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Abstract 8 

The Clean Air Act (CAA) in the United States relies heavily on regulatory monitoring networks, 9 

yet monitoring sites are sparsely located, especially among historically disadvantaged 10 

communities. For ambient fine particulate matter (PM2.5), we compare the air quality monitoring 11 

data with spatially complete concentrations derived from empirical models to quantify the gaps 12 

of existing U.S. monitoring networks in capturing concentration hotspots and exposure 13 

disparities. Recently, the U.S. Environmental Protection agency adopted a more stringent annual-14 

average air quality standard for PM2.5 (9 µg/m3). Here, we demonstrate that 44% of urban areas 15 

exceeding this new standard – encompassing ~ 20 million people – would remain undetected 16 

because of gaps in the current PM2.5 monitoring network. Crucially, we find that “uncaptured” 17 

hotspots, which contain 2.8 million people in census tracts that are misclassified as in attainment 18 

of the new PM2.5 standard, have substantially higher percentages of minority populations (i.e., 19 

people of color, disadvantaged communities, and low-income populations) compared to the 20 

overall US population. To address these gaps, we highlight 10 priority locations that could 21 

reduce the population in the uncaptured hotspots by 67%. Overall, our findings highlight the 22 

urgent need to address gaps in the existing monitoring network. 23 

Keywords: PM2.5, Clean Air Act, air quality monitoring, environmental justice, NAAQS 24 

Synopsis: Existing air quality monitoring networks are insufficient to capture concentration 25 

hotspots, disproportionately impacting minority populations.  26 
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Introduction 27 

Ambient air pollution causes hundreds of billions of dollars in health damages per year in the 28 

United States, driven principally by the health effects of fine particulate matter (PM2.5). These 29 

exposures and health burdens disproportionately affect people of color (POC) and low-income 30 

populations.1–3 The US Environmental Protection Agency (EPA), implementing the Clean Air 31 

Act (CAA) over the past five decades, has dramatically reduced exposures to criteria air 32 

pollutants for hundreds of millions of Americans, yielding enormous health benefits.4 33 

Nonetheless, we don’t all breathe the same air, and major disparities in exposure remain.2,5–8 34 

The CAA relies on State and Local Air Monitoring Station (SLAMS) networks for determining 35 

hotspots and background concentrations, the health and welfare impacts of air pollution, and 36 

compliance with the National Ambient Air Quality Standards (NAAQS). However, due to the 37 

high capital and operational cost of monitoring stations, the existing SLAMS network is sparsely 38 

located across the US, often missing localized concentration variations9,10 and causing millions 39 

of high-exposure populations to be undetected and unprotected by the monitors.11–13 40 

Moreover, there are disproportionately fewer monitoring sites in communities with higher 41 

shares of POC and low-income people.13–16 While new measurement approaches such as low-42 

cost sensors and mobile monitoring have made denser monitoring networks and high-resolution 43 

concentration surfaces feasible,17–20 such data are still unevenly distributed among those 44 

communities21–23 and have not been incorporated in the NAAQS nonattainment process. 45 

In February 2024, EPA revised the annual primary standard for PM2.5, from 12 µg/m3 to 9 46 

µg/m3.24 At present, EPA is modifying the PM2.5 monitoring network design to include an 47 

environmental justice factor24 and is distributing tens of millions of dollars for enhancing 48 

monitoring in overburdened communities.25,26 However, limited scientific knowledge exists 49 

regarding: 1) the effectiveness of the existing monitoring networks under the new standard and 50 

2) how to address the monitoring gaps. Here, we quantify the gaps and disparities in the existing 51 

SLAMS network in detecting concentration hotspots under the new PM2.5 standard. We also 52 

evaluate approaches for adding monitoring sites to address these gaps. We find that the existing 53 

SLAMS are inadequate for capturing concentration hotspots and disparities. Adding monitors 54 
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can improve the representation of concentration hotspots, but not concentration disparities. This 55 

study provides the first quantification of the monitoring gaps under the new and future 56 

decreasing standards and informs policies for addressing the monitoring gaps. 57 

Materials and Methods 58 

Air pollution data and attainment status definition 59 

The U.S. EPA uses ambient measurements from SLAMS to determine whether a specific 60 

geographical area is in attainment of the NAAQS. Attainment is usually assessed for Core-61 

Based Statistical Area (CBSAs), which each correspond to one or more adjoining counties that 62 

encompass a large urban area or population nucleus. There are 894 CBSAs in the contiguous 63 

U.S., home to 320 million people: 379 metropolitan statistical areas (MSAs; population ≥ 64 

50,000) and 515 micropolitan statistical areas (μSAs; population 10,000-49,999). 65 

To investigate whether SLAMS are potentially missing areas of elevated PM2.5 in excess of the 66 

NAAQS, we employ a spatially complete dataset of census-tract level PM2.5 estimates for the 67 

contiguous U.S. from the empirical model of the Center for Air, Climate and Energy Solutions 68 

(CACES, www.caces.us)27,28. For the model years we consider here (2017-2019), the 69 

predictions have high-fidelity to out-of-sample validation measurements (R2: 0.81-0.84; 70 

standardized root mean square error: 19%-22%, normalized mean bias: -4% to -2%. We 71 

compute three-year averaged concentrations to match EPA’s design values (three-year averaged 72 

measurements)29 and further reduce the influence of model uncertainties and extreme events.  73 

Next, we obtain the design values and geographical coordinates of the 2017-2019 active PM2.5 74 

monitoring sites (n = 988) from the EPA’s Air Quality System and match them with CACES 75 

predictions (Figure S1). To further validate the empirical model, we check if model predictions 76 

correctly classify monitoring sites exceeding 9 µg/m3 NAAQS (Figure S2). The model’s slight 77 

low-bias makes our conclusions slightly conservative in identifying exceeding tracts. As 78 

sensitivity tests, we separately employ years 2017, 2018, and 2019 from CACES, and an 79 

alternative dataset of remotely-sensed 0.01° × 0.01° resolution (~1.1 km) PM2.5 predictions30 80 

(see Supporting Information, Section 1). 81 
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For each CBSA, we compare PM2.5 model predictions at monitoring sites with PM2.5 82 

distributions for all census tracts. EPA determines a CBSA as “nonattainment” if any SLAMS 83 

monitors’ design values exceed the NAAQS. We adapt this by defining nonattainment as having 84 

three or more tracts within a CBSA exceeding the standard. As sensitivity tests, we employ 85 

alternative nonattainment definitions (see Supporting Information, Section 1). Finally, we 86 

classify nonattainment CBSAs by whether the PM2.5 estimates at monitoring locations exceed 87 

the NAAQS (see Table S1). CBSAs are considered to be “captured” if they are correctly 88 

identified as nonattainment by monitoring locations; and “uncaptured” if they are misclassified 89 

as in attainment by monitoring locations, but have other unmonitored hotspots exceeding the 90 

NAAQS. Uncaptured CBSAs are of special concern here. 91 

Demographic data and exposure disparities 92 

We consider three demographic groupings: (1) race-ethnicity, (2) disadvantaged community 93 

(DAC) status, and (3) median household income, all by Census Tract for 2020. The five racial-94 

ethnic groups based on US Census data are: non-Hispanic White (58%; “White”), Latino or 95 

Hispanic (19%; “Hispanic”), non-Hispanic Black of African American (12%; “Black”), non-96 

Hispanic Asian and Pacific Islander (5%; “Asian”), and American Indian, another race, or 97 

multiracial (3%; “Other”). All except non-Hispanic White are grouped as People of Color 98 

(POC). 99 

Second, DACs are defined by combining six publicly available national screening tools from the 100 

federal government (see Supporting Information, Section 2; Table S2). We identify a census tract 101 

as DAC if it surpasses the specified thresholds by three or more tools (~25% of the total US 102 

population; Figures S3-S6). The reasons for combining six tools are to avoid the ineffectiveness 103 

or uncertainty in any single tool31 and to highlight locations of highest concern or federal 104 

funding. 105 

Third, median household income is from the 2020 American Community Survey data. We 106 

classify income into tertiles: high (> $76,164), middle ($51,168 - $76,164) and low (<$51,168). 107 
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We calculate PM2.5 exposure disparities by race-ethnicity, DAC status, and household income as 108 

the population-weighted average concentration for a subpopulation minus the overall average 109 

concentration. Disparities are calculated for all census tracts and for tracts near monitors (n = 110 

4,360; defined here as centroids within 1-km buffer of a monitoring site). 111 

Results 112 

The median number of PM2.5 monitoring stations in an MSA is 1 (µSA: 0) (population-weighted 113 

median: 5 [MSA], 1 [µSA]; Figure S7). On average, there is one site per 250,000 people. For 114 

NAAQS attainment status, the results reveal that 89 CBSAs (total population: 107 million) 115 

exceed the new PM2.5 standard (9 µg/m3) (Figure 1a). Among the nonattainment CBSAs, 44% 116 

(n=39; 20 million people) are not captured by monitoring (Figure 1b), because the CBSA has 117 

either no monitoring stations or the existing locations fail to capture the concentration hotspots 118 

(see Figure S8 for case studies). Most uncaptured nonattainment CBSAs are in the Midwest and 119 

South (Figure 1c). The estimations of monitoring gaps are robust considering the model errors, 120 

using alternative nonattainment definitions, separate years, and alternative concentration data 121 

(see Supporting Information, Section 1; Figures S2, S9-S11; Table S3). Under future decreasing 122 

standards (e.g., to the World Health Organization guideline, 5 µg/m3), ~60% of nonattainment 123 

CBSAs would not be captured by existing monitors (Figure 1b). 124 

Considering only the census tracts exceeding 9 µg/m3 PM2.5 (i.e., only considering the tracts 125 

themselves, rather than the whole CBSAs; “hotspot” tracts), 44 million people (14% of the U.S. 126 

population) live in exceeding tracts, of which most (41 million) live in tracts captured by 127 

monitors, and the rest (2.8 million) live in tracts not captured by monitors (Figures 2 and S12). 128 

The average concentration in the captured hotspots (10.2 µg/m3) is higher than the uncaptured 129 

hotspots (9.2 µg/m3). Crucially, both captured and uncaptured hotspots contain significantly 130 

higher percentages of POC (68% and 50%, respectively) compared to the overall population 131 

(42%) (Figure 2). Those hotspots also contain higher percentages of DAC (42% and 41%) and 132 

low-income populations (28% and 39%) than the overall population (25% [DAC]; 28% [low-133 

income]; Figures S13-S14). Minority population percentages in the uncaptured hotspots are 134 

higher than the state average in most states (Figure S15). This suggests that the existing monitors 135 
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are insufficient to identify concentration hotspots, disproportionately impacting minority 136 

populations both nationally and state-wide. 137 

We also examine whether monitoring locations represent exposure hotspots, average exposure 138 

levels, and disparities by demographic group. On average, 23% of the overall population lives in 139 

census tracts with higher concentrations than the highest monitored concentrations in the 140 

CBSAs. However, for POC, DAC, and low-income populations, the numbers are 32, 39% and 141 

36%, respectively, indicating that monitoring is less representative of the upper bounds of the 142 

population-concentration distribution for these minority groups (Figure 3a). Comparing the 143 

concentration disparities for all census tracts and for tracts around monitors, monitored locations 144 

underestimate state-level disparities in most states (Figures 3b-3c, S16-S17). For example, the 145 

national racial-ethnic relative disparity of PM2.5 concentration is 6.1% for all tracts; the relative 146 

disparity for tracts around monitors is only 4.3% (a 30% underestimation).  147 

Lastly, we examine approaches for addressing these monitoring gaps and disparities (see details 148 

in Supporting Information, Section 3), consistent with recent federal and state legislation 149 

supporting enhanced monitoring for disadvantaged communities.32,33 Here, we present an 150 

approach for prioritizing new monitor locations, following a simple decision rule that identifies 151 

optimal census tracts for monitoring based on the size of the additional population in census 152 

tracts that would be newly captured (i.e., correctly reclassified as nonattainment) through the 153 

addition of a marginal monitoring site (see SI for full details and a range of alternative 154 

approaches). Our results imply that adding only 10 new monitor locations could reduce the 155 

population in the uncaptured hotspots by 67% (from 2.8 million to 0.9 million; Figure 4). This 156 

approach would reduce the percentage of POC populations in uncaptured hotspots by 20% (from 157 

50% to 40%; Figure S18), but would provide less benefit to DAC and low-income populations 158 

(see Figures S18-S20 for other approaches, which might better target those subpopulations). 159 

Nonetheless, although adding a small number of targeted monitor locations could sharply reduce 160 

the number of people “uncaptured” by the existing monitoring network, it would not 161 

meaningfully improve the ability of the SLAMS to characterize nationwide PM2.5 disparities 162 
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(Figures S21). To accurately evaluate exposure disparities, other methods or tools (instead of 163 

regulatory monitoring), with much finer spatial resolution and not data gaps, are likely needed.  164 

Discussion 165 

Our study comprehensively quantifies gaps and disparities in the existing regulatory monitoring 166 

networks, revealing the following key points. First, the existing SLAMS regulatory monitoring 167 

network fails to capture 44% of nonattainment CBSA under the new PM2.5 NAAQS, providing 168 

inadequate protection to tens of millions of highly-exposed people. These uncaptured 169 

populations are higher than previously documented under the old PM2.5 standards,11–13 170 

highlighting the urgent need for additional monitors to implement the new standard effectively. 171 

Second, existing monitoring networks have disproportionately less coverage among the high-172 

exposure minority populations. Those populations are already more vulnerable and sensitive to 173 

the health effects from air pollution.34,35 Our findings indicate that adding a small number of 174 

additional monitors can noticeably reduce the number of unmonitored exceeding locations; that 175 

step will benefit the overall population and help reduce injustices via implementation of the CAA 176 

(e.g., via state implementation plans). 177 

Third, the monitoring stations underestimate exposure disparities. Unfortunately, adding a 178 

moderate number of monitors would be ineffective at addressing this gap (Figure S21). Indeed, 179 

since empirical models may underestimate hotspot concentrations,2,36 the true underestimation in 180 

disparities by the monitoring networks is likely to be even greater than is estimated here. Our 181 

results imply that other technologies and tools with higher spatial resolution, such as mobile 182 

monitoring,36–39 low-cost or portable sensors,21–23,40–43 and satellite-based models,44–48 could aid 183 

in representing exposure hotspots and disparities. Thus, an important open question is whether 184 

new data/tools need to be incorporated in the Clean Air Act policies.  185 

Our study informs the implementation of the new PM2.5 NAAQS, in terms of regulatory 186 

monitoring. Our findings reveal that as the “umbrella” to protect the US population, the existing 187 

PM2.5 SLAMS network has significant monitoring gaps. Effective and straightforward solutions 188 

exist (i.e., adding a small number of monitors) to address the monitoring gaps identified here; 189 
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doing so would protect the overall population, but would not substantially change the 190 

underestimation of disparities by the monitoring network.  191 

Previous research indicated that simply tightening NAAQS standards without targeting specific 192 

locations will not address disparities.8,31 Therefore, improvement in monitoring networks, 193 

incorporating other high-resolution tools, and more effective location-based strategies are all 194 

urgently needed, in addition to stricter NAAQS standards, to address exposure disparities. Future 195 

studies could further investigate state-level solutions for reducing pollution levels, eliminating 196 

disparities, and designing monitoring networks to support both goals. Our methodologies for 197 

investigating monitoring gaps may apply to other pollutants (e.g., nitrogen dioxide).  198 
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 370 
 371 

Figures 372 

 373 

Figure 1.  Core-based statistical areas (CBSAs) exceed a hypothetical PM2.5 standard, classified 374 
by monitoring status. Here, we consider only those CBSAs with three or more census tracts that 375 
have modeled PM2.5 exceeding a range of hypothetical PM2.5 standards, which we thereby 376 
consider to be in nonattainment. We classify the (a) number and (b) percentage of CBSAs 377 
exceeding the PM2.5 standard into three distinct groups. In blue, we present “captured” CBSAs. 378 
These CBSAs are correctly identified as exceeding the standard, by virtue of having monitors 379 
located in tracts that exceed the standard . In orange, we present “uncaptured CBSAs,” which 380 
would be misclassified as in attainment based on present monitoring locations. In these 381 
uncaptured CBSAs, the highest monitored tract does not exceed the standard, despite other 382 
unmonitored hotspot tracts exceeding the standard. Finally in red, we show CBSAs that exceed a 383 
given standard value that have no monitors at all. In (c), we illustrate the geographic distribution 384 
of CBSAs for the new PM2.5 NAAQS of 9 µg/m3. 385 
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 388 

Figure 2. Racial-ethnic composition under different PM2.5 exposure levels. Left panel: tract-level 389 
racial-ethnic composition (White, Hispanic, Black, Asian, or Other; upper row) and 390 
concentration distribution (population-weighted; bottom row) across the concentration range (3-391 
15 µg/m3). The new standard (9 µg/m3) is represented as black dashed lines. The uncaptured 392 
high-exposure tracts (≥ 9 µg/m3) are represented by the orange shadow (bottom-left panel). Right 393 
panel: racial-ethnic composition for (i) overall census tracts; (ii) census tracts with 394 
concentrations < 9 µg/m3; (iii) census tracts with concentrations ≥ 9 µg/m3 and located in 395 
nonattainment CBSAs that are captured by monitors (blue color in Figure 1c); (iv) census tracts 396 
with concentrations ≥ 9 µg/m3 and not in the captured nonattainment CBSAs. There are three 397 
reasons for non capturing: the census tracts are in nonattainment CBSAs that are uncaptured by 398 
monitors (orange and red colors in Figure 1C); the CBSAs where the census tracts locate don’t 399 
have three or more census tracts exceeding the standard; or the census tracts are rural tracts (not 400 
within any CBSAs). 401 

 402 
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  404 

Figure 3. Representativeness of monitoring locations for exposure hotspots and exposure 405 
disparities by demographics. (A) Percentages of populations in each CBSAs that are exposed to 406 
the concentrations higher than the maximum concentrations in the monitored tracts. Populations 407 
are grouped by race-ethnicity, DAC status and income levels. The box-and-whisker represents 408 
the 10th, 25th, 50th, 75th, and 90th percentiles, and the green circle represents the population-409 
weighted mean. (B) State-level racial-ethnic concentration (relative) disparities in PM2.5 for all 410 
census tracts and census tracts around (within 1-km circular buffer) monitoring sites. (C) The 411 
difference in the two disparities, calculated as disparities for all census tracts minus disparities 412 
for tracts around monitors. The purple colors represent that the monitoring locations 413 
underestimate racial-ethnic disparities; the green colors represent that monitoring locations 414 
overestimate racial-ethnic disparities. 415 
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  417 

Figure 4. Number of remaining population residing in high concentration census tracts that are 418 
not captured by monitoring (total  = 2.8 million people). By selecting the first 10 CBSAs with 419 
the highest number of people residing in uncaptured census tracts (10 red locations), and adding 420 
one additional appropriately-sited monitor to each CBSA, the population remaining in 421 
uncaptured hotspots would be reduced by 67% to 0.9 million people. The addition of these 422 
monitors would result in each of these 10 CBSAs (total population = 13 million) being classified 423 
as in non-attainment of the new PM2.5 NAAQS based on the 2017-2019 design value.  Note that 424 
after all hotspots in the CBSAs are captured, there remains a non-urban high-exposure 425 
population of ~ 0.2 million people that is located outside of the CBSAs. 426 
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