetics	of	the	process	(the	on	and	off	rate	
constants)	 including	the	detailed	binding	mechanism.	Alt-
hough	 a	 wide	 range	 of	 experimental	 and	 computational	
methods	have	been	developed	to	address	all	these	aspects4–
6,	there	is	still	a	need	for	scaling	them	up	to	reduce	time	and	
cost	of	the	studies,	in	particular	for	drug	design.	
A	common	computational	approach	for	drug	design	is	based	
on	 the	use	of	molecular	docking	methods7–9,	 including	re-
cent	 machine	 learning	 ones10,11,	 to	 search	 and	 score	 the	
binding	pose	for	large	chemical	libraries.	The	binding	pro-
cess	of	the	resulting	top-scoring	ligands	can	then	be	studied	

by	a	variety	of	methods,	which	include	free	energy	calcula-
tions	such	as	thermodynamic	integration	(TI)	and	free	en-
ergy	 perturbation	 (FEP),	 long	 time-scale	MD	 simulations,	
Markov	state	models,	and	reaction	coordinate	based	tech-
niques	 such	 as	 umbrella	 sampling	 and	 metadynamics	
(MetaD)12–19.	 The	 intensive	 computational	 cost	 of	 these	
methods	can	be	reduced	by	lowering	the	resolution	of	the	
structural	representation	of	the	ligand-receptor	system	(i.e.	
by	coarse	graining),	but	usually	at	the	price	of	reducing	the	
accuracy	of	the	results20,21.	There	is	therefore	a	need	of	de-
veloping	methods	that	achieve	a	more	advantageous	trade-
off	between	speed	and	accuracy.	
Recently,	we	introduced	multi-eGO	to	enable	the	simulation	
of	 protein	 self-assembly	 processes22.	Multi-eGO	 simplifies	
the	description	of	protein	interactions	by	deriving	effective	
Lennard-Jones	(LJ)	parameters	by	combining	one	or	more	
training	conventional	MD	simulations	of	a	system	describ-
ing	its	fluctuations	in	one	or	more	free	energy	minima	of	in-
terest	with	prior	models	representing	baseline	interactions.	
We	showed	 that	multi-eGO	enables	 to	obtain	accurate	re-
sults	 on	 protein	 folding,	 intrinsically	 disordered	 proteins	
(IDPs)	conformational	dynamics,	and	peptide	aggregation,	
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at	 a	 fraction	 of	 the	 computational	 cost	while	maintaining	
atomic	resolution23.		
Here	 we	 extended	 the	 applicability	 of	 the	 multi-eGO	 ap-
proach	to	ligand	binding	simulations	(Figure	1).	The	train-
ing	data	consist	in	the	simulations	of	a	protein	in	its	apo	and	
holo	states.	The	holo	training	is	performed	with	additional	
free	ligands	in	the	box	to	also	estimate	the	probabilities	of	
non-specific	 interactions	 (both	 protein-ligand	 and	 ligand-
ligand).	The	apo	training	intramolecular	contact	probabili-
ties	are	 reweighted	by	 the	previously	 introduced	 random	
coil	prior,	which	represents	a	protein	as	a	self-avoiding	pol-
ymer.	To	reweight	the	protein-ligand	and	ligand-ligand	con-
tact	probabilities,	we	 introduce	as	prior	a	simulation	per-
formed	at	the	same	concentration	of	ligands	of	the	training	
but	with	ligands	and	protein	interacting	only	by	hard-core	
repulsions	(i.e.	LJ	C12	interactions).	This	prior	captures	the	
rotational	and	translation	entropy	associated	to	the	free	lig-
and	at	the	training	concentration.	We	expect	to	have	a	two-
fold	 advantage:	 (i)	 the	 cost	 of	 training	 simulations,	while	
not	negligible,	to	be	much	less	than	that	of	a	TI	and	MetaD	
calculation	with	 a	 conventional	 force	 field,	 and	 (ii)	 for	TI	
(and	by	extension	also	other	endpoint	techniques)	remov-
ing	both	the	explicit	solvent	and	the	electrostatic	coupling	
allows	us	to	have	a	single	calculation	to	perform	without	the	
need	 of	 multiple	 thermodynamic	 cycles.	 For	 MetaD	 the	
smaller	 number	 of	 particles	 makes	 the	 multi-eGO-based	
simulations	have	a	negligible	cost	in	comparison	to	that	of	
the	training	and	to	the	same	calculations	at	all-atom	resolu-
tion	(cf.	Table	S1	and	S2).	

	

Figure 1. Schematic representation of the multi-eGO approach for 
ligand bindings. Training simulations for the apo and holo state, 
including free ligands in the box are weighted, following Bayes, for 
prior models representing a self-avoiding polymer for the protein 
and the random rotations, translations and clashes of the ligands 
with the folded proteins. The resulting model can be employed to 
efficiently perform multiple simulation techniques including TI, 
MetaD, plain MD as well as concentration dependent simulations. 

To	test	the	applicability	of	the	multi-eGO	approach,	we	ap-
plied	it	to	four	systems	of	increasing	complexity.	The	first	
test	case	is	the	binding	of	benzene	(BNZ)	to	the	L99A	mu-
tant	of	the	bacteriophage	T4	lysozyme	(LYZ)24,25,	which	is	

widely	used	to	benchmark	computational	methods	of	pro-
tein-ligand	binding26–29.	LYZ	is	a	small	enzyme	(162	amino	
acids	in	the	case	of	T4)	that	catalyzes	the	hydrolysis	of	1,4-
β-linkages	of	cell-wall	peptido-glycans	and	consists	of	two	
domains	(N-terminal	and	C-terminal).	The	L99A	mutation	
produces	 a	 small	 apolar	 cavity	 in	 the	 C-terminal	 domain,	
which	allows	the	binding	of	small	nonpolar	ligands	such	as	
BNZ	with	a	binding	free	energy	ΔG=21.7±0.8	kJ/mol24.	The	
second	and	third	systems	are	the	binding	of	dasatinib	(DAS)	
and	PP1	to	the	c-Src	kinase	(SRC).	Dasatinib	is	a	chronic	my-
eloid	leukemia	drug	that	targets	at	nM	affinity	multiple	ty-
rosine	kinases,	including	Src;	PP1	is	an	Src	kinase	inhibitor	
with	lower	IC5030–34.	Here,	the	two	molecules	allow	us	to	ex-
plore	the	effect	of	complex	(in	terms	of	internal	degrees	of	
freedom)	 ligands	 and	 strong	 binding	 free	 energies,	while	
also	being	well	characterized	in	silico35.	The	fourth	system	
is	 the	binding	of	 the	small	molecule	10074-G536	 to	mono-
meric	 Aβ42,	 which	 is	 an	 intrinsically	 disordered	 protein	
(IDP)	whose	aggregation	is	associated	with	Alzheimer’s	dis-
eases,	allowing	to	test	a	binding	process	dominated	by	con-
formational	dynamics37,38.	
Our	results	show	that	multi-eGO	can	quantitatively	estimate	
the	binding	free	energies	of	benzene,	dasatinib	and	PP1,	re-
produce	 their	hypothesized	binding	mechanisms	and,	 im-
portantly,	allow	quantitative	and	systematic	comparison	of	
different	simulation	techniques.	In	the	case	of	Aβ42:10074-
G5,	 we	 demonstrate	 that	 multi-eGO	 can	 account	 for	 ex-
tremely	flexible	systems,	and	we	can	provide	a	comparison	
between	 single-molecule	 simulations	 and	 concentration-
dependent	simulations,	i.e.	models	able	to	closely	mimic	an	
in	vitro	experimental	setup.		
On	the	basis	of	these	results,	we	suggest	that	multi-eGO	rep-
resents	an	in	silico	platform	for	ligand	binding	studies	that	
may	 be	 useful	 for	 both	method	 development	 and	 bench-
marking,	as	well	as	for	integration	into	drug	screening	pipe-
lines.	

RESULTS 
A	multi-eGO	model	for	lysozyme:benzene	simulations.	To	
train	a	multi-eGO	model	for	LYZ:BNZ	binding,	we	performed	
multiple	apo	and	holo	simulations	using	the	DES-Amber39		
and	the	GAFF2	force	field	(see	Methods	and	Table	S1).	With	
respect	 to	 the	 apo	 state,	 the	 simulations	 reproduced	 a	
breathing	motion	of	the	two	domains	over	the	microsecond	
time	scale	that	is	well	characterized	experimentally	by	re-
sidual	 dipolar	 couplings	 in	 nuclear	 magnetic	 resonance	
(NMR)	spectroscopy40	(Fig.	2A),	as	shown	by	the	distribu-
tion	of	the	root	mean	square	deviation	of	the	atomic	posi-
tions	(RMSD)	calculated	with	respect	to	the	backbone	of	a	
reference	structure	(PDB	1L84).	The	simulations	of	the	holo	
state	were	performed	with	one	BNZ	molecule	in	the	binding	
cavity	and	four	additional	molecules	in	solution.	We	found	
that	BNZ	is	more	likely	to	be	found	in	regions	surrounding	
the	binding	cavity,	suggesting	a	role	of	surface	interactions	
in	directing	BNZ	to	its	binding	site	(Fig.	2B).
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Figure 2. (A) RMSD distributions comparing to a reference structure (PDB 1L84) the ensemble of structures from the LYZ DES-Amber and 
multi-eGO simulations. These RMSD distributions illustrates that multi-eGO effectively reproduces the two-state distribution observed in 
LYZ. (B) Representation of the LYZ:BNZ interaction obtained from training simulations. Increased red coloring indicates stronger attraction, 
highlighting the binding pocket in the C-terminal domain and various surface interactions of the protein, some of which correspond to binding 
entry pathways. (C) Scoring function used to calibrate the free parameter of the model for intermolecular interactions. The RMSE was 
computed by comparing LYZ:BNZ contact probabilities between training and multi-eGO simulations. Error bars were derived by averaging 
the RMSE over different segments of multi-eGO trajectories. (D) Residue-wise intermolecular contact probabilities from training simulations 
versus multi-eGO simulations, optimized with an ε0

 inter-molecular of 0.53 kJ/mol. 

The	apo	training	simulation	described	above	was	analyzed	
to	obtain	intramolecular	interatomic	contact	probabilities,	
which	were	 reweighted	using	 two	priors.	First,	 a	 random	
coil	 (RC)	 simulation	 was	 run,	 representing	 the	 contact	
probability	 of	 a	 self-avoiding	 polymer	 with	 the	 same	 se-
quence	of	LYZ.	Then,	an	interdomain	reference	was	used	to	
decouple	the	intra-domain	and	inter-domain	multi-eGO	en-
ergy	scales	and	correctly	reweight	the	inter-domain	train-
ing	 probabilities.	 The	 inter-domain	 prior	 consisted	 of	 a	
multi-eGO	simulation	in	which	all	the	inter-domain	interac-
tions	between	the	N-terminal	domain	(residues	1-71)	and	
the	C-terminal	domain	(residues	72-162)	were	described	as	
hard-core	repulsions.	This	procedure	allowed	to	obtain	an	
informative	prior	of	the	random	interdomain	collisions	(see	
Methods).	The	resulting	multi-eGO	model	for	LYZ,		with	an	
f!"#$%&'()&"# 	of	0.34	kJ/mol		and	an	f!"#$*%'()&"#	of	3	kJ/mol,	re-
produced	 the	 equilibrium	 between	 a	 closed	 and	 an	 open	
conformation,	 (see	 Fig.	 2A	 and	 Fig.	 S1).	 Focusing	 on	 the	
LYZ:BNZ	 interactions,	 the	 intermolecular	 LYZ:BNZ	 and	
BNZ:BNZ	 contact	 probabilities	were	 reweighted	 using	 an	
intermolecular	reference	simulation	consisting	of	inter-mo-
lecular	 (hard-core)	 clashes	 between	 LYZ	 and	 BNZ	 mole-
cules	with	the	same	BNZ	concentration	used	in	the	training	
simulation	to	account	for	the	roto-translational	entropy	of	
ligands.	The	f!"#$*%)(+*,-+&%	was	obtained	by	minimizing	the	
root	mean	 square	 error	 (RMSE)	between	 inter-molecular	
residue	 contact	maps	 as	 shown	 in	 Fig	 2C,	 resulting	 in	 an	
f!"#$*%)(+*,-+&%	of	0.53	kJ/mol.	The	resulting	multi-eGO	model	
reproduced	 the	 intermolecular	 contact	 probabilities	

between	LYZ	and	BNZ	(Fig.	2D),	demonstrating	that	multi-
eGO	can	effectively	learn	heterogeneous	interactions.	
As	a	first	test,	we	then	performed	40	unbiased	binding	sim-
ulations,	starting	from	random	configurations	of	4	unbound	
BNZ	molecules	 at	 the	 same	 concentration	 as	 the	 training	
simulation	(see	SI	Movie	1	for	a	representative	trajectory).	
The	simulations	were	stopped	when	the	minimum	distance	
between	the	BNZ	atoms	and	the	C⍺	atom	of	the	A99	residue	
in	the	binding	pocket	fell	below	0.4	nm.	The	extracted	bind-
ing	times	were	then	fitted	to	a	Poisson	distribution,	yielding	
a	mean	binding	time	i	of	963±20	ns	with	a	p-value	of	0.988	
obtained	 from	 a	 Kolmogorov-Smirnov	 (KS)	 test41,	 corre-
sponding	 to	a	kon	of	7.6x107	M-1	s-1	(see	Fig.	S2).	This	 rate	
should	be	considered	as	nominal	due	to	the	simplified	na-
ture	 of	 the	 model,	 but	 when	 compared	 with	 the	 experi-
mental	value42	of	8x105	–	106	M-1s-1	it	gives	an	indication	of	
the	intrinsic	speed	up	of	multi-eGO	due	to	degrees	of	free-
dom	removal.	
Thermodynamic	 integration	and	volume-based	metady-
namics	on	lysozyme:benzene.	Given	the	efficiency	of	multi-
eGO,	 we	 wanted	 to	 test	 its	 accuracy	 in	 estimating	 the	
LYZ:BNZ	 binding	 free	 energy	 by	 also	 comparing	 the	 con-
sistency	of	alternative	methods.	We	focused	on	Thermody-
namic	 Integration	 (TI)	 and	 Volume	 Based	Metadynamics	
(VMetaD),	the	former	being	the	industry	standard	for	such	
calculations43	and	the	latter	a	potentially	more	informative	
but	also	more	computationally	expensive	alternative28.		
TI	of	LYZ:BNZ	was	performed	in	6	replicates	using	three	al-
ternative	restraints	(CL1,	CL2,	and	CL3)	to	keep	the	ligand	
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in	the	binding	pose	and	to	speed	up	the	convergence29	(see	
Methods	and	Fig.	S3).	The	binding	free	energies,	calculated	
as	 the	mean	 and	 the	 standard	deviation	of	 the	mean,	 are	
shown	in	Fig.	3A.	The	three	estimates	of	21.41±0.04	kJ/mol,	
21.45±0.05	kJ/mol,	and	21.46±0.07	kJ/mol	from	the	three	
restraints,	 respectively,	 show	 a	 high	 statistical	 precision	
and	a	remarkable	accuracy	when	compared	to	the	experi-
mental	binding	free	energy	of	21.7±0.8	kJ/mol	(Fig.	3A).			
	

	

Figure 3. (A) Estimation of the binding ΔG obtained with the multi-
eGO force field using different techniques: CL1, CL2, and CL3 re-
fer to TI with three different restraints. The error was calculated as 
the standard error of the mean of six replicates for each restraint. 
VMetaD denotes the volume-based metadynamics ΔG estimate, 
with the error calculated as the standard error of the mean of four 
replicates. (B) Free energy surface (FES) obtained by reweighting 
of VMetaD in an appropriate collective variable (CV) space. On 
the x-axis, ρ represents the distance of the BNZ center of mass from 
the center of the sphere used to define the sampling volume. On the 
y-axis, the coordination number of BNZ with the residues of LYZ. 

An	 additional	 binding	 free	 energy	 estimate	was	 obtained	
using	VMetaD	(see	Methods)	by	running	four	independent	
replicates	 of	 1.5	 µs	 each,	 reaching	 convergence	 after	 ap-
proximately	200	ns	(Fig.	S4).	A	 free	energy	surface	(FES)	
representing	 the	 binding	 process	 was	 obtained	 by	 re-
weighting	VMetaD	simulations	as	a	function	of	the	distance	
of	the	BNZ	center	of	mass	from	the	center	of	the	sphere	cen-
tered	on	the	binding	site,	which	was	used	to	define	the	sam-
ple	volume,	and	the	coordination	number	of	BNZ	with	the	
residues	of	LYZ	(see	Fig.	3B	and	Methods	section).	From	the	
FES,	we	estimated	a	ΔG	of	21.4±0.2	kJ/mol,	obtained	as	the	
mean	and	standard	deviation	of	the	mean	over	the	4	repli-
cates	(Fig.	3A),	which	 is	within	the	statistical	precision	of	
the	TI	 estimates,	 demonstrating	 the	 reliability	 of	 the	 two	
different	approaches.	The	use	of	VMetaD	also	allowed	us	to	

compare	 our	 sampled	 binding/unbinding	 pathways	 with	
those	 already	 reported	 in	 the	 literature.	Using	 a	dynamic	
time-warping	 clustering	 algorithm44,	we	were	 able	 to	 ob-
serve	most,	 if	 not	 all	 (depending	on	 the	 classification	 ap-
proach),	of	the	previously	observed	pathways28,44	(see	Fig.	
S5	and	S6),	 further	supporting	 the	ability	of	multi-eGO	to	
provide	relevant	details	about	the	binding	mechanism.	
Thermodynamic	 integration	 of	 c-Src	 kinase:dasatininb	
and	c-Src	kinase:PP1	binding.	To	test	the	transferability	of	
the	protocol	developed	for	LYZ:BNZ,	we	reapplied	it	to	the	
binding	of	DAS	and	PP1	to	SRC.	First,	we	performed	several	
training	MD	simulations	 for	 the	apo	system	as	well	as	 for	
the	SRC:DAS	and	SRC:PP1	holo	systems,	in	both	cases	also	
adding	4	 ligands	 in	 solution	 (see	Methods	and	Table	 S1).	
The	training	simulations	showed	different	interactions	be-
tween	ligands	and	the	protein	in	correspondence	of	known	
binding	sites,	as	shown	in	previous	work.	Besides	the	ATP	
binding	site,	we	 found	 important	 interactions	with	 the	N-
lobe	(b-sheet),	the	αG	helix,	the	P-loop,	binding	in	the	MYR	
site	for	both	ligands	and	binding	in	the	PIF	site	for	PP1	(see	
Fig.	S7).		
To	parameterize	the	multi-eGO	models,	after	performing	an	
RC	simulation	of	SRC,	we	set	the	f!"#$%&)(+*,-+&%	parameter	
for	the	protein	to	match	the	radius	of	gyration	(Rg),	the	res-
idue-wise	root-mean	square	fluctuations	of	the	atomic	po-
sitions	(RMSF),	and	RMSD	distributions,	finding	an	optimal	
value	of	0.33	kJ/mol	(Fig.	S8).	To	describe	intermolecular	
interactions,	 we	 first	 performed	 an	 intermolecular	 refer-
ence	 simulation	 at	 the	 same	 ligand	 concentration	 as	 the	
training	 simulation	 to	 account	 for	 random	 collisions	 be-
tween	 ligand	molecules.	We	 then	 optimized	 f!

+".&#'/+".&#'	
and	 found	 a	 value	 of	 0.43	 kJ/mol	 and	 0.6	 kJ/mol	 for	
DAS:DAS	and	PP1:PP1,	respectively,	which	could	reproduce	
their	training	contact	probabilities.	A	second	intermolecu-
lar	reference	simulation	was	then	performed	in	which	the	
ligands	were	allowed	to	interact	with	each	other,	while	the	
protein	and	 ligands	only	 interacted	with	hard-core	repul-
sion.	Finally,	by	minimizing	the	RMSE	between	the	training	
and	multi-eGO	residue-wise	intermolecular	contact	proba-
bilities,	we	found	an	optimal	f!"#$*%)(+*,-+&%	of	0.32	kJ/mol	
and	 0.35	 kJ/mol	 for	 SRC:DAS	 and	 SRC:PP1,	 respectively	
(Fig.	S9).		
The	resulting	multi-eGO	models	were	used	to	perform	40	
binding	simulations	for	both	PP1	and	DAS,	starting	from	a	
random	conformation	of	four	unbound	ligands	(at	the	same	
concentration	as	in	training).	To	establish	the	binding,	we	
chose	 three	 reference	 atoms	 of	 the	 protein,	 namely	
CD:GLU310,	 N:MET341,	 CA:THR338	 for	 SRC:DAS	 and	
N:ILE294,	 N:MET341,	 N:THR338	 for	 SRC:PP1,	 and	 we	
stopped	 each	 simulation	 when	 the	 three	 minimum	 dis-
tances	between	one	of	the	ligands	and	the	three	reference	
atoms	were	below	0.5	nm,	0.4	nm,	0.5	nm	for	SRC:DAS	and	
0.5	nm,	0.35	nm,	0.5	nm	for	SRC:PP1.
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Figure 4. (A) RMSD of DAS with respect to its experimental binding pose over time. The ligand is considered bound when the RMSD is 
less than 0.26 nm. (B) Cumulative DAS binding times and Poisson fit with mean binding times of 3.5±0.1 ns, p=0.92 from a Kolmogorov-
Smirnov test. (C) RMSD of PP1 with respect to its experimental binding pose over time. The ligand is considered as bound when the RMSD 
is less than 0.26 nm. (D) Cumulative PP1 binding times and Poisson fit with mean binding times of 1.64±0.02 ns, p=0.99992 from a Kolmo-
gorov-Smirnov test. 

The	 calculated	 RMSD	 of	 the	 ligand	 to	 its	 bound	 confor-
mation	after	alignment	of	the	protein	is	shown	in	Fig.	4A,C	
(see	 also	 SI	Movie	 S2	 and	 S3).	 Binding	 times	 (RMSD	 less	
than	0.26	nm)	were	 fit	 to	a	Poisson	distribution,	 yielding	
mean	 binding	 times	 of	 3.5±0.1	 ns	 and	 1.64±0.02	 ns	 for	
SRC:DAS	and	SRC:PP1,	respectively,	with	corresponding	p-
values	 of	 0.92	 and	 0.99992	 obtained	 with	 KS-test	 (Fig.	
4B,D).	The	corresponding	kon	for	SRC:DAS	and	SRC:PP1	are	
2.51x1010	M-1s-1	and	5.39x1010	M-1s-1,	respectively.	Despite	
the	 fact	 that,	 as	 for	LYZ:BNZ,	 the	 time	 scales	 are	nominal	
(i.e.,	the	in	vitro	kon	 for	DAS	is	~5x106	M-1s-1),	the	relative	
rates	we	found	are	consistent	with	those	obtained	by	previ-
ously	 published	 MD	 simulations35,	 with	 both	 ligands	 re-
ported	to	have	kon	of	the	same	order	of	magnitude,	with	a	
slightly	higher	kon	for	PP1.		
Having	shown	that	the	model	can	simulate	the	correct	bind-
ing	of	the	two	ligands,	we	estimated	their	binding	free	en-
ergy	by	TI,	using	three	alternative	restraints	as	before	(see	
Methods	and	Fig.	S10	and	S11).	For	each	restraint	we	per-
formed	4	TI	replicates.	For	SRC:DAS	we	estimated	a	binding	
free	energy	of	55.0±0.5	kJ/mol,	55.5±0.3	kJ/mol	,	55.6±0.4	
kJ/mol	 for	 the	 three	 restraints,	 respectively	 (Figure	 5A),	
while	 for	 SRC:PP1	we	 estimated	 a	 binding	 free	 energy	 of	
38.34±0.06	 kJ/mol,	 38.4±0.1	 kJ/mol,	 38.3±0.1	 kJ/mol	
(Figure	 5B).	 As	 for	 LYZ:BNZ	 all	 estimates	 are	 compatible	
and	show	a	high	statistical	precision.		

	

Figure 5. (A) TI estimates of the binding ΔG of c-Src kinase and 
dasatinib using multi-eGO. The three estimates (CL1, CL2, CL3) 
correspond to different restraints used to keep the ligand in the 
binding pose during decoupling. Errors were calculated as the 
standard error of the mean of four replicates for each restraint. The 
blue band represents the interval of in vitro measurements (REF). 
(B) TI estimates of the binding ΔG of c-Src kinase and PP1 using 
multi-eGO. CL1, CL2, CL3 corresponds to different restraints. Er-
rors were calculated as the standard error of the mean of four rep-
licas for each constraint. 
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Importantly,	 the	 ΔG	 obtained	 for	 SRC:DAS	 is	 compatible	
with	values	reported	in	the	literature	for	in	vitro	measure-
ments,	ranging	from	55.17	kJ/mol	to	60.23	kJ/mol	(Figure	
5A).	For	SRC:PP1,	we	compared	the	experimental	ratio	of	
the	IC50	of	SRC:DAS	(0.5	nM)45	and	SRC:PP1	(170	nM)34	with	
the	ratio	of	 the	r0 = exp s− 12

3!4
u	estimates	obtained	with	

multi-eGO.	We	found	that	the	ratio	of	the	multi-eGO	KD	val-
ues	is	in	qualitative	agreement	with	the	IC50	ratio,	namely	
5"##$
5""%&

= 740 ± 114	and	67'(
##$

67'("%&
= 340.	

Single-molecule	 and	 titration	 simulations	 of	
Aβ42:10074-G5.	 The	 above	 binding	 processes	 represent	
the	most	common	scenario	where	a	pose	is	known	or	hy-
pothesized	under	 the	 lock-and-key	mechanism	where	 the	
ligand	minimally	perturbs	the	structure	of	the	receptor.	At	
the	other	end	of	the	spectrum	is	the	case	of	ligand	binding	
to	IDPs,	which	do	not	entail	a	well-defined	binding	site	due	
to	the	absence	of	a	stable	tertiary	structure.	To	test	multi-
eGO	in	this	scenario,	we	used	the	large	publicly	available	da-
taset	 for	 Aβ42	 simulated	 in	 its	 apo	 and	 10074-G5	 holo	
states37,46.	After	parametrizing	the	Aβ42	monomer	as	previ-
ously	published	with	a	f!"#$%&)(+*,-+&%	of	0.33	kJ/mol,	we	par-
ametrized	 10074-G5	 starting	 from	 its	 GROMOS	 ATB-
derived	model47	 and	 optimized	 its	 bonded	 parameters	 to	
match	those	of	the	training	simulation	(see	Methods).	We	
then	performed	a	reference	simulation	in	which	mutual	in-
teractions	 between	 Aβ42	 and	 10074-G5	 are	 represented	
only	by	steric	clashes	in	the	same	training	condition.	After	
this	 simulation	we	 set	 the	 intermolecular	 interaction	 be-
tween	Aβ42	and	10074-G5	by	minimizing	the	RMSE	of	the	
intermolecular	 residue-wise	 contact	maps	 (see	 Fig.	 S12),	
obtaining	 a	 value	 of	 f!"#$*%)(+*,-+&%	 of	 0.385	 kJ/mol.	 	 The	
multi-eGO	 holo-simulation	 showed	 the	 same	Rg	 behavior	
observed	in	the	training	simulation	(Fig.	S13),	qualitatively	
reproducing	the	same	peak	shift	and	narrowing	of	the	dis-
tribution.	Note	that	this	effect	is	only	due	to	the	ligand	bind-
ing,	since	the	intramolecular	interactions	are	only	learned	
from	the	apo	simulation.		
With	the	parameters	found	above,	we	ran	a	2	µs	multi-eGO	
MD	simulation	and	calculated	the	probability	of	binding	vs.	
unbinding	to	estimate	the	KD.		In	the	case	of	single	molecule	

simulations,	direct	estimation	of	KD	as	
[9][;]
[9;] 	is	affected	by	the	

finite	size	of	the	simulation	box48.	To	correctly	calculate	the	
dissociation	constant,	considering	the	box	size,	we	followed	
Lopez	et	al.	and	calculated	KD	as	

!! = "
#	%!	&"(#)

")&#(#)
")#$

	, 

where	V	is	the	box	volume,	NA	is	Avogadro’s	number,	pB(V)	
is	 the	bound	probability,	 v	 is	 the	 interacting	 volume	 (the	
volume	where	protein	and	ligand	interact	but	the	ligand	is	
not	in	the	bound	pose),	and	pv	is	the	probability	of	finding	
the	ligand	within	the	volume	V.	In	the	case	of	ligand	binding	
with	 an	 IDP,	 the	 difference	 between	 the	 interacting	 and	
bound	volumes	is	subtle	(with	no	precise	binding	pose).		
By	defining	the	bound	state	considering	the	configurations	
where	the	minimum	distance	between	Aβ42	and	10074-G5	
is	less	than	0.33	nm	and	as	interacting	the	state	where	the	
minimum	distance	is	less	than	0.4	nm,	we	obtained	a	value	
of	 the	 dissociation	 constant	 of	 683±7	 µM	 for	 multi-eGO	
(with	the	error	calculated	as	standard	deviation	of	the	mean	
of	4	replicates	of	2	µs	each)	(see	Figure	6A),	to	be	compared	
with	381±5	µM	obtained	by	analyzing	the	training	simula-
tion	 (where	 the	 error	 is	 calculated	using	 a	bootstrapping	
method	with	95th	percentile).	We	note	that	the	difference	
between	the	training	and	multi-eGO	dissociation	constants	
corresponds	to	1.5	kJ/mol	in	free	energy,	less	than	the	ther-
mal	 fluctuation	energy	 (~2.5	kJ/mol	 at	300	K).	However,	
these	values	are	not	in	quantitative	agreement	with	the	ex-
perimental	value	of	7-40	µM,	most	likely	because	of	limita-
tions	in	the	force-field	accuracy.	In	this	case,	a	substantial	
advantage	of	using	multi-eGO	is	represented	by	the	possi-
bility	to	update	the	model	to	reproduce	the	experimental	af-
finity	by	changing	a	single	parameter,	f!"#$*%)(+*,-+&% ,	which	
represents	the	energy	scale	for	the	Aβ42:10074-G5	interac-
tion,	without	the	need	of	repeating	the	computationally-in-
tensive	all-atom	training	simulation.	A	f!"#$*%)(+*,-+&%	of	0.46	
kJ/mol	corresponded	to	a	dissociation	constant	of	18±1	µM	
(Figure	6A),	before	and	after	the	volume	correction,	where	
the	data	represent	the	mean	and	the	standard	deviation	of	
the	mean	obtained	from	5	replicates	of	2	µs	each.	
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Figure 6. (A) Comparison of dissociation constants obtained from single molecule and titration multi-eGO simulations. The arrows indicate 
the correction for the finite size effects. (B) Aβ42:10074-G5 bound state population as a function of 10074-G5 concentration as obtained 
from multi-eGO 10074-G5 titration simulations, the line is the fit using the Hill equation. (C) Display of a simulation box for 10 Aβ42 
molecules at 1 µM concentration mixed with 200 10074-G5 molecules. The inset shows an Aβ42 configuration bound to two 10074-G5 
molecules. (D) Probability of observing 0 to 3 10074-G5 molecules simultaneously bound to an Aβ42 molecule as a function of 10074-G5 
concentration.

	
The	updated	model	was	then	used	to	study	Aβ42:10074-G5	
binding	in	the	presence	of	an	increasing	number	of	10074-
G5	 molecules.	 Following	 in	 vitro	 experiments,	 we	 per-
formed	an	in	silico	titration	experiment	mixing	1	µM	Aβ42	
concentration	(consisting	of	10	monomers	in	a	255	nm	cu-
bic	 box,	 cf.	 Fig.	 6C)	 with	 increasing	 concentrations	 of	
10074-G5,	namely	1:1,	1:6,	1:10,	and	1:20	Aβ42:10074-G5	
ratios.	For	each	of	these,	we	ran	5	µs	long	multi-eGO	simu-
lations	(see	Fig.	S14	for	binding	probability	as	a	function	of	
time	and	block	averaging),	and	by	fitting	the	concentration	
of	bound	Aβ42:10074-G5	as	a	function	of	ligand	concentra-
tion	to	the	equation	[wx] = [9][;]

[9]<5"
,	we	found	a	KD	of	19.2±1.4	

µM	(as	shown	in	Figure	6B	with	error	estimates	resulting	
from	a	1	µs	block	averaging),	which	is	consistent	with	that	
obtained	 with	 the	 volume-corrected	 single	 molecule	 ap-
proach.	 This	 case	 further	 emphasizes	 the	 usefulness	 of	
multi-eGO	as	a	platform	for	method	comparison	and	devel-
opment,	in	this	case	providing	a	direct	proof	of	the	validity	
of	the	volume	correction	of	Lopez	et	al.48	when	estimating	
dissociation	 constants	 from	 single	 molecule	 equilibrium	
simulations.	
In	Figure	6D,	we	report	the	probability	of	having	multiple	
concurrent	bindings	at	the	different	concentrations,	show-
ing	the	presence	of	2	or	3	ligands	bound	to	one	Aβ42	mon-
omer	(see	also	the	 inset	of	Figure	6C	for	a	representative	
configuration).	This	analysis	suggests	that	the	effect	of	sim-
ultaneous	binding	is	negligible	at	the	concentrations	of	the	
experiments.	The	lack	of	cooperativity	is	consistent	with	the	
entropic	expansion	model	with	minimal	structural	pertur-
bations49.	Of	note,	we	anticipate	that	our	simulations	could	

be	 extended	 to	 account	 for	 additional	 Aβ42	 interactions,	
such	as	those	that	could	be	derived	from	a	fibril	structure,	
paving	 the	way	 for	 the	study	of	protein	aggregation	 itself	
and	its	inhibition	mechanisms.		

DISCUSSION 
Structure-based	models	have	been	introduced	to	the	study	
of	protein	folding	based	on	the	hypothesis	that	the	native	
structure	of	a	protein	should	capture	the	most	relevant	in-
teractions	across	the	whole	free	energy	landscape	of	a	pro-
tein.	They	have	proven	useful	for	studying	the	otherwise	in-
accessible	folding	mechanism	at	high	resolution50.	Recently,	
we	have	 introduced	multi-eGO,	an	ensemble-based	model	
rooted	in	Bayesian	statistics,	where	one	or	more	conforma-
tional	ensembles	of	a	protein,	representing	the	fluctuations	
of	relevant	free	energy	minima,	are	weighted	with	prior	in-
formation22,23.	This	approach	enables	to	obtain	a	model	ca-
pable	of	 simultaneously	describing	 folded	and	disordered	
proteins,	as	well	as	self-assembly	processes	such	as	peptide	
amyloidogenic	aggregation.		
Here,	we	have	extended	the	multi-eGO	approach	to	include	
small	molecules.	Our	initial	results	on	four	case	studies	al-
low	us	on	the	one	hand	to	propose	multi-eGO	as	a	model	for	
benchmarking	and	developing	 in	silico	 techniques	 for	 lig-
and	binding	studies,	and	on	the	other	hand	to	suggest	that	
multi-eGO	can	be	used	for	quantitative	estimation	of	ligand	
affinities.	This	is	because	multi-eGO	describes	the	system	at	
atomic	 resolution,	 with	 binding	 free	 energies	 compatible	
with	those	measured	in	vitro,	but	with	a	dramatic	accelera-
tion	 of	 the	 kinetics	 (that	 we	 can	 tentatively	 quantify	 be-
tween	 2	 and	 4	 orders	 of	 magnitude).	 We	 exploited	 the	
LYZ:BNZ	system	to	apply	orthogonal	free	energy	calculation	
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techniques	 (TI	 with	 multiple	 restraining	 conditions	 and	
VMetaD)	showing	their	applicability	and	robustness	on	the	
model.	 Note	 that	 all	 simulations	 are	 replicated	 multiple	
times	 to	 obtain	 statistically	meaningful	 estimates,	 with	 a	
minimal	 computational	 cost.	 While	 Aβ42:10074-G5	 al-
lowed	us	to	show	a	use	case	inaccessible	to	the	current	con-
ventional	approaches,	namely	explicit	titration	as	a	function	
of	ligand	concentration,	with	a	direct	comparison	with	con-
centrations	 used	 in	 vitro.	 This,	 on	 the	 one	 hand,	 demon-
strated	the	efficiency	of	multi-eGO	and,	on	the	other	hand,	
underlined	 the	 importance	 of	 correcting	 single-molecule	
simulations	for	the	finite-size	effect,	 following	procedures	
such	as	those	described	in	Lopez	et	al.		
The	 use	 of	multi-eGO	 requires	 the	 training	 of	 the	model,	
which	consists	of	running	training	simulations	and	finding	
a	set	of	free	parameters.	Here,	we	have	introduced	a	possi-
ble	strategy	 to	set	our	energy	scale	parameters	excluding	
the	 intervention	of	any	possible	user	bias.	 In	practice,	we	
minimized	the	RMSE	with	the	protein	fluctuation	as	well	as	
the	RMSE	for	the	intermolecular	residue-wise	contact	map,	
comparing	the	multi-eGO	and	the	training	simulations.	This	
approach	is	first	successfully	tested	on	the	LYZ:BNZ	system	
and	then	successfully	replicated	for	the	SRC:DAS	case.	Suc-
cessfully,	because	in	both	cases	the	knowledge	of	the	exper-
imental	binding	free	energy	was	not	used	in	the	input	but	
was	accurately	obtained	by	the	simulations.	In	both	cases,	
our	training	simulations	include	a	ligand	in	its	binding	pose	
as	well	as	several	ligands	free	to	sample	the	surface	of	the	
protein.	The	latter	data	are	used	to	set	the	energy	scale	of	
the	system.	In	the	case	of	Aβ42:10074-G5,	we	used	a	previ-
ously	 generated	 large	 dataset	 of	 simulations	 designed	 to	
represent	the	equilibrium	between	the	apo	and	holo	states,	
but	here	our	approach	of	 learning	equilibrium	data	about	
the	 entire	 binding	 process	 inherited	 the	 limitation	 of	 the	
training	simulation,	namely	an	overestimated	dissociation	
constant.	 This	 is	 where	 the	 advantage	 of	 multi-eGO	 be-
comes	apparent,	as	it	is	sufficient	to	tune	a	single	parameter	
to	make	the	model	match	the	experimental	value.	This	al-
lows	 us	 to	 speculate	 that	 multi-eGO	 may	 be	 particularly	
suitable	for	studying	ligand	binding	processes	such	as	those	
represented	by	the	LYZ:BNZ,	SRC:DAS,	and	SRC:PP1	cases,	
where	the	training	data	can	be	generated	with	very	limited	
computational	 cost	 and	 should	 represent	 only	 the	 weak	
(i.e.,	faster	to	sample)	non-specific	interactions	of	a	ligand	
with	the	protein	surface,	given	knowledge	or	a	hypothesis	
about	the	binding	pose.	We	anticipate	that	further	work	will	
be	needed	 to	better	understand	 the	 strengths	and	 limita-
tions	of	multi-eGO	in	ligand	binding	studies,	including	cases	
with	more	complex	binding	mechanisms	such	as	induce-fit	
or	 conformational	 selection,	 as	well	 as	 to	 streamline	 and	
possibly	automatize	the	simulation	setup	protocol.	

CONCLUSIONS 
Ligand	binding	studies	are	among	the	most	important	ap-
plications	of	MD	simulations	since	this	computational	tech-
nique	can	capture	the	conformational	dynamics	of	both	the	
ligand	and	the	receptor.	It	is	thus	possible	to	obtain	a	rela-
tively	accurate	description	of	their	physicochemical	 inter-
actions,	and	both	kinetic	and	thermodynamic	 information	
about	 the	binding	process.	 These	 results	 can	be	obtained	
provided	 that	 sufficient	 computational	 resources	 are	

available.	While	 several	methods	have	been	developed	 to	
reduce	the	computational	cost	of	obtaining	accurate	kinetic	
or	thermodynamic	data,	MD	simulations	are	still	affected	by	
the	problem	of	the	timescale	for	sampling	the	relevant	re-
gions	 of	 the	 conformational	 space	 to	 obtain	 reliable	 esti-
mates	of	 thermodynamic	properties.	Our	results	highlight	
the	potential	of	multi-eGO	both	as	a	model	 to	benchmark	
and	develop	in	silico	free	energy	calculation	techniques	and	
as	an	accurate	and	efficient	 framework	for	 ligand	binding	
studies,	 potentially	 extending	 the	 current	 capabilities,	 in	
terms	of	time	and	number	of	particles,	of	in	silico	molecular	
studies.	

METHODS 
Conventional	molecular	dynamics	simulations.	All-atom,	
explicit	solvent,	training	simulations	of	LYZ:BNZ,	SRC:DAS	
and	SRC:PP1,	were	performed	using	the	DES-Amber	force	
field39	 in	TIP4P-D	water51,	with	ligands	parameterized	us-
ing	GAFF2.	To	match	the	scaled	electrostatic	interactions	of	
DES-Amber	 force	 field,	we	 rescaled	 the	AM1-BCC-derived	
charges	for	the	ligands	by	a	factor	of	0.9.		
All	systems	were	prepared	at	pH	7.4	and	adding	Na+	and	Cl-	
ions	to	maintain	physiological	salinity	(150mM)	and	to	neu-
tralize	the	total	charge	of	the	system.	All	systems	were	sub-
jected	to	energy	minimization	using	the	steepest	descent	al-
gorithm	until	 the	maximum	 force	 converges	 to	 a	 value	<	
1000	kJ/(mol	nm),	followed	by	a	conjugate-gradient	mini-
mization	until	 the	maximum	force	converges	to	a	value	<	
100	kJ/(mol	nm)	and	a	LBFGS	algorithm	until	the	maximum	
force	converges	to	a	value	<	10	kJ/(mol	nm).	Subsequently,	
the	minimized	configuration	was	relaxed	for	2	ns	at	a	con-
stant	pressure	of	1	bar	and	constant	temperature,	keeping	
the	 protein	 atoms	 restrained	 to	 the	 position	 of	 the	mini-
mum	energy	configuration.	The	simulations	used	the	leap-
frog	algorithm	with	a	time	step	of	2	fs	and	LINCS	restraints52	
for	hydrogen	atoms.	Non-bonded	interactions	were	cut	off	
at	1	nm	using	PME	for	long-range	electrostatics.	Tempera-
ture	 and	 pressure	 were	 controlled	 by	 stochastic	 velocity	
rescaling53	 and	 cell	 rescaling54	 algorithms,	 respectively.	
Number	of	replicates	and	simulation	times	are	reported	in	
Table	S1.	All	simulations	were	run	using	GROMACS	202255.	
LYZ	was	modelled	starting	from	the	1L84	PDB	structure56	
and	simulated	at	300	K.	The	training	of	the	LYZ:BNZ	com-
plex	was	performed	inserting	one	BNZ	into	and	4	BNZ	out-
side	the	binding	pocket	in	order	to	explore	the	interaction	
with	the	surface	of	the	protein.		
SRC	was	modelled	from	the	1Y57	PDB	structure57	and	sim-
ulated	at	310	K.	To	train	the	holo	complex	of	SRC:DAS/PP1	
we	inserted	1	molecule	(either	DAS	or	PP1)	in	the	binding	
pose	and	4	ligands	in	the	solvent	to	explore	the	interaction	
with	 the	 surface	 of	 the	 protein.	 To	 train	 our	 multi-eGO	
model	we	removed	from	the	holo	training	trajectories	the	
non-equilibrium	portions	consisting	 in	 irreversible	aggre-
gation	of	three	or	more	ligands	with	each	other,	which	was	
also	previously	observed35.		
MD	simulations	of	apo	and	holo	Aβ42:10074-G5	were	avail-
able	from	previous	studies37,46.	Briefly,	the	apo	simulation	
was	carried	out	at	278	K	using	the	CHARMM22*	forcefield58	
and	 the	 TIP3P	 water	 model59.	 The	 holo	 simulation	 per-
formed	under	the	same	condition	parameterizing	the	ligand	
10074-G5	using	the	Force	Field	Toolkit60.	
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Multi-eGO	Simulations.	Multi-eGO	is	a	multi-ensemble	hy-
brid	 transferable/non-transferable	 force	 field22.	 The	 non-
transferable	(structure-based)	part	of	the	force	field	is	ob-
tained	from	state-of-the-art	simulation(s)	of	the	system	of	
interest	 sampling	 the	 fluctuations	 of	 specific	 states	 (i.e.	
monomer,	apo,	fibril,	etc.),	and	is	then	weighted	with	a	prior	
(or	 reference)	 simulation	 obtained	 with	 a	 simplified	 de-
scription	of	the	system	meant	to	account	for	trivial	results.	
From	the	training	and	the	reference	simulations	we	extract	
pair-wise	distances	and	contact	probabilities	x"=>0and	x"=?7 	
respectively.	Then	through	a	Bayesian	reweighting	we	ob-
tain	 an	 estimation	of	 the	 atom-pairs	non-bonded	 interac-
tion	energy	as		

f"= = − @(
AB ;)*+,-*./012 ∙ ln

;345"

CDEF;3412,;)*+,-*./012 H
,	

where	i,j	are	atom	indices,	f!	is	the	energy	scale	to	be	set	as	
a	parameter,	and	x$I%*JI(+'?7 	 is	a	minimum	probability	used	
for	regularization.	A	detailed	description	of	the	model	can	
be	found	in	ref.23	and	the	associated	code	and	parameters	
are	available	on	GitHub.	
For	each	apo	system	we	performed	a	reference	RC	simula-
tion	 consisting	 in	 a	 self-avoiding	 chain	 obtained	 with	
bonded	interactions	and	C12	repulsion	multi-eGO	transfera-
ble	potential.	For	multi-domain	protein	like	LYZ,	a	second	
layer	 of	 reweighting	 was	 introduced.	 This	 consists	 in	 a	
multi-eGO	simulation	in	which	we	turn	off	the	inter-domain	
attractions,	 namely	 between	 residues	 1-71	 and	 72-162,	
while	keeping	the	intra-domain	ones	and	the	local	interac-
tion	in	the	alpha-helix	connecting	the	two	domains	to	main-
tain	 it	 intact.	 We	 then	 use	 the	 RC	 probabilities	 obtained	
from	the	self-avoiding	chain	for	the	intra-molecular	interac-
tions	and	 the	ones	obtained	 from	 the	 inter-domain	 refer-
ence.	This	approach	allows	us	to	correctly	decouple	the	in-
ter	 from	 the	 intra	 domain	 interactions,	 assign	 to	 each	 of	
them	a	different	global	energy	scale	through	different	ε0	and	
reweighting	 the	 training	 atom-pair	 contact	 probabilities	
with	 the	 correct	prior	distribution.	This	 inter-domain	de-
coupling	does	not	affect	the	binding,	since	all	relevant	inter-
action	are	only	within	the	C-terminal	domain.	For	intermo-
lecular	interaction	the	reference	simulation	corresponds	to	
protein:ligand	complex	at	same	concentration	of	the	train-
ing	simulation	(considering	only	the	unbound	ligands)	with	
only	hard-core	repulsion	between	protein	and	ligands.	This	
allows	 to	 account	 for	 the	 concentration-dependent	 roto-
translational	entropy	of	the	ligands	removing	the	effect	of	
the	box	size	in	the	contact	probability	estimation.	The	lig-
ands	were	parametrized	 starting	 from	 the	 training	 topol-
ogy,	 removing	 hydrogens	 and	 optimizing	 the	 bonded	 pa-
rameters	to	reproduce	the	local	geometries	of	the	training	
simulations.	
All	 multi-eGO	 MD	 simulation	 were	 performed	 using	 sto-
chastic	dynamics	integration	with	a	timestep	of	5	fs	and	a	
relaxation	time	of	25	ps.	The	cutoff	for	the	LJ	interactions	
was	set	to	2.5σmax,	corresponding	to	1.44	nm.	A	10%	larger	
radius	was	used	for	the	neighbor	lists,	which	were	updated	
every	20	steps.	Different	values	of	ε0	were	tested	to	maxim-
ize	the	overall	agreement	between	training	and	multi-eGO	
simulation.	 All	 simulations	 were	 run	 using	 GROMACS	
202255.	

Thermodynamic	 Integration.	 For	 the	 multi-eGO	 binding	
free	energy	estimation,	we	used	TI	and	the	Bennett’s	accept-
ing	 ratio	 (BAR)	 algorithm61,62.	For	 each	 system	 a	 set	 three	
cross	linked	restraints,	namely	CL1,	CL2,	and	CL3,	to	keep	the	
ligand	in	the	binding	pose	during	the	decoupling.	The	effect	of	
this	restraining	potential	can	be	removed	analytically	a	poste-
riori29.	The	thermodynamic	cycle	was	computed	through	a	
set	of	λ	values	scaling	the	restraint	and	the	non-bonded	in-
teractions	(Table	S3	to	S5).	For	LYZ:BNZ	for	each	λ	we	per-
formed	a	steepest	descent	energy	minimization,	followed	by	a	
500	ps	relaxation	and	a	1	ns	run	at	300K	in	the	NVT	ensemble.	
For	SRC:DAS	and	SRC:PP1	for	each	λ	we	performed	a	steepest	
descent	energy	minimization,	followed	by	a	2	ns	relaxation	and	
a	1	ns	run	at	310K	in	the	NVT	ensemble.		All	simulations	were	
run	using	GROMACS	202255.	
Volume-based	 Metadynamics.	 VMetaD28	 simulations	
LYZ:BNZ	 were	 ran	 using	 well-tempered	 metadynamics63	
considering	3	CVs,	namely	the	relative	position	in	spherical	
coordinates	(r,	q,	j)	of	the	benzene	center	of	mass	with	re-
spect	 to	 the	 center	 of	 mass	 of	 lysozyme	 binding	 domain	
(residues	72-162).	We	set	an	initial	height	of	the	Gaussians	
of	1.2	kJ/mol,	the	widths	at	1	Å,	π/16	rad,	and	π/8	rad	for	r,	
q,	and	j,	respectively	and	a	bias	factor	of	20,	depositing	a	
Gaussian	every	10	ps.	We	run	4	different	1.5	µs-long	repli-
cas	of	the	simulations,	employing	the	same	MD	parameters	
used	in	the	unbiased	multi-eGO	simulations.	
To	avoid	an	extensive	sampling	time	of	the	unbound	state,	
we	set	a	repulsive	spherical	potential	at	a	distance	of	ÉJKI	
(here	set	at	30	Å)	from	the	center	of	mass	of	LYZ:	

ÑJKI(É) = Ö
0	if	É ≤ ÉJKI		

1
2 á(É − ÉJKI)

L		if	É > ÉJKI
	

with	k	set	to	10000	kJ/mol/Å2.	To	consider	the	loss	of	en-
tropy	caused	by	the	imposition	of	such	restraint	and	calcu-
late	 the	binding	 free	energy	difference	 in	standard	condi-
tions,	we	apply	the	following	entropic	correction	

Δâ! = Δâ>*$&0 − äã	 logå
ç!

4
3éÉJKI

M − çK%($
è ,	

where	Δâ>*$&0	is	the	binding	free	energy	of	VMetaD,	ä	is	the	
gas	constant,	ã	is	the	temperature	of	the	system,		ç!	is	the	
standard	volume	(1660	Å3),	and	çK%($	is	the	volume	of	the	
protein	included	in	the	sphere	restraint.	Protein	volume	in-
side	the	sphere	was	calculated	using	the	double	cubic	lattice	
method64	available	 in	GROMACS.	To	compute	the	Δâ>*$&0	
we	reweighted	the	computed	free	energy	surface	using	the	
Tiwary-Parrinello	algorithm65,	removing	the	initial	200	ns	
of	trajectory	on	CVs	that	allow	the	precise	definition	of	the	
bound	and	the	unbound	states.	Following	ref.28,	we	choose	
the	distance	É	and	the	coordination	number	ê,	between	the	
set	of	the	ligand	atoms	A	and	the	set	of	the	protein	atoms	B,	
as	

ê =ëë
1− s

í"=
í!
u
N

1 − s
í"=
í!
u
OL

=∈Q"∈R
.	

The	error	estimation	has	been	performed	using	the	stand-
ard	deviation	of	the	mean	of	the	four	replicas.	All	simula-
tions	were	run	using	GROMACS	202255	and	PLUMED266,67.	
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In	 Silico	 Titration	 Experiment.	 Four	 5	 µs	 long	 Aβ42:	
10074-G5	MD	multi-eGO	 simulations	were	 performed	 by	
placing	10	monomers	of	Aβ42	in	a	255	nm	cubic	box,	corre-
sponding	to	a	concentration	of	1	µM	Aβ42,	and	adding	10,	
60,	100	or	200	10074-G5	at	random,	respectively.	Simula-
tions	were	run	using	GROMACS	202255.	
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