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ABSTRACT

In this study, we introduce DockM8, an innovative open-source platform designed for consensus virtual
screening in drug design. Leveraging various docking algorithms and scoring functions, DockM8 provides a
highly customizable workflow for structure-based virtual screening. Through extensive testing on DEKOIS
2.0, DUD-E, and Lit-PCBA datasets, we show that DockM8 demonstrates state-of-the-art performance com-
pared to existing methods, highlighting its adaptability and generalizability across diverse targets. The study
emphasizes the importance of tailoring the virtual screening strategy to specific targets, suggesting that no
single pose selection or consensus method universally outperforms others. DockM8’s user-friendly interface
and minimal programming requirements make advanced virtual screening accessible to a broader scientific
community. DockM8 is freely available at https://github.com/DrugBud-Suite/DockM8. We invite the compu-
tational chemistry community to participate in the further development of DockM8, envisioning its evolution
as a powerful tool in drug discovery and medicinal chemistry.

Keywords Virtual Screening · Docking · Consensus · Open-Source

1 Introduction

In the pursuit of accelerating drug discovery, computational methods have become indispensable, with
structure-based virtual screening (SBVS) emerging as a cornerstone strategy. Docking-based VS uses 3D
structural information and computational algorithms to sift through large molecular libraries, identifying
compounds with potential biological affinity for a specified target. Consequently, this screening reduces the
number of compounds subjected to “wet-lab” assays, substantially curbing associated costs while hoping to
discover novel active compounds [1, 2].
Molecular docking simulates the interaction between a ligand and its target, attempting to predict the binding
pose of the ligand of interest and computing a docking score used to rank potential ligands based on predicted
binding affinities [3]. Determining the accurate binding pose of a small molecule is essential not only for
assessing its binding affinity but also for leveraging the pose in lead optimization. Furthermore, accurate
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scoring of compounds is crucial for comparing ligands in a screening scenario and determining whether a
particular ligand should be considered for experimental validation.
Conventional molecular docking software, including AutoDock [4], AutoDock Vina [5, 6], and Glide [7],
predominantly employ heuristic search algorithms to systematically examine a range of potential ligand con-
formations. Although the sampling of binding poses performed by these algorithms has seen significant
advances in recent years, particularly with recent developments, challenges in scoring and ranking the result-
ing poses still remain due to known shortcomings such as not considering protein flexibility, water-mediated
interactions, or changes in entropy upon binding.
Over the past decades, a multitude of scoring functions (SFs) have been developed, ranging from empirical,
physics-based, and knowledge-based SFs to the more recently developed machine-learning (ML) based SFs
[8, 9]. Despite significant recent advances in this field, these scoring functions still lack universal applica-
bility as they necessarily rely on a simplification of the complexity of protein–ligand binding. Indeed, the
performance of any given scoring function on a given target does not necessarily correlate to performance on
other targets [10]. Moreover, single scoring functions often struggle to handle both accurate binding affinity
prediction and ligand ranking [11]. Several solutions have been proposed to deal with the issues surrounding
the performance of molecular docking, including consensus docking (using multiple methods) and ensemble
docking (incorporating several protein conformations).
Ensemble docking uses multiple receptor conformations to tackle the inherent challenge of protein flexibility.
Indeed, early SBVS campaigns are mostly performed using flexible ligands and rigid receptor docking. Al-
though this accelerates the calculation, it fails to represent the dynamics of the protein–ligand system under
study. Ensemble docking suggests that using multiple protein states instead of a single static structure offers
a more holistic view of ligand binding. This approach improves the predictive accuracy of molecular docking
by considering scores and rankings across these various protein states [12].
Consensus docking has also emerged as a modality seeking to enhance the precision of molecular docking.
By combining diverse docking algorithms and scoring functions, consensus approaches circumvent individual
limitations through aggregation. This strategy was shown to yield more reliable binding pose predictions,
better absolute and relative scoring of ligands, and superior generalizability [13, 14, 15, 16]. In recent years,
a variety of consensus docking tools have been developed (Table 1). DockBox uses a variety of docking
algorithms (AutoDock4 [4], Vina [5] and DOCK [17]) along with score-based consensus docking to enhance
pose prediction and ligand ranking [18]. dockECR uses LeDock [19], rDock [20], Smina [21] and Vina
along with exponential consensus ranking (ECR) to improve binding pose prediction [22]. Approaches such
as MetaDOCK [23], CompScore [24] or ESSENCE-Dock [25] attempt to find novel methods of carrying
out the consensus by using docking-pose based clustering, incorporating additional SF components in the
consensus, or using pose RMSD and the number of rotatable bonds to further refine the consensus scoring.
Also recently, DockingPie [26] offers a graphical user interface (GUI) in PyMOL [27] to aid in consensus
screening.

Table 1: Comparison of Docking Tools. ’x’ means respective column applies to this tool, ’-’ not applicable. The more x’s the
better.

Tool Open- Docking GUI or Number of Methods No External Year
Source Server Consensus Scoring Licenses Required

VoteDock [28] - x - 1 >5 - 2011
CompScore [24] x - x 1 0 x 2019
DockBox [18] x x - 2 5 - 2019
dockECR [22] x x - 1 4 - 2021

DockStream [29] x x - 0 >5 - 2021
pyscreener [30] x x - 0 >5 x 2021
DockingPie [26] x x x 1 4 - 2022
MetaDOCK [23] - x x 1 3 x 2023

ESSENCE-DOCK [25] x - - 1 3 - 2023
ChemFlow [31] x x - 0 3 - 2023
easydock [32] x x - 0 >2 - 2023
Dockey [33] x x x 0 3 - 2023

DockM8 (ours) x x x 10 16 x 2024

Despite their potential, the current consensus docking tools pose challenges, especially in the context of
academic research (Table 1). Some of these tools lack user-friendliness and/or accessibility as open-source
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Figure 1: General workflow for consensus docking and scoring within DockM8.

software, hindering their widespread acceptance and incorporation into academic drug discovery workflows.
Moreover, the majority depend on the scoring functions included in the docking tools, rather than leveraging
the abundance of modern scoring functions available [9]. Furthermore, many necessitate manual compilation
of code libraries or require software to be sourced from a variety of commercial or academic sources.
To mitigate these shortfalls, we developed DockM8, a fully-fledged open-source workflow for consensus
virtual screening. The tool coordinates and manages a collection of various programs and APIs for protein
and ligand protonation and preparation, binding site determination, docking, pose selection, rescoring, and
consensus scoring (Figure 1). Additionally, DockM8 can run both in single and ensemble docking mode,
both using up to five different docking tools(number as chosen by the user). We provide the ability to select
poses based on eleven pose selection methods and rescore ligands using any of the sixteen scoring functions
currently implemented. Ten consensus methodologies are implemented which, along with scoring function
selection, allow for customization of the workflow to the protein target of interest. Most importantly, we
designed DockM8 to be easy to use for computational and medicinal chemists alike and intended it to be a
central platform for the virtual screening community. With this in mind we provide the ability to run DockM8
through a simple graphical user interface (GUI), via the command line or via Jupyter Notebooks. We actively
invite collaboration to further enhance DockM8’s capabilities. In this work, we introduce and extensively test
DockM8’s performance on subsets of the DUD-E [34], DEKOIS [35] and Lit-PCBA [36] datasets and show
that it not only outperforms any single scoring function but allows for the customization of the protocol to
individual targets.

2 DockM8 Pipeline

The DockM8 pipeline consists of seven steps, automating the entire process from data pre-processing, fol-
lowed by docking and scoring, and finally consensus ranking.

2.1 1. Ligand Library Preparation

Ligands are supplied to DockM8 as an .sdf file. The ligand library is first standardized using the ChEMBL-
structure-pipeline [37] library, which uses RDKit [38] to check, standardize and desalt ligands. Accurately
predicting ligand protonation states remains a challenge in computational chemistry and few open-source
libraries are available to perform this task [39]. As a result, we used Gypsum-DL for both compound proto-
nation and 3D conformation generation [39].

2.2 2. Receptor Preparation

DockM8 gives users the option to prepare protein structures through querying the Protoss program via the
proteins.plus webserver [40]. Protoss optimizes the hydrogen bonding network in protein–ligand complexes,
addressing the complexities of hydrogen bonding, tautomerism, and ionization to enable precise analysis
of binding modes and calculation of associated binding energies [41]. This provides streamlined access to
ready-to-dock protein structures. Currently, DockM8 does not allow for modification of these automatically
assigned protonation states, which may be critical in certain targets. In these cases, we encourage users to
carefully modify the protein input file beforehand using the tools of their choice (e.g. PyMOL [27]).

2.3 3. Pocket Detection

Users are presented with multiple strategies for binding site selection. The Reference and RoG (radius
of gyration) options make use of a co-crystallized ligand, which needs to be supplied as a separate file.
Alternatively, an already docked pose could also be used. In the Reference method, DockM8 automatically
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determines the ligand’s center of mass (CoM) and defines a box (the dimensions of which can be specified
by the user) around this CoM. The RoG method determines the box’s center coordinates in the same way as
before but uses the previously defined reference ligand’s radius of gyration (RoG) to define the box size. This
was shown to be a suitable method to determine box size for AutoDock Vina [42].
Alternatively, if no crystal ligand is available, DockM8 can make use of the DoGSiteScorer algorithm which
combines pocket finding along with pocket characterization to select druggable binding sites [43]. DockM8’s
query of DoGSiteScorer via the proteins.plus webserver outputs the largest binding site by default. An option
to select binding sites based on other metrics provided by DogSiteScorer is also included (available metrics
are: Volume, Surface, Depth and Druggability Score).
Finally, the user can supply custom box center and size values, both in the GUI and by command line. Details
can be found in the DockM8 Usage Guide. The binding site definition is then used for all further docking and
rescoring functions.

2.4 4. Docking

DockM8 currently supports five distinct docking algorithms: (1) SMINA, a fork of AutoDock Vina with an
improved scoring function and energy minimization processes [21]. (2) GNINA, an offshoot of SMINA,
which employs convolutional neural networks (CNN) as a scoring function [3]. (3) QVINA-W [44] and (4)
QVINA2 [45], both derived from AutoDock Vina [6], which introduce advancements in computational speed,
thereby expediting the docking process. And (5) PLANTS, which is based on an ant colony optimization
algorithm [46]. The user can choose from any combination of the above mentioned docking algorithms
integrated in DockM8.
In all cases, the docking calculations are parallelized by running one docking run on one CPU core and using
the multiprocessing or joblib libraries to manage the running jobs. The ligand library is split beforehand
according to the number of CPU cores defined by the user to allow parallel handling of the docking tasks. For
QVINA-W and QVINA2, the necessary conversion of the ligand and receptor files to pdbqt-files is handled
by Meeko [47] and the Python implementation of OpenBabel with the addition of Gasteiger charges [48],
respectively.
After the docking has been completed, the poses are filtered using the recently developed PoseBusters
library[49], which implements pose quality checks using RDKit. We developed a custom configuration file
(posebusters-config.yml) to reduce the calculation times while retaining quality checks considered critical,
which can be adjusted by the user.

2.5 5. Pose Selection

One of the challenges associated with consensus docking is the fact that the number of generated poses scales
with the number of docking algorithms used. To address this, DockM8 supports a variety of pose selection
options. Traditionally, the best pose (as determined by the docking score) for each ligand is selected for
further analysis. DockM8 supports this through the bestpose series of pose selection options. The best pose
for a single docking program can be used (e.g. bestpose_SMINA or bestpose_PLANTS), which will return
a single pose for each ligand in the library. Alternatively, the bestpose option (without tool specification)
selects the best pose of each ligand for each selected docking algorithm, outputting the same amount of
poses as docking algorithms selected (for each ligand). Additionally, due to the large number of poses being
generated, we implemented a module to cluster the docking poses based on various metrics. Indeed, if several
docking poses of the same ligand are very similar, further calculations can be simplified by using one of those
poses as the representative pose. To achieve this, all the docked poses are put into an identity matrix and a
clustering metric is calculated. Currently, the following metrics are available in DockM8:

• RMSD: heavy-atoms root mean square displacement (RMSD), used to cluster poses by their geometric
similarity

• spyRMSD [50]: symmetry-corrected heavy-atoms RMSD, used to cluster poses by their geometric sim-
ilarity

• espsim [51]: electrostatic shape similarity, used to cluster poses by similar interaction potential
• USRCAT [52]: shape similarity, used to cluster poses by similar 3D shape
• 3DScore [28]: the mean spyRMSD of each pose relative to all other poses is calculated and the pose

with the lowest 3DScore is retained

For the first four metrics, the identity matrix is then subjected to clustering. Two options are available: K-
medoids [53] and Affinity Propagation [54]. These methods were selected because they output a cluster
member as the cluster center, which represents a real ligand pose. For the K-medoids algorithm, the ideal
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Table 2: List of scoring functions available in DockM8
Scoring Function Type Note
AutoDock4 [4] Semi-empirical Semi-empirical scoring function from AutoDock4
GNINA-Affinity [3] Empirical Empirical scoring function bundled in GNINA
AAScore [57] Empirical Amino-acid specific empirical scoring
LinF9 [58] Empirical Improved scoring based on 9 empirical terms
CHEMPLP [46] Empirical Expanded PLP with GOLD terms for metals and torsions
PLP [46] Empirical Piecewise linear potential (4 terms)
Vinardo [59] Empirical Improved empirical scoring based on Vina
KORP-PL [60] Knowledge-based Coarse-grained knowledge-based scoring
Convex-PLR [61, 62] Knowledge-based Scoring function incorporating entropic terms
CNN-Score [3] Machine-learning CNN pose scoring model bundled in GNINA
CNN-Affinity [3] Machine-learning CNN binding affinity prediction bundled in GNINA
RF-Score-VS [63] Machine-learning Random Forest-based scoring function
SCORCH [64] Machine-learning Consensus ML scoring function
RTMScore [11] Machine-learning Graph transformer-based scoring function
PLEC [65] Machine-learning Protein–ligand fingerprint binding affinity prediction
NNScore [66] Machine-learning Neural network-based affinity prediction

number of clusters is determined by using the silhouette score [55] and an elbow-finding library [56]. Only
the cluster center poses are selected for further processing. Finally, any one of the 16 scoring functions
supported by DockM8 can be used to select docking poses. In this case, the best scoring pose for each ligand
is used for further calculations.

2.6 6. Rescoring

DockM8 is bundled with 16 different scoring functions, which include empirical, semi-empirical, knowledge-
based, and machine learning (ML) categories. Any combination of these scoring functions can be used during
rescoring and during the consensus score calculation. As mentioned previously, any of these scoring functions
can also be used to select docking poses. A list and description of the scoring functions available in DockM8
is shown in Table 2.

2.7 7. Consensus Methodologies

DockM8 currently supports ten different consensus methods. To give the user flexibility and the ability
to adapt the protocol to the target under study, we included both traditional and more modern consensus
strategies. All the methods described below operate on the poses selected by the methods described above
and use the scores from the scoring functions as variables. All such scores are standardized using min-max
standardization before calculating the consensus scores. Figure 2 below provides a visual representation of
the various consensus strategies.
For each consensus method described below, there are two variants: *_best and *_avg. The *_best variant
considers only the pose with the best consensus score for the final scoring (for each molecule ID). The *_avg
variant takes the average consensus score of all the selected poses for a given molecule for the final consensus.
Additionally, for ECR, there are two more variants: avg_ECR and avg_R_ECR, which are explained in their
respective section. See Figure 2 for a visual explanation of these methods.

2.7.1 Rank by Rank (RbR)
The candidate molecules are selected based on the rank for all the selected scoring functions (Equation 1)
[16]. Let rxy be the rank of the molecule x for scoring function y and n is the total number of scoring functions;
then the output of the RbR consensus is given by:

RbRx =
1

n

∑
y

rxy , (1)

2.7.2 Rank by Vote (RbV)
Molecules receive votes if they rank above a certain threshold for a specific scoring function. The total score
for each molecule is determined by the sum of votes across all scoring functions, ranging from zero to the
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Figure 2: Visual overview of the various consensus strategies implemented in DockM8. The flowchart shows the steps taken
(i.e. averaging pose data first or consensus scoring first) to arrive at the final consensus score.

total number of considered scoring functions. Candidates are then ranked according to their final number of
votes [16].

2.7.3 Z-score
The molecule score (s) undergoes scaling using the average (µ) and standard deviation (σ) of scores for all
molecules within each scoring function. The final score is the average of the scaled scores across all scoring
functions (Equation 2) [67]. Let n be the total number of scoring functions, sxy the score of molecule x
for scoring function y, µy the average score for scoring function y and σy the standard deviation of scoring
function y; then the output of the Z-score consensus is given by:

Z − scorex =
1

n

∑
y

sxy − µy

σy
, (2)

2.7.4 Exponential Consensus Ranking (ECR)
The ECR calculation method was taken from Palacio-Rodríguez et al. (Equation 3). [68]. Let σ be the
expected value of the exponential distribution, which represents the threshold of the data to be taken into
account in the consensus. Let rxy be the rank of the molecule x for scoring function y; then the ECR score is
given by:

ECRx =
1

σ

∑
y

exp(−
rxy
σ
), (3)

In addition to the standard *_best and *_avg variants, ECR has two more sub-methods:
• avg_ECR: First averages the ranks of all the selected poses for a given molecule, then calculates the ECR

score based on the average rank values.
• avg_R_ECR: Similar to avg_ECR but first re-ranks all the molecules after the rank averaging.

2.8 Available Docking Modes

In order to partially account for protein flexibility, DockM8 supports two major operational modes:
Single Docking Mode: This mode performs “traditional” molecular docking against a single protein struc-
ture. In this case, the output of the workflow is a list of compounds ranked by their consensus score.
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Ensemble Docking Mode: In this mode, users can choose multiple protein structures for the docking pro-
cess. Each structure is processed sequentially, similar to the single docking mode. When utilizing this mode,
users need to define a threshold as a percentage. The output displays the highest-scoring compounds, deter-
mined by the selected consensus method, across various protein targets. Only compounds that rank as top
scorers (according to the consensus score) within the specified user threshold in all protein conformations are
selected.

2.9 Performance Evaluation

A variety of metrics [69] were considered when analyzing the performance of the DockM8 workflow on
the three data sets, containing labeled actives and decoys (see Section 3.1). A custom implementation of
the enrichment factor (EF)[69] was implemented while for the Boltzmann-Enhanced Discrimination of ROC
(BEDROC)[70], the rdkit.Scoring module was used. For the Area under the Receiver Operating Charac-
teristic Curve (AUC-ROC) metric, the sklearn library was used.
The equation used for the enrichment factor is shown in Equation 4, where x is a percentage threshold, Hx is
the number of hits above that threshold, Nx is the number of compounds at that threshold, H100 is the total
number of hits and N100 is the total number of compounds:

EF x =
Hx

Nx
× N100

H100
, (4)

We developed a function (calculate_performance) that takes as input a rescored library and the labeled
docking library (with actives and decoys) and determines the EF, BEDROC, and AUC-ROC metrics. This
was used to determine DockM8’s performance on the various benchmark datasets. It is also used to select the
docking, pose selection, rescoring, and consensus conditions when using the --gen_decoys option.

2.10 Decoy Generation

Due to the considerable number of possible conditions under which DockM8 can be run, the user needs
to be able to determine which choices are most appropriate for the target under study. One of the ways to
achieve this is to generate decoy molecules that closely resemble the physicochemical properties of known
active compounds for that particular target. If the screening software can discern the actives from the decoys
effectively, the chances of being able to discern potentially active compounds from a real docking library are
increased. When decoy generation is activated and a list of known active compounds is supplied, DockM8
will make use of the DeepCoy [71] library to generate a user-specified number of decoys.
Subsequently, the user can choose which conditions (docking, pose selection, and rescoring functions) are to
be explored. This allows the user to limit the search space of conditions if desired. DockM8 will then run the
workflow using every possible combination of the supplied conditions to determine which one is best able
to distinguish active compounds from decoy molecules. The optimum conditions will then be automatically
used for the screening of the library of interest.

2.11 Graphical User Interface

A simple graphical user interface (GUI) is provided for DockM8 via the Streamlit framework [72]. If the
streamlit library is installed, the GUI can be launched by the command: streamlit run gui.py. The
interface is shown in Figure 3.

2.12 Technical Details

The DockM8 workflow (Figure 1) was developed for Python 3.10 and the Ubuntu (version 20 and above)
operating system, although it can be run in Windows Subsystem for Linux version 2 if required. Multipro-
cessing capabilities are integrated into DockM8, particularly during the docking and rescoring phases as these
are the most resource-intensive. Allocation of individual processing runs across available CPU cores is man-
aged by utilizing the multiprocessing or joblib libraries. DockM8 maintains a structured approach to
file management, wherein a dedicated working directory houses the data generated after each step of ligand
preparation, docking, clustering, and scoring procedures, thereby allowing subsequent analysis.

3 Data and Methods

DockM8 v1.0.3 was used for all benchmarking efforts.
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Figure 3: Screenshot of the DockM8 GUI running in Streamlit, showcasing the main interface for configuring inputs for the
molecular docking simulations.

3.1 Benchmark Datasets

3.1.1 DEKOIS 2.0

A subset (see Supporting Information Section 1) of the DEKOIS 2.0 library (79 targets) was downloaded via
the link provided in the original publication [35]. The reference ligand and protein files were used as is in the
DockM8 workflow. The docking library was generated by combining the actives and decoys into one SDF
file and labeling each with 0 (for decoys) or 1 (for actives) to allow for the calculation of the performance
metrics. The DockM8 conditions were set as follows :

• Protein preparation: the protein file was protonated using the --prepare_proteins = True option.
• Pocket definition: the pocket was defined using the --pocket = reference option with a cutoff of 8

Å (box size of 16 Å).
• Ligand preparation: the ligands were protonated and 3D conformers were generated using Gypsum-DL.
• Docking: PLANTS, SMINA, GNINA, QVINA2, QVINAW: in all cases, 10 poses per ligand were

generated.
• Pose selection: due to the high computational cost of exploring each scoring function as a pose selection

tool, we elected to use only the following methods: RMSD, spyRMSD, espsim, 3DScore, bestpose,
bestpose_GNINA, bestpose_SMINA, bestpose_PLANTS, bestpose_QVINA2,
bestpose_QVINAW, KORP-PL, ConvexPLR and RTMScore.

• Pose busting: Due to the high computational cost of using Pose Busters on this many docking poses, this
feature was disabled.

• Rescoring: GNINA-Affinity, CNN-Score, CNN-Affinity, Vinardo, AD4, KORP-PL, ConvexPLR,
LinF9, RTMScore, RFScoreVS, CHEMPLP, NNScore, PLECScore (SCORCH and AAScore were omit-
ted in the benchmarking used due to high computational cost. PLP was omitted due to high correlation
with CHEMPLP).

• Consensus: for benchmarking purposes, every consensus method available in DockM8 was used. More-
over, the consensus was considered for every pose selection method and every combination of the se-
lected scoring functions. This represents 621621 possible final compound rankings for each target in the
dataset.
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3.1.2 DUD-E
A subset (see Supporting Information Section 1) of the DUD-E library (28 targets) was downloaded via the
link provided in the original publication [34]. Dataset preparation was carried out in the same manner as for
the DEKOIS dataset. The DockM8 conditions were set as follows :

• Protein preparation: the protein file was protonated using the --prepare_proteins = True option.
• Pocket definition: the pocket was defined using the --pocket = reference option with a cutoff of 8

Å (box size of 16 Å).
• Ligand preparation: the ligands were protonated and 3D conformers were generated using Gypsum-DL.
• Docking: PLANTS, SMINA, GNINA: in all cases, 10 poses per ligand were generated.
• Pose selection: due to the high computational cost of exploring each scoring function as a pose selection

tool, we elected to use only the following methods: RMSD, spyRMSD, espsim, 3DScore, bestpose,
bestpose_GNINA, bestpose_SMINA, bestpose_PLANTS, KORP-PL, ConvexPLR and RTMScore.

• Pose busting: Due to the high computational cost of using Pose Busters on this many docking poses, we
elected to not enable this feature.

• Rescoring: GNINA-Affinity, CNN-Score, CNN-Affinity, Vinardo, AD4, KORP-PL, ConvexPLR,
LinF9, RTMScore, RFScoreVS, CHEMPLP, NNScore, PLECScore (SCORCH and AAScore were omit-
ted in the benchmarking used due to high computational cost. PLP was omitted due to high correlation
with CHEMPLP).

• Consensus: for benchmarking purposes, every consensus method available in DockM8 was used. More-
over, the consensus was considered for every pose selection method and every combination of the se-
lected scoring functions. This represents 556179 possible final compound rankings for each target in the
dataset.

3.1.3 Lit-PCBA
A subset (see Supporting Information Section 1) of the Lit-PCBA library (seven targets) was downloaded
via the link provided in the original publication [36]. For each of the targets, the PDB entry with the best
resolution was used. The reference ligand and protein files were used as is in the DockM8 workflow. Dataset
preparation was carried out in the same manner as for the DEKOIS dataset. The DockM8 conditions were set
as follows:

• Protein preparation: the protein file was protonated using the --prepare_proteins = True option.
• Pocket definition: the pocket was defined using the --pocket = reference option with a cutoff of 8

Å (box size of 16 Å).
• Ligand preparation: the ligands were protonated and 3D conformers were generated using Gypsum-DL.
• Docking: PLANTS, SMINA, GNINA: in all cases, 10 poses per ligand were generated.
• Pose selection: due to the high computational cost of exploring all the pose selection methods,

we elected to use only the following methods: bestpose, bestpose_GNINA, bestpose_SMINA,
bestpose_PLANTS, KORP-PL, ConvexPLR.

• Pose busting: Due to the high computational cost of using Pose Busters on this many docking poses, we
elected to not enable this feature.

• Rescoring: GNINA-Affinity, CNN-Score, CNN-Affinity, Vinardo, AD4, KORP-PL, ConvexPLR,
LinF9, RTMScore, RFScoreVS, CHEMPLP (SCORCH, AAScore, NNScore, PLECScore were omitted in
the benchmarking used due to high computational cost. PLP was omitted due to high correlation with
CHEMPLP).

• Consensus: for benchmarking purposes, every consensus method available in DockM8 was used. More-
over, the consensus was considered for every pose selection method and every combination of the se-
lected scoring functions. This represents 69267 possible final compound rankings for each target in the
dataset.

4 Results

We utilize two distinct methodologies to evaluate the performance of DockM8. The first metric, DockM8-max,
involves assessing each target individually by exploring all potential combinations of consensus algorithms,
scoring functions, and pose selection strategies to identify and report the best-performing combination for
each specific target. Conversely, the DockM8-best metric considers the same range of combinations but fo-
cuses on the one that delivers the highest average performance across the entire dataset of targets. Thus,
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Figure 4: Evaluation of EF at 1% of DockM8 compared to 21 published protocols on the DEKOIS dataset. Methods are sorted
by their median value. Whiskers denote the 10th and 90th percentiles. Methods containing the @ symbol refer to either the
provenance of the data (@IGN and @Karmadock) or the source of the docking poses, which were used for scoring (@GlideSP).

DockM8-max is target-specific, while DockM8-best emphasizes overall consistency and generalizability
across multiple targets. Performance will be assessed on the three datasets DEKOIS 2.0, DUD-E and Lit-
PCBA (see section 3.1). Then, a general analysis of the impact of pose, consensus method and scoring
function selection will be performed.

4.0.1 Assessment of screening power on DEKOIS 2.0
In this section, the performance of DockM8 was evaluated on a subset of the DEKOIS 2.0 dataset (79 tar-
gets, see Supporting Information). A variety of other methods were included in the comparison, with the
enrichment factor (EF) data being taken from the relevant publications. We included a variety of methods in
the comparison, including machine learning (IGN [73], KarmaDock [74], RF-Score-VS [63], TankBind [75])
and more traditional methods (GlideSP [7], Surflex [76], LeDock [77], AutoDock Vina[5]) (for all associated
data, see the Supporting Information). Figure 4 shows the EF at 1% (EF1%) for the various methods.
Considering median EF1% values, DockM8-max outperforms all state-of-the-art methods with an median
EF1% of 29.6%, while DockM8-best lands at rank 5 (18.05%). The other three top-scoring methods are
IGN, RTMScore and GenScore, with median EF1%s between 19 and 26%. Another promising result is
that the DockM8-max combination always results in an EF1% higher than 10% for any of the targets in the
dataset (the lowest being 10.32% for cpy2a6), while all other methods, including DockM8-best, show poor
performance for individual targets (down to EF1% of 0%). These observations are also supported by the AUC-
ROC and BEDROC metrics for which DockM8-max achieves median values of 0.813 and 0.633 respectively
(see Supporting Information). The generalizability of scoring functions and virtual screening protocols has
been a long-standing challenge in computer-aided drug design. From these data, it is clear that DockM8
provides an avenue to partially remediate this problem by providing the user with a large number of possible
combinations, allowing the subsequent tailoring of the conditions to the target being studied. The five best
(on average according to EF1%) DockM8 methods are shown in Table 3.

4.0.2 Assessment of screening power on DUD-E
We also evaluated the performance of DockM8 on a subset of the DUD-E benchmarking dataset (28 targets,
Figure 5). As above, a variety of other methods collected from the literature were included in the comparison,
including knowledge-based, empirical, and machine-learning scoring functions (MLSFs), as well as a variety
of consensus methodologies (for all associated data, see the Supporting Information). Since the RFScoreVS
was partially trained on the DUD-E dataset[63], we also report the performance of DockM8-max-noRF and
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Figure 5: Evaluation of EF at 1% of DockM8 compared to 38 published protocols on 28 targets of the DUD-E dataset (full
data for the literature methods is available in the Supporting Information). Methods are sorted by their median value. Whiskers
denote the 10th and 90th percentiles. Methods based on a consensus strategy are labeled with an asterisk(*).

DockM8-best-noRF which refer to the above methodologies while excluding the RFScoreVS scoring func-
tion to avoid overestimating the performance of DockM8, due to data leakage when applying RFScoreVS
to this data set. DockM8-max shows comparable performance to state-of-the-art methods (46.63%) with
only SIEVE-Score showing better median performance (47.2%). DockM8-max-noRF exhibited a slight drop
in performance (39.45%) due to the omission of the RFScoreVS scoring function while still outperform-
ing state-of-the-art methods such as RTMScore (36.38%). DockM8-best-noRF and DockM8-best-noRF
achieved median EF1% of 40.2% and 30.66% respectively. As with the DEKOIS dataset, DockM8-max out-
performs nearly every other method in terms of generalizability, with the lowest EF1% of 21% being obtained
for hdac2. This again highlights the ability of the DockM8 workflow to be customized to the target under
consideration. These observations are also supported by the AUC-ROC and BEDROC metrics for which
DockM8-max achieves median values of 0.891 and 0.653 respectively (see Supporting Information). It is
worth noting that the removal of the RFScoreVS scoring did lead to an appreciable loss in performance
for both DockM8-max-noRF and DockM8-best-noRF. This is not in itself surprising as a scoring function
trained on most of the dataset would be expected to be a strong contributor to the best average combination
of DockM8 conditions. However, we do note the significant performance increase afforded by our consensus
methodologies relative to using the RFScoreVS scoring function on its own (which achieved a median per-
formance of 22.17%). The five best (on average according to EF1%) DockM8 methods are shown in Table
3.
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Figure 6: Evaluation of EF at 1% of DockM8 compared to 18 published docking protocols on 7 targets of the Lit-PCBA dataset
(details in Supporting Information). Methods are sorted by their median value. Whiskers denote the 10th and 90th percentiles.

4.0.3 Assessment of screening power on Lit-PCBA

We evaluated the performance of DockM8 on a subset of the challenging Lit-PCBA dataset (seven targets,
Figure 6). Lit-PCBA was designed to be an unbiased dataset for the evaluation of docking protocols and
scoring functions, is based on real bioassay data, and aims to mimic experimental screening conditions.
As above, a variety of other methods collected from the literature were included in the comparison (for all
associated data, see the Supporting Information). In this experiment, DockM8 outperforms all other state-
of-the-art methods in the literature. The median EF1% for both DockM8-max with 7.83% and DockM8-best
with 3.93% surpassed those of all other models for which enrichment factor data was accessible. Consistent
with our findings on the previous two benchmarking datasets, The superior behavior of DockM8-max in
generalizability is even more pronounced in this study, exemplified by its lowest enrichment rate of 5.15%
for the mtorc1 target, which lies even above the median EF1% value for all other methods. This further
underscores the ability of the DockM8 workflow to be adapted to the target under consideration. These
observations are also supported by the AUC-ROC and BEDROC metrics for which DockM8-max achieves
median values of 0.623 and 0.107 respectively (see Supporting Information). The five best (on average
according to EF1%) DockM8 methods are shown in Table 3.

4.0.4 Evaluation of the performance of pose selection, consensus method, and scoring function
selection

We then focused on evaluating the impact of the selection of consensus methods, pose selection methods,
scoring function selection, and the number of scoring functions used during the consensus procedure on
DockM8’s performance. For the rest of this discussion, we define a "DockM8 combination" as a unique
combination of a pose selection method, a consensus method, and one or more scoring functions. For each
DockM8 combination, we computed the average performance across all targets within the given dataset,
using the EF1% metric as a standard measure. Subsequently, we recorded the frequency with which specific
pose selection methods, consensus methods, or scoring functions ranked among the top DockM8 methods
when sorted by the EF1% metric. These rankings were established at several performance thresholds: 1%,
0.1%, and 0.01%. For instance, if we had 1000 DockM8 combinations, the top 1% threshold would include
the 10 combinations with the highest EF1% values. This method was chosen as opposed to calculating the
average performance of each method across the whole dataset, which would be less indicative of top-level
performance and may favor poorer-performing methods.
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Table 3: Performance metrics of the top-5 best DockM8 methods (according to the EF1% metric) for the three benchmark
datasets. Performance metrics reported in the table are averages across all targets in the respective dataset.
Dataset Pose Selection Consensus SFs EF1% EF0.5% EF5% AUCROC BEDROC

DEKOIS

bestpose Zscore_best CHEMPLP_CNN-Score_KORP-PL_RTMScore_GNINA-Affinity 18.02 20.28 7.51 0.75 0.47
bestpose Zscore_best CNN-Score_KORP-PL_RTMScore_GNINA-Affinity 18.02 19.5 7.79 0.76 0.48
KORP-PL Zscore_best CNN-Score_KORP-PL_RTMScore_Vinardo 17.97 19.97 7.83 0.77 0.48
KORP-PL Zscore_best CNN-Score_KORP-PL_RTMScore_GNINA-Affinity 17.87 19.91 7.86 0.77 0.48
KORP-PL Zscore_best CHEMPLP_CNN-Score_KORP-PL_RTMScore_Vinardo 17.84 19.78 7.56 0.75 0.47

DUD-E

bestpose Zscore_best KORP-PL_CNN-Score_RFScoreVS_Vinardo_RTMScore 38.32 49.61 11.87 0.86 0.59
bestpose Zscore_best KORP-PL_CHEMPLP_CNN-Score_RFScoreVS_GNINA-Affinity_RTMScore 38.26 49.18 11.63 0.85 0.59
bestpose Zscore_best KORP-PL_CHEMPLP_CNN-Score_RFScoreVS_Vinardo_GNINA-Affinity_RTMScore 38.18 49.39 11.54 0.85 0.58
bestpose Zscore_best KORP-PL_CNN-Score_RFScoreVS_GNINA-Affinity_RTMScore 38.16 49.25 11.86 0.86 0.59
bestpose Zscore_best KORP-PL_CHEMPLP_CNN-Score_RFScoreVS_Vinardo_RTMScore 38.16 49.83 11.62 0.85 0.59

Lit-PCBA

bestpose_PLANTS RbR_best RFScoreVS_ConvexPLR_CNN-Score_RTMScore_Vinardo_GNINA-Affinity 6 3.77 2.4 0.61 0.07
KORP-PL RbR_best RFScoreVS_CNN-Score_RTMScore 5.93 6.48 2.39 0.59 0.07
KORP-PL RbR_best RFScoreVS_CNN-Affinity_CNN-Score_RTMScore 5.84 7.59 2.85 0.62 0.07
bestpose RbR_avg RFScoreVS_CNN-Affinity_CNN-Score_KORP-PL_LinF9 5.77 2.72 2.48 0.65 0.06
KORP-PL RbR_best CNN-Affinity_CNN-Score_RTMScore 5.75 4.42 3.14 0.62 0.07

Figure 7 illustrates the frequency of occurrence of the DockM8 pose selection methods on the DEKOIS,
DUD-E, and LIT-PCBA datasets. From these data, we can see that in general, the scoring-based pose selection
methods (KORP-PL, RTMScore, ConvexPLR and the bestpose_* methods) outperform the descriptor-based
ones (spyRMSD, RMSD and espsim) on both the DEKOIS and DUD-E datasets. Indeed, the descriptor-based
methods do not appear in the 0.01% bracket and only appear rarely in the 0.1% bracket. Due to compu-
tational limitations, the descriptor-based methods were not tested on the Lit-PCBA dataset. The KORP-PL
and bestpose methods appear the most often in the 0.01% for the DEKOIS (39 and 23 counts respectively)
dataset, while the bestpose method was identified as being the top performer in the DUD-E dataset (55
counts in the 0.01% threshold). Additionally, the bestpose_PLANTS method is significantly more repre-
sented in the top brackets for the Lit-PCBA dataset. Although we observe a clear advantage in using certain
pose selection methods on each of the three datasets, the presence, and nature of a relationship between the
type of dataset (decoy or experimental) and the preferred pose selection method requires further investigation.
We then investigated the performance of the various consensus methods available in DockM8. From Fig-
ure 8, we can see that the Zscore_best method outperforms the other methods on both the DUD-E and
DEKOIS datasets (counts of 59 and 55 in the top 0.01% bracket respectively). For the Lit-PCBA dataset, the
RbR_best method significantly outperformed the rest (only method represented in the top 0.01% threshold
with 6 counts). Interestingly, the Lit-PCBA dataset seems to show different trends relative to the decoy-based
datasets (DEKOIS and DUD-E), which we also observed in our above analysis of the pose selection methods.
This may reflect inherent differences in the nature of the data and chemical space included in these datasets.
Overall, we can observe that the avg methods tend to perform more poorly than their respective best coun-
terpart. This points to the fact that using the best pose (regardless of how the best pose is determined) is a
superior strategy to aggregating information from multiple poses.
To gauge the relative performance and contributions of the various scoring functions, we performed a sim-
ilar analysis, which is shown in Figure 9. On the DEKOIS dataset, the top performers were KORP-PL,
RTMScore and CNN-Score, showing significant presence in the top 0.01% the dataset (62, 62, and 61 counts
respectively). In contrast, we found NNScore, PLECscore, LinF9, and CNN-Affinity to be relatively poor
performers. On DUD-E, KORP-PL and RFScoreVS were the highest-performing scoring functions, closely
followed by CNN-Score. This is not surprising concerning RFScoreVS as DUD-E was used as the train-
ing set for this scoring function and higher relative performance is therefore expected. With that in mind,
KORP-PL, and CNN-Score still showed good performance. As we found for the DEKOIS dataset, NNScore,
PLECscore, LinF9, and CNN-Affinity all performed poorly on DUD-E. On Lit-PCBA, RFScoreVS,
CNN-Score, KORP-PL and ConvexPLR showed the best performance although most of the scoring functions
were fairly closely ranked. From this analysis, we can conclude that KORP-PL, CNN-Score, RTMScore and
RFScoreVS showed the highest overall performance across all three datasets while CNN-Affinity, NNScore
and PLECScore showed markedly lower performance. Additionally, it is clear that no single scoring function
consistently outperforms the rest, which is expected as scoring functions can be highly target-specific.
Additionally, we investigated how the number of scoring functions taken into account during the consensus
affects the enrichment performance (Figure 10). For all studied datasets, a Gaussian distribution was observed
showing that a consensus of five to seven scoring functions was significantly more represented in the top
0.01% and 0.1% for each of the datasets we studied. These data indicate that including too many scoring
functions in the consensus can decrease enrichment performance due to increased noise and disagreement.
Given the substantial computational cost, we recommend using more than five scoring functions in DockM8
only if proven beneficial for the specific target.
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Figure 7: Frequency of DockM8 pose selection methods at top performance thresholds (1%, 0.1%, 0.01%) on the DEKOIS,
DUD-E, and LIT-PCBA datasets.

5 Discussion

User-friendly open-source tools: In medicinal chemistry, using virtual-screening (VS) software is crucial
but challenging. Open-source tools often require programming knowledge and are rarely updated, limiting
their adoption by chemists with limited computational skills. Commercial tools, while user-friendly, are
expensive and inaccessible to smaller academic groups. Our analysis shows that commercial tools do not
necessarily perform better on our datasets. To address these issues, we introduce DockM8, a user-friendly
framework that requires minimal programming expertise and uses open-source components. This approach
makes virtual screening more accessible and challenges the idea that higher cost equates to higher quality.
DockM8 aims to provide an easy-to-use VS workflow with extensive documentation for operation and instal-
lation on various platforms. It includes a basic graphical user interface to minimize coding and command-line
usage.
Performance of DockM8: Our assessment of DockM8 across diverse datasets—DEKOIS 2.0, DUD-E, and
Lit-PCBA—shows its superior performance in virtual screening (VS). DockM8-max consistently outper-
forms most other methods in enrichment factor and ranks among the best for AUC-ROC and BEDROC met-
rics (see Supporting Information). Unlike other methods that perform poorly on several targets, DockM8-max
demonstrates excellent generalizability, never falling below 10.3% enrichment at 1% in DEKOIS and 21% in
DUD-E. Even advanced methods like IGN [73], KarmaDock [74], SIEVE-Score [78], RTMScore [11], and
CompScore [24] lack this level of consistency. DockM8’s flexibility allows tuning for each target, provided
data on the target and its known binders is available. To address data limitations, DockM8 can generate
decoys based on known active compounds, offering an optimization pathway even with limited data.
Impact of structure resolution: Both DockM8-max and DockM8-best demonstrated exceptional perfor-
mance on the Lit-PCBA dataset, with DockM8-max’s EF1% consistently above 5.15%. While our decision to
use the highest resolution available in this dataset may impact these results, this strategy aligns with SBVS
best practices. As Tran-Nguyen et al. observed, scoring performance can indeed vary based on the crystal
structure used [79]. We are confident in our workflow’s inherent strengths beyond structure resolution and
aim to further validate its robustness across various structural resolutions in future studies.
Pose selection strategy: Our analysis of the performance of the various pose selection methods revealed
no clear superiority of one method over others (Figure 7). This is further highlighted by the fact that the
target-specific DockM8-max methods (see Supplementary Information) do not show a preference for any of
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Figure 8: Frequency of DockM8 consensus methods at top performance thresholds (1%, 0.1%, 0.01%) on the DEKOIS, DUD-
E, and LIT-PCBA datasets.

the pose selection methods, and this remains true for all three datasets we tested. This indicates that most
pose selection methods can be used successfully for VS, although careful benchmarking with known actives
and inactives, or using a decoy set is necessary to determine the optimal conditions for a new target.
Choice of consensus method: We observed more variation in performance regarding consensus methods.
The avg methods consistently performed worse across all three datasets compared to their best equivalents,
indicating that including information from multiple poses may not benefit virtual screening performance
(Figure 8). Specifically, Zscore_best performed best on the DUD-E and DEKOIS datasets, while RbR_best
excelled on the challenging Lit-PCBA dataset. This variation might be due to differences in dataset size
and chemical space or our use of subsets rather than complete datasets. This highlights the importance
of customizing the VS approach to each target’s characteristics. Our findings suggest that the choice of
consensus method should be tailored to the specific demands of each target, recognizing that each dataset and
target may influence the efficacy of different methods.
Number of scoring functions used: Increasing the number of scoring functions in the consensus does not
yield a linear performance increase, with a decrease in performance observed at higher counts. Our data
suggests that using four to five scoring functions offers the most reliable performance (Figure 10), likely
due to increasing disagreement among functions as their number rises. This finding is beneficial from a
computational cost and data analysis perspective. However, for some targets, more than five scoring functions
provided the best performance. As with our previous observations and recent literature [80], we recommend
adapting the approach to the specific target whenever possible.
Usage recommendation: We acknowledge that although DockM8 was developed as an accessible and easy-
to-use tool, the impressive number of combinations of pose selection, consensus, and scoring methods can
seem daunting. In light of our data, and if biologically validated active compounds are not available, we can
recommend the use of the following settings :

• Consensus: The Zscore_best and RbR_best methods showed superior performance in all of our test
cases, making them a good starting point for a prospective VS campaign.

• Pose selection: KORP-PL performed consistently well on all datasets, likely providing a reliable starting
point for VS on new targets.

• Docking selection: While we did not specifically compare docking programs, we can derive some data
from the bestpose_* methods as these take the pose with the best score from the selected docking
program. GNINA offers the best performance at the expense of higher computation time. PLANTS is
recommended if computation time is crucial, as its performance can be improved with suitable consensus
and scoring methods.

• Scoring functions: For a VS campaign, we recommend using three to six scoring functions for optimal
balance between performance and computational cost. The scoring functions KORP-PL, ConvexPLR and
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Figure 9: Frequency of DockM8 scoring functions at top performance thresholds (1%, 0.1%, 0.01%) on the DEKOIS, DUD-E,
and LIT-PCBA datasets.

CNN-Score provide good performance at reasonable computational costs. RTMScore or RFScoreVS
can enhance performance but significantly increase computation time. Whenever available, known well-
performing scoring functions on the target at hand should be included in the consensus.

DockM8 continued: While DockM8 demonstrates excellent performance, several areas for improvement re-
main. Enhancing speed could be achieved by transitioning from multiple .sdf files to a database system[81],
and incorporating novel machine-learning docking methods like Karmadock [74] or UMol [82] to expedite
the time-intensive docking step. Integrating sophisticated scoring functions and pre-filtering techniques, such
as pharmacophore models or fingerprint similarity, could further refine performance. Additionally, adopting
recent docking score prediction and active-learning approaches like HASTEN [83] and DeepDocking [84]
could facilitate rapid virtual screening of extensive chemical libraries. Improvements to the graphical user
interface (GUI) are also planned to make data visualization and interaction more intuitive. We encourage the
computational chemistry community to contribute to DockM8’s development via our GitHub repository.

6 Conclusions

In this work, we introduced a novel open-source consensus docking workflow. We presented our comprehen-
sive evaluation of DockM8, using datasets such as DEKOIS 2.0, DUD-E, and Lit-PCBA. We demonstrated
its competitive performance in VS over existing methods, including state-of-the-art machine learning and
advanced consensus approaches. The versatility and adaptability of DockM8, characterized by its ability to
handle a variety of docking algorithms and scoring functions, enable it to achieve high levels of generaliz-
ability and performance across diverse targets. This is a notable advancement over existing tools, which often
show limited applicability across different targets.
Furthermore, DockM8 addresses critical challenges in the field, particularly the accessibility and usability of
VS tools in academic research. Its user-friendly interface, minimal programming requirements, and open-
source nature democratize the use of advanced VS methods. This approach not only makes cutting-edge
computational drug discovery tools more accessible to a wider range of scientists but also challenges the
prevailing notion that cost is indicative of quality in software solutions.
Despite its current strengths, there remain opportunities for further enhancement of the DockM8 workflow.
Areas such as the speed of the procedure, integration of advanced machine-learning docking and active-
learning algorithms, and improvements to the GUI are identified as key directions for future development. The
potential inclusion of pre-filtering steps and the integration of novel docking score prediction methodologies
could further augment the efficacy and efficiency of DockM8 in handling large compound libraries.
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Figure 10: Frequency of the number of scoring functions used in the DockM8 consensus at top performance thresholds (1%,
0.1%, 0.01%) on the DEKOIS, DUD-E, and LIT-PCBA datasets.

Given these findings, we invite the computational and medicinal chemistry communities to participate in
the ongoing development of DockM8. Its open-source nature and our commitment to collaboration ensure
continuous innovation in virtual drug screening. By leveraging collective expertise, we aim to make DockM8
an even more powerful tool, significantly advancing the field.

7 Data Availability
All the prepared molecules, docking poses, pose selection results, restoring and consensus results as well
as performance metrics have been made available on Zenodo under https://doi.org/10.5281/zenodo.
11191685. This repository also contains further benchmarking plots and the reference literature data used to
generate them. We hope this is a useful resource for the development of new scoring functions and for the
training of pose prediction models.
The raw benchmark datasets are available from the original sources: DEKOIS at https://www.pharmchem.
uni-tuebingen.de/dekois/, DUD-E at https://dude.docking.org/ and Lit-PCBA at https://
drugdesign.unistra.fr/LIT-PCBA/index.html/.

8 Code Availability
The source code is available on GitHub: https://github.com/DrugBud-Suite/DockM8.
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