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• The flow index identified as the key predictor of printability.

• The flow consistency index and damping factor were identified as key predictors of

extrusion.

• The flow consistency index has the most significant impact on diameter variation.

• No single property or parameter solely affects the print quality.

• Better models are needed to accurately predict surface roughness (RA).
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Abstract

The development of new thermoplastic-based nanocomposites for, as well as using, 3D

printing requires extensive experimental testing. One typically goes through many failed,

or otherwise sub-optimal, iterations before finding acceptable solutions (e.g. composi-

tions, 3D printing parameters). It is desirable to reduce the number of such iterations as

well as exclude failed experiments that often require laborious disassembly and cleaning

of the 3D printer. This issue could be addressed if we could understand, and ultimately

predict ahead of experiments, if a given material can be 3D printed successfully. Herein,

we report on our investigations into forecasting the printing and resultant properties of

polymer nanocomposites while encompassing both material properties and printing pa-

rameters. To do so, nanocomposites of two different commercially available bio-based

PLAs with varying concentrations of nanoclay (NC) and graphene nanoplatelets (GNP)

were prepared. The thermal and rheological properties of the nanocomposites were an-

alyzed. These materials were printed at varying temperature and flow using a pellet

printer. Each time, three identical cylindrical-shaped samples were printed, and to assess

the printing quality, the variation in weight and geometrical factors were determined. The

interactions between material properties and printing parameters are complex but can be

captured effectively by a machine learning model. Specifically, we demonstrate such a
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predictive model to forecast print quality utilizing a Random Forest algorithm.

Keywords: Pellet 3D printer, Thermoplastics, Nanocomposites, Rheology, Printability,

Machine Learning

1. Introduction1

Thermoplastic polymer nanocomposites (PNCs) play a pivotal role across industries,2

embodying versatility and multifunctionality through the synergistic combination of dif-3

ferent nanomaterials and polymers [1, 2]. Considering the increasing prevalence of 3D4

printing in industrial settings, there is a strong need for the development of multifunc-5

tional PNCs that are compatible with 3D printing technologies. Achieving this requires6

not only material design but also thorough optimization of printing settings to assure ma-7

terial printability and achieve the specified attributes and printing quality [3]. However,8

this process requires balancing multiple aspects and managing their interconnections in9

terms of process optimization and material design. The 3D printing process involves var-10

ious factors (for example, build orientation, build sequence, slice height, printing speed,11

flow rate, nozzle size, layer thickness, extrusion temperature, and bed temperature) that12

significantly influence the ultimate quality and final properties of the printed part [4–6]. In13

addition to the process parameters, material properties such as thermal, mechanical, and14

rheological properties have a substantial impact on printability and overall performance.15

For example, a non-Newtonian behavior characterized by significant shear thinning has16

been identified as crucial for successful printing, as it ensures stable extrusion and suffi-17

cient melt strength in a semi-solid state, while extreme viscoelastic properties have been18

shown to prevent printing [7–9]. Furthermore, the rheological property flow index (n) has19

proven useful in adjusting the printing speed to achieve a consistent volumetric flow rate20

[10]. Moreover, minimized melting enthalpy or specific volume change has been shown to21

prevent geometrical instability, such as warpage, while printing polymer-based materials22

[11]. Considering the impact of process factors and material properties on 3D printing23

and final product quality, printing process optimization of PNCs requires a significant24

amount of trial-and-error, which results in a significant amount of material and time25
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waste, rendering traditional experimental methods costly. As a result, it is crucial to26

predict if the newly designed PNCs can be 3D printed successfully while capturing the27

intricate relationship between material properties and printability.28

Data-driven methods have shown to be effective in optimizing process parameters and29

predicting final properties of 3D printed polymer-based materials [12]. Deneault et al. [13]30

demonstrated the possibility of application of Bayesian optimization to optimize printing31

parameters autonomously. Li et al. [14] showed that ensemble learning algorithms can32

accurately forecast the surface roughness of 3D-printed components in real-time through33

monitoring process parameters, and surface roughness measurements. Zhang et al. [15]34

used data-driven predictive modeling approach to predict the tensile strength of the co-35

operative printed PLA samples by considering the effect of incline angle, the overlapping36

length, and the number of shells on the tensile strength. Sharma et al. [16] build a37

model to predict the dimensional variation of 3D printed PLA and ABS specimens with38

different geometries using decision tree machine learning algorithm according to the effect39

of various printing parameters like wall thickness, infill density, build plate temperature,40

print speed, layer thickness, extrusion temperature.41

Although these studies show the efficacy of data-driven methods in optimizing 3D-42

printing process parameters and predicting the properties of polymer-based materials,43

they often ignore material properties in the prediction algorithms and their optimization44

processes tailored for specific types of materials. To the best authors’ knowledge, there45

is currently no research on PNCs that encompasses both material properties and process46

parameters to forecast their printing and final properties. However, in the field of food47

science, Ma et al. [17] conducted a noteworthy study in which they developed a predictive48

model to estimate the extrudability and geometry of food materials using the rheological49

properties of the materials and printing parameters as input parameters. By these means,50

they achieved relatively good machine learning predictions regarding the quality of the51

printed samples. The work effectively demonstrates the potential of machine learning52

models to capture the complex relationships specifically between material properties and53

their printability.54
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This study aims to develop a predictive model to forecast the printability and print-55

ing quality of thermoplastics and their nanocomposites by utilizing material properties56

as input. The model uses a variety of material attributes as input, including flow be-57

havior, viscoelastic properties, and thermal properties, as well as printing parameters, to58

explore how the rheological and thermal properties of the material, along with printing59

factors, affect the final properties. To do so, a total of twelve binary nanocomposites60

were produced using two different bio-based PLAs, a commercial-grade nanoclay (NC),61

and graphene nanoplatelets (GNP) with a twin screw extruder (TSE). The thermal and62

rheological properties of the as-extruded materials, and pristine PLAs were investigated63

using Differential Scanning Calorimetry (DSC) and rheological (steady-state and oscilla-64

tory) analysis. The results of these analyses were used as input in the predictive model.65

Later, binary PNCs and pristine PLAs were printed using a commercial pellet printer66

by varying the temperature and flow rate, resulting in 186 independent printings. The67

printability and printing quality were assessed by measuring three physical properties:68

the weight fluctuation of the printed cylinders to determine whether they were over- or69

under-extruded, and the interior diameter and surface uniformity of the cylinders using70

digital image analysis. The relationship between material characteristics (thermal and71

rheological), printing parameters (temperature and flow), and printing quality first was72

analyzed by checking correlations via the Pearson correlation coefficient. Subsequently,73

a random forest algorithm was used to predict printing quality. The feature importance74

analysis was used to identify which material properties had the greatest impact on printing75

quality.76

2. Materials and methods77

2.1. Materials78

Two commercially available bio-based PLA grades were supplied from NatureWorks79

LLC, USA: Ingeo 4043D and Ingeo 3251D, with melt flow index (MFI, at 210°C with 2.1680

kg) of 6 g/10min and 80 g/10min, respectively. The samples, both having densities of81

1.24 g/cc, were designated as HPLA and LPLA, respectively, for high and low molecular82
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weight. The commercial NC (Cloisite 30B, ∼6-13 µm) was provided by Southern Clay83

Products, Texas, USA, and commercial GNP (xGnP M-5, ∼5 µm) were purchased from84

Sigma-Aldrich Chemical Co. Both nanoparticles were used without any surface treatment.85

2.2. Nanocomposite preparation86

Masterbatches of 10 wt% of HPLA/NC, HPLA/GNP, LPLA/NC, and LPLA/GNP87

were prepared using a counter-rotation twin-screw extruder with L/D ratio of 40:20.88

Then, the master batches were diluted with pure PLA to make nanocomposites with89

composition of 0.5, 1, and 3 wt.%. HPLA and LPLA nanocomposites were processed at90

180°C and 170°C, respectively, while keeping the speed at 80 rpm in both cases. All of91

the materials were dried overnight at 80°C before processing.92

2.3. Characterisation of as-extruded nanocomposites93

2.3.1. Differential scanning calorimetry (DSC) and scanning electronic microscopy (SEM)94

analysis95

The crystallization behavior and transition temperatures of neat PLAs and as-extruded96

nanocomposites were analyzed using a DSC (TA Instruments Q200) in a heat-cool-heat97

cycle at a rate of 10°C/min under nitrogen atmosphere. The crystallization degree (Xc)98

was calculated during heating and cooling cycles using equations (1), and (2), respectively.99

Xheating
c =

(∆Hm −∆Hcc) · 100
ωPLA∆H0

m

(1)

Xcooling
c =

∆Hc · 100
ωPLA∆H0

m

(2)

where ∆Hm, ∆Hcc, and ∆Hc are heat enthalpies of melting, cold crystallization, and100

crystallization, respectively. ωPLA is the weight fraction of PLA in the nanocomposite,101

and ∆H0
m is the heat of fusion for 100% crystalline PLA, which is 93.6 J/g [18].102

The morphology of the gold-coated samples was investigated by a SEM (ZEISS EVO103

MA 15) at an accelerating voltage of 5 kV.104
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2.3.2. Steady-state and oscillatory rheological analysis105

The rheological measurements were carried out with an MCR-702e rotational rheome-106

ter (Anton Paar, Austria) equipped with a 25 mm diameter parallel-plate. To evaluate the107

steady flow behavior of the materials, steady-state shear tests were performed at 180°C108

within a shear rate range of 0.05-100s−1, with a measuring gap of 0.5 mm. Later, the flow109

parameters were determined by fitting the experimentally obtained viscosity data at low110

shear rates (γ̇ < 10s−1) to the power-law fluid model (Eq. 3)[19].111

η = K
·
γ
n−1

(3)

where η is the viscosity (Pa.s), K is the flow consistency coefficient, n is the flow index,112

and γ̇ is the shear rate (s−1).113

To assess thermal stability and viscoelastic behavior of the nanocomposites, oscillatory114

time sweep tests were conducted at varying temperatures matching the printing temper-115

atures, each lasting 20 minutes. The tests were conducted within the linear viscoelastic116

region (LVR), maintaining a fixed strain amplitude and angular frequency of 1/s with a117

1 mm measuring gap. The change of complex viscosity in each test was calculated using118

the following equation:119

%∆η∗ =
η∗f − η∗i

η∗i
x100 (4)

where η∗i is the initial complex viscosity, η∗f is the final complex vicosity after 20120

minutes, and %∆η∗ is the percent change in complex viscosity during a 20 minutes of121

time sweep test.122

2.4. Printing123

As-extruded HPLA/NC, HPLA/GNP, LPLA/NC, and LPLA/GNP pellets, as well as124

the pristine HPLA and LPLA, were directly fed into the Direct3D F30 pellet printer after125

drying overnight at 80°C. Pellet printing was specifically chosen because of its suitabil-126

ity for automated material design [20]. To investigate the effect of nozzle temperature127

and extrusion flow on the printability and final properties of samples, three cylindrical128
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specimen samples (De:20mm, Di:15.2mm, h:20mm) of each composition were printed at129

varying temperatures and extrusion flows. Table 1 shows the printing parameters. The130

printing speed is represented as a percentage relative to the standard speed chosen by the131

slicer. The extrusion flow is a multiplier expressed as a percentage. It is used to convert132

the millimeters determined by the slicer for a filament to be extruded into revolutions of133

the internal screw of the pellet printer.134

Table 1: Printing Parameters

Parameter (units) Value

Nozzle temperature (°C) 180 - 220

Bed temperature (°C) 50

Extrusion flow (%) 1500 - 3000

Layer height (mm) 0.2

Layer Width (mm) 0.6

Printing speed (%) 50

Nozzle size (mm) 0.8

2.5. Determination of printing quality135

The printing parameters and material properties have a notable influence on the physi-136

cal and geometrical characteristics of the printed samples, such as extrusion stability, layer137

periodicity, and the uniformity of printed cylindrical specimens. Extrusion stability, in138

other terms, over- or under-extrusion (∆W ) was assessed by measuring the weights of the139

three samples after each printing, which was averaged and reported as the printed weight140

(Wprinted). Knowing the theoretical density of the nanocomposite contents and volume of141

the cylinders, the theoretical weight (Wtheoretical) of the samples was calculated for each142

composition at 100% infill rate. Finally, ∆W was calculated using the following formula:143

∆W =
Wprinted

Wtheoretical

− 1 (5)

To evaluate the geometrical quality of the samples, the roughness average (RA) and144

internal diameter (Di) of the printed samples were determined using image processing145

techniques. This work utilizes the image processing techniques presented in our previous146
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study [20]. RA, which is a commonly used parameter to assess surface quality [21],147

quantifies the average variation of the surface profile from its primary profile or center148

line over a specified evaluation length. It is defined as follows:149

RA =
1

L

∫ L

0

|x(y)| dy (6)

where L denotes the designated length of interest for roughness evaluation, the function150

x(y) is the surface profile’s vertical height deviation from a primary reference line at a151

precise position y within this specified length. The capability of our system to enable a152

resolution of one pixel is roughly 0.1mm. Considering that the layer height was fixed at 0.2153

mm, which corresponds to 2 pixels, the resolution of the utilized system is not sufficient154

for examining intralayer quality.The primary profiles of the cylinders were determined155

through linear regression, using the points corresponding to various contours on both156

sides of the printed cylinder sample.157

The main interest in terms of the geometrical analysis of this study lies in identifying158

the irregularities in the printed samples. The method for determining the inner diameter159

of the samples through image analysis relies on assessing the cylinder’s adherence height160

to the cone. This method allows for the identification of the contours on both the left and161

right sides of the cylinder, which are situated between the top and bottom corners. After162

the inner diameter is calculated, the deviation of the inner diameter from the expected163

diameter (∆Di) is calculated with an equation similar to Equation 5.164

2.6. Descriptors, Dataset, and Model165

The study aims to predict the printability and printing quality of the thermoplastics166

and their nanocomposites while innovatively using the material properties as input for167

the predictive model. Table 2 summarizes the input parameters used for the prediction168

model. The flow index (n) and flow consistency index (K), determined by steady-state169

rheological analysis, were utilized as flow indicator inputs. The initial complex viscosity170

(η∗), initial storage modulus (G′), and average loss factor (av. tan δ) determined by time171

sweep experiments were utilized as viscoelastic property inputs. During the initial trial-172

and-error-experiments, it was noticed that some materials undergo thermal degradation,173
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which affects the printing process and final quality. As a result, the change in complex174

viscosity (% ∆η∗) determined by time sweep tests is utilized as input since it indicates175

thermal stability. Candal et. al. [11] showed that a minimized melting enthalpy or specific176

volume change are favourable to prevent warpage or geometrical instability. Inspired by177

that study, the crystallization enthalpy (∆Hc) determined by DSC measurements was178

utilized as input. Finally, printing parameters namely, extruder temperature (T), and179

extrusion flow (F) were also utilized as input. The over-/under-extrusion and geometrical180

features of the printed samples were determined and these values were introduced as181

output.182

Table 2: Description of input parameters for the prediction model.

Parameter Units Description

n dimensionless flow index

K Pa·sn flow consistency index

η∗ Pa·s initial complex viscosity

G′ Pa initial storage modulus

av. tan δ dimensionless average loss factor

∆η∗ dimensionless change in complex viscosity in 20 min

∆Hc J/g crystallization enthalpy

T °C printing temperature

F % extrusion flow

The random forest (RF) machine learning algorithm, which is based on an ensemble of183

multiple decision trees [22] was utilized (1) to predict the extrusion and geometrical fea-184

tures and (2) to determine the importance of the material features for the printability and185

final properties. The RandomForestRegressor class from the sklearn.ensemble package in186

Python was employed for this purpose [23]. Initially, the dataset was randomly split into a187

training set (85%) and a test set (15%). The hyperparameters of the prediction model are188

number of trees in the forest (n estimators), the maximum depth of the tree (max depth),189

the minimum number of samples required to split an internal node (min samples split),190

the minimum number of samples required to be at a leaf node (min samples leaf), and191

the number of features to consider when looking for the best split (max features) [24, 25].192
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Grid search of these hyperparameters was performed, utilizing cross-validation with five193

folds to ensure robust performance evaluation. Table 3 shows the hyperparameters of194

each model. To assess and validate the RF prediction model, the squared correlation195

coefficient (R2) and the mean absolute error (MAE) were calculated using the functions196

from Scikit-learn in Python: r2 score and mean absolute error, respectively [23].197

Table 3: Hyperparameters for different target parameters.

Target n est max feat max depth min leaf min split rand state

∆W 10 8 10 2 2 201

Filtered ∆W 1500 8 10 2 2 201

Filtered ∆Di 100 5 10 2 2 201

Filtered RA (mm) 500 3 7 2 7 201

3. Results and Discussion198

3.1. Characterisation of PNCs199

3.1.1. Morphological analysis of PNCs200

To assess the extent of dispersion of NC and GNP in PLAs, SEM analysis was utilized.201

Figure 1 presents the SEM micrographs of the as-extruded pure PLAs and PNCs. The202

fracture surfaces of the neat PLAs looks smooth which is specific to brittle polymers.203

The SEM micrographs of PLA/GNP nanocomposites depict non-functionalized GNPs204

dispersed in stacked layers, partly exfoliated, with a nanoplatelet morphology character-205

ized by a micron-scale length 0.5–2 µm and a nanoscale thickness. Similarly, layers with206

micron-scale lengths and nanoscale thicknesses, were observed in PLA/NC samples, while207

the NC exhibited better intercalation compared to GNP. This enhanced intercalation of208

NC is attributed to interactions between the hydroxyl groups of the organo-modified NC209

(Cloisite 30B) and the carboxyl groups of PLA which promotes clay dispersion within210

PLA matrices [26].211

3.1.2. Steady-state shear flow of PNCs212

Figure 2a and b depict the variation of viscosity with steady shear rate for PLAs213

with NC and GNP, respectively. The viscosity of pristine HPLA is more than an order214
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Figure 1: SEM micrographs of extruded nanocomposites: (a), (d) HPLA and LPLA, respectively, at

5K magnification; (b), (e) HPLA/1NC and LPLA/1NC; (c), (f) HPLA/1GNP and LPLA/1GNP at 15K

magnification.

of magnitude higher than that of pristine LPLA in the low-shear rate region, consistent215

with the higher molecular weight of HPLA, compared to that of LPLA. The viscosity216

curves of all of the nanocomposites appear to fall under their pristine counterparts. In217

the case of nanocomposites with GNP (Fig. 2b), the reduction in the viscosity curves is218

more pronounced compared to their counterparts containing NC (Fig. 2 a). Although the219

reductions in the viscosity curves of HPLA/NC and HPLA/GNP are correlated with the220

additive content, the changes in the viscosity values of the LPLA/NC and LPLA/GNP221

samples are not correlated with additive content.222

The viscosity-shear rate curves not only demonstrate the flow behaviour but also offer223

insights into the dispersion state of the nanofiller within the polymer matrix as well as their224

interaction. When a good nanofiller dispersion is achieved the viscosity of the material is225

increased, and above the percolation threshold concentration, significant shear-thinning is226

observed [7, 8]. Although SEM images presented in Figure 1 revealed a good dispersion of227

NC and GNP, in Figure 2 nanocomposites exhibited lower viscosity values. Such reduction228

in the viscosities of the nanocomposites suggests the involvement of potential factors such229

11

https://doi.org/10.26434/chemrxiv-2024-33788 ORCID: https://orcid.org/0009-0004-1712-8606 Content not peer-reviewed by ChemRxiv. License: CC BY 4.0

https://doi.org/10.26434/chemrxiv-2024-33788
https://orcid.org/0009-0004-1712-8606
https://creativecommons.org/licenses/by/4.0/


Figure 2: Change of viscosity with steady shear rate for: a. HPLA/NC and LPLA/NC nanocomposites, b.

HPLA/GNP and LPLA/GNP nanocomposites at 180°C. Close-up view of c. HPLA/NC nanocomposites

and d. HPLA/GNP nanocomposites.

as, the possibility of thermal degradation triggered by high-temperature treatments, and230

the plasticizing effects of the nanofillers. In the case of nanocomposites with NC, prior231

studies [26, 27] have indicated that although the introduction of organically modified NC232

enhances the mechanical and barrier properties of PLA, during high-temperature treat-233

ment, the thermal degradation of PLA intensifies significantly when clay is incorporated.234

The surfactants present in organo-modified clay seem to exacerbate the thermal degra-235

dation of the PLA, as their thermal decomposition byproducts act as catalyst agents.236

This degradation leads to a decrease in molecular weight and, consequently, a reduction237

in viscosity. On the other hand, in case of nanocomposites with GNP, studies have re-238

ported a plasticizing effect of GNP on PLA’s rheological properties due to the presence of239

hydrodynamic slip effects and weak interfacial interactions between GNP and the poly-240

mer. When shear is applied, the nanoplatelets of GNP align in the direction of shear,241

facilitating a lubricating flow and, thus, promoting plasticization of PLA. It was further242

noted that this behavior was exclusively observable under steady shear conditions, and243

no similar behavior was observed under oscillatory shear [7, 8].244

Table 4 presents the flow parameters calculated by fitting the experimental data to245

the power-law fluid model (Eq. 3). Here, flow consistency coefficient K provides insight246
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Table 4: Calculated flow consistency coefficient (K) and flow index (n) of the neat polymers and nanocom-

posites

Sample Name K n Sample Name K n

LPLA neat 211 0.99

LPLA/0.5NC 176 0.99 LPLA/0.5GNP 154 1.00

LPLA/1.0NC 161 0.99 LPLA/1.0GNP 168 1.00

LPLA/3.0NC 193 0.97 LPLA/3.0GNP 170 0.97

HPLA neat 4,075 0.97

HPLA/0.5NC 3,959 0.97 HPLA/0.5GNP 3,656 0.97

HPLA/1.0NC 3,581 0.96 HPLA/1.0GNP 3,462 0.98

HPLA/3.0NC 3,398 0.93 HPLA/3.0GNP 2,572 0.98

into the average viscosity of the material. Accordingly, HPLA has a K indices around247

4000 while this value is around 200 for LPLA. The K indices of all of the nanocomposites248

also reduced compared to their pristine counterparts while the reduction is more for249

GNP containing nanocomposites. The n index in Table 4 gives insight about the shear-250

thinning behavior. A slope with n value of 1 represents perfect Newtonian behaviour,251

while reduction in n index is correlated with shear thinning behaviour. As a result, n252

index is a good indicator of the behaviour of the viscosity curve. The pristine PLAs,253

HPLA and LPLA, exhibit Newtonian plateaus with narrow (γ̇ < 2/s) and wide plateau254

(γ̇ < 20/s) regions, respectively. There is not a significant difference in the flow indices of255

HPLA nanocomposites, except the HPLA/3NC which has the lowest n index. Similary,256

in case of LPLA nanocomposites the difference is not noticable with n index values closer257

to 1 while LPLA/3NC and LPLA/3GNP has lower n index compared to other LPLA258

nanocomposites. The K and n indices effectively characterize the material’s flow behavior;259

and, they have been proven to be reliable inputs for predicting the material’s printing260

behavior [17]. Accordingly, the values reported in Table 4 were used as input values for261

the predictive model.262

3.1.3. Viscoelastic properties and thermal stability of the PNCs263

The viscoelastic properties of thermoplastics are influenced by both time and tem-264

perature of measurements. Similarly, 3D printing is a time- and temperature-dependent265
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process, which in turn affects the printability of the material under specific printing condi-266

tions. Moreover, PNCs can experience thermal degradation at high temperatures, which267

can negatively impact their flow during the printing process. As a result, this work aims268

to explore how material viscoelastic properties, including complex viscosity, storage mod-269

ulus, and damping factor, as well as thermal stability, affect printability of material and270

prediction of printing quality. Based on these factors, rheological time sweep tests were271

utilized to collect information on the as-extruded PNCs and pristine polymers. Time272

sweep tests of 20 min were conducted at corresponding printing temperatures for each273

material. The storage modulus and complex viscosity of the samples were collected from274

the second minute of the time-sweep tests. Moreover, the loss factors of the samples275

calculated from the 20 min time-sweep test were collected and utilized after averaging.276

The results of these measurements, which are not presented here, were utilized as input277

for the machine learning algorithm.278

To understand the thermal stability of the samples, the percent change in the complex279

viscosity (% ∆η∗) in 20 min of time sweep test was calculated. The box plots in Figure280

3 illustrate the distribution of % ∆η∗ for PNCs versus compositions. Here, each box dis-281

plays the distribution of % ∆η∗ values for a particular composition measured at various282

temperatures. In each box, five data points are shown for HPLA and its nanocomposites283

within the temperature range of 180 to 220°C, while four data points are presented for284

LPLA and its nanocomposites within the range of 180 to 210°C. Complex viscosity of285

the pristine HPLA decreased between 0 to 20% during time sweep experiments at vari-286

ous temperatures, whereas complex viscosity of pristine LPLA decreased between 10 to287

30% at various temperatures. The reduction in complex viscosity of pristine polymers288

during the time sweep tests is likely attributed to the thermal degradation of PLA. High-289

temperature processing is known to induce degradation in PLA, stemming from reactions290

such as hydrolysis, inter-chain transesterification, and intramolecular transesterification.291

As these reactions lead to a reduction in molecular weight, it’s noteworthy that during292

time sweep tests, which involve a form of thermal treatment, there is a corresponding293

decrease in complex viscosity [28, 29]. Overall, it appears that pristine HPLA exhibits294
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better thermal stability compared to pristine LPLA. The presence of active sites on the295

chain ends of PLA causes depolymerization by back-biting (chain end scission or in-296

tramolecular transesterification) during high-temperature treatment [30]. Since pristine297

LPLA has more chain ends due to its lower molecular weight, its lower thermal stability298

could be attributed to the higher likelihood of depolymerization by back-biting during299

high-temperature treatment.300

Figure 3: Change of complex viscosity (%) at different temperatures for: a. HPLA/NC, b. HPLA/GNP,

c. LPLA/NC, and d. LPLA/GNP nanocomposites. Negative change in the viscosity indicated by red

arrow that implies the complex viscosity decreased during the time sweep test.

All of the nanocomposites also exhibited negative % ∆η∗, indicating thermal degrada-301

tion, which was found to be strongly affected by the type of PLA, additive, and composi-302
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tion. Introducing 0.5 or 1 wt.% of NC into HPLA (Figure 3.a) did not noticeably alter %303

∆η∗ until reaching 3 wt.%, at which point the viscosity reduction became severe, ranging304

from -15 to -35 wt.%. Adding GNP to HPLA (Figure 3.b) changed the % ∆η∗ distribu-305

tion to a more stable variant, reducing the outliers seen in HPLA/NC to a lesser extent306

in HPLA/GNP. In contrast, the addition of NC and GNP into LPLA (Figure 3.c and d)307

substantially mitigated the reduction in viscosity, indicating improved thermal stability,308

particularly with GNP. The different impact of NC on the % ∆η∗ of HPLA and LPLA,309

suggests a dynamic interplay between thermal degradation and rheological enhancement310

influenced by the exfoliation state of NC within the different molecular weight polymer311

matrices. The effect of NC on thermal degradation depends greatly on its quantity and the312

level of dispersion within the polymer matrix. As the degree of NC dispersion increases,313

its impact on thermal degradation becomes more significant. [27]. Finally, it should be314

noted that compared to NC-containing counterparts, addition of the GNP in the structure315

improved the thermal stability of the nanocomposites. This enhancement is attributed to316

the shielding effect provided by the flake-like structure of GNPs, which effectively hinders317

the diffusion of volatile decomposition products within the nanocomposites [31, 32].318

3.1.4. DSC analysis of PNCs319

The DSC cooling and second heating thermograms of virgin PLAs and nanocompos-320

ites are illustrated in Figure 4. Figure 4a shows the cooling curves of pure HPLA and its321

nanocomposites without any crystallization occurring in either material. While the in-322

troduction of nanomaterials could not promote crystallization, due to the large molecular323

weight and high D-lactide content (4.25 mol%) of HPLA, it is reasonable to expect that324

HPLA will not crystallize when rapidly cooled (10°C/min). Figure 4b depicts the second325

heating curves of the same materials. While HPLA showed a very weak cold crystalliza-326

tion peak around 120°C, with the introduction of GNP and NC, the cold crystallization327

peaks started at earlier temperatures around 100 and 110°C, respectively. This demon-328

strates the nanomaterial’s nucleation effect on HPLA crystallization. However, in the case329

of HPLA/NC samples, cold crystallization started earlier compared to HPLA/GNP sam-330

ples. According to the steady-state viscosity analysis, HPLA/GNP samples have a much331

16

https://doi.org/10.26434/chemrxiv-2024-33788 ORCID: https://orcid.org/0009-0004-1712-8606 Content not peer-reviewed by ChemRxiv. License: CC BY 4.0

https://doi.org/10.26434/chemrxiv-2024-33788
https://orcid.org/0009-0004-1712-8606
https://creativecommons.org/licenses/by/4.0/


lower viscosity, resulting in higher mobility. However, rheological time sweep analysis332

revealed higher thermal degradation in HPLA/NC samples, and a similar situation could333

occur during DSC. As a result of thermal degradation and lower chain length, HPLA/NC334

could have earlier cold crystallization due to higher chain mobility.335

Figure 4: DSC cooling (a, c) and 2nd heating (b, d) thermograms of HPLA/NC, LPLA/NC, HPLA/GNP,

and LPLA/GNP.

Figure 4c depicts the cooling curves of pure LPLA and its nanocomposites. Although336

having a much lower molecular weight and a lower D-lactide content (1.4 mol%), LPLA337

could not crystallize during cooling either due to rapid cooling. The addition of NC338

and GNP accelerated crystallization during cooling by acting as heteregenous nucleation339

points. This effect was much stronger in the LPLA/GNP samples. While the crystalli-340

sation percent of the LPLA/NC ones ranged from 4% to 6%, this range increased to341

9% to 31% for the LPLA/GNP ones. This could be due to the higher mobility of the342
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Table 5: Transition temperatues and crystallinities of the neat PLAs, and PLA nanocomposites.

T cooling
g T cooling

c T h2
g Tcc2 T h2

m Xcooling
c (%)Xheating

c (%)

HPLA 54 no data 58 120 152 0 1

HPLA/0.5NC 55 no data 59 111 150 0 1

HPLA/1.0NC 56 no data 58 112 150, 155 0 1

HPLA/3.0NC 54 no data 57 111 150, 155 0 1

HPLA/0.5GNP 55 no data 58 121 151 0 1

HPLA/1.0GNP 54 no data 58 120 151 0 1

HPLA/3.0GNP 57 no data 57 124 152 0 0

LPLA 55 no data 57 113 168 0 1

LPLA/0.5NC 55 91 56 94 167 4 2

LPLA/1.0NC 54 93 58 96 167 4 1

LPLA/3.0NC 56 92 58 101 167 6 3

LPLA/0.5GNP 56 90 58 97 167 12 13

LPLA/1.0GNP 57 91 58 97 168 9 12

LPLA/3.0GNP 56 95 58 95 167 31 35

LPLA/GNP samples, which facilitated easier chain alignment and crystallization. Figure343

4d shows the second heating curves of the same materials. Neat LPLA showed a cold crys-344

tallization starting around 90°C. The addition of NC initiated cold crystallization around345

80°C, and this temperature increased with the NC content. This is in line with the finding346

that the material had higher viscosity thus less mobility in the steady-state rheological347

analysis with increased NC content. The cold crystallisation of the LPLA/GNP samples348

started around 80°C and cold crystallization peak got smaller with 3wt.% of GNP. The349

steady-state viscosity analysis showed that the LPLA/GNP samples have higher mobility,350

which causes that the mostly of the crystallization was carried out during cooling. When351

the LPLA and HPLA nanocomposites are compared, the heterogeneous nucleation effect352

of nanomaterials is more significant in the case of LPLA due to its lower molecular weight353

and D-lactide content, while the LPLA/GNP samples have the highest crystallinity.354
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3.2. Characterisation of printed samples355

3.2.1. Assessment of over-/under-extrusion356

The variation in the extrusion during printing is highly dependent on the printing pa-357

rameters as well as material’s rheological and thermal properties. Under the same printing358

conditions materials with different rheological properties exhibit different flow properties359

as well as variation in the extrusion. Similarly, possibility of thermal degradation could360

also prevent proper extrusion. Before going into further discussion about the extrusion,361

examples of over, normal, and under extruded samples are presented in Figure 5.362

Figure 5: Examples of over, normal, and under extruded samples.

To assess the extent of under or over-extrusion, the weight of the printed samples was363

measured, and the variation between the measured and theoretical values (∆W ) was cal-364

culated. Figure 6 depicts the variance of ∆W with respect to composition, with each box365

representing the distribution of ∆W determined for several printings of a single composi-366

tion under varied printing conditions. The dashed green line indicates ∆W equal to zero,367

where the printed sample matches the calculated weight of the design. A positive ∆W368

value indicates over-extrusion, where the printed sample weighs more than the calculated369

value of the designed sample, while a negative ∆W represents under-extrusion where the370

printed sample weighs less than the calculated value of the designed sample. The ∆W box371

of pristine HPLA is located just below the zero-line while the one that of LPLA is located372

just above the zero line. This indicates that while most of the pristine HPLA samples373
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Figure 6: Weigh variation (∆W ) of the nanocomposites with respect to composition.

under-extruded, most of the LPLA samples over-extruded. Considering the higher vis-374

cosity of the HPLA compared to that of LPLA, it is expected for HPLA to exhibit more375

under-extrusion compared to LPLA. When NC incorporated into HPLA, ∆W boxes of376

the HPLA/NC nanocomposites shifted entirely below the zero line, and the position of377

the median and the box moved lower as the NC content increased in the composition. It378

is important to note that 76% of the HPLA/NC samples failed to print which includes379

some of the HPLA/1.0NC samples, and the majority of the HPLA/3.0NC samples. In380

general it could be concluded that altough, the introduction of the NC did not increase381

the viscosity of the nanocomposites (Fig. 2), the increase in the storage modulus and382
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thermal degradation (Fig. 3) could collaboratively acted and result in under-extrusion383

while making printing impossible after some point.384

When GNP incorporated to HPLA, ∆W boxes moved almost entirely above the zero385

line, showing a general trend of over-extrusion in the printing of HPLA/GNP, and this386

over-extrusion is correlated with GNP content. It is noteworthy that all HPLA/GNP387

samples were successfully printed under various conditions, with varying degrees of quality.388

This is consistent with the reduced viscosity of HPLA/GNP nanocomposites resulted from389

the lubricating effect of GNPs and in addition to the better thermal stability. In case of390

LPLA, when NC incorporated ∆W boxes shifted to negative values. Although LPLA/NC391

samples have lower viscosity and better thermal stability compared to HPLA/NC and392

HPLA/GNP still 25% of the LPLA/NC samples failed to print. When GNP introduced393

to the LPLA samples, the variation of the ∆W boxes increased but the majority of the394

samples exhibited over-extrusion due to a lubricating effect of GNP.395

3.2.2. Assessment of geometrical features of PNCs396

In order to evaluate the geometrical quality of the samples, the roughness average397

(RA) and internal diameter (Di) of the printed samples were determined using image398

processing techniques as reported in our previous work [20]. The geometrical analysis399

includes samples with ∆W greater than or equal to -0.8, while samples with ∆W between400

-0.8 and -1 could not be analyzed. Figure 7 shows the variation in internal diameter401

determined using the same approach as equation 5, and 0 indicates the exact diameter402

indicated in the CAD design was achieved. All materials exhibited a diameter reduction403

ranging from 2-15%. HPLA/NC samples showed less variation inDi possibly due to higher404

viscosity of the materials. However, it is important to note that most of the HPLA/NC405

samples failed to be printed and there is significantly less data for these samples resulting406

in narrow distribution in the box plot. In the instance of HPLA/GNP, which had less407

viscosity and more over-extrusion compared to HPLA/NC, Di significantly decreased due408

to over-extrusion of the material and the trend of ∆Di is negatively correlated with the409

∆W trend. In case of LPLA/NC that had very low viscosity and slight-underextrusion,410

the Di found to be closer to the expected value with a variation in the samples due to411
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the under extruded samples. In case of LPLA/GNP, having the lowest viscosity and most412

significant over-extrusion, all of the samples had decreased Di due to the over-extrusion413

during printing. These results indicates a direct correlation between viscosity of the414

samples and ∆Di and a negative correlation between ∆Di and ∆W .415

Figure 7: Diameter variation (∆Di) of the nanocomposites with respect to composition.

Figure 8 depicts the RA in mm versus composition, with 0 being a perfectly smooth416

surface. Upon comparing virgin LPLA with HPLA, it is evident that LPLA exhibits a417

higher surface roughness, likely attributed to its over-extrusion during printing resulting418

from its lower viscosity compared to that of HPLA. However, when comparing HPLA/NC,419

which displayed severe under-extrusion, to HPLA/GNP, which exhibited over-extrusion,420
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RA is significantly higher in HPLA/NC samples, most likely due to under-extrusion, which421

resulted in unfilled structural gaps. However, when LPLA/GNP displayed significant over-422

extrusion, the RA increased, most likely because to the uneven layers produced. These423

trends suggest that, while low viscosity or over-extrusion during printing can raise the424

roughness average by resulting in larger and irregular layers, high viscosity or under-425

extrusion can also increase the roughness average by resulting in unfilled layers during426

printing. As a result, it is hard to deduce a direct correlation between RA with viscosity,427

and ∆W .428

Figure 8: Roughness average (RA) of the nanocomposites with respect to composition.
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Figure 9: Pearson correlation between the material’s properties, printing parameters, and printing quality.

3.2.3. Effect of material properties, and printing parameters on the printability429

The previous sections focused on the effect of material viscosity and thermal degrada-430

tion on ∆W , ∆Di, and RA and competing factors were discovered. On the other hand,431

thermal properties such as transition temperatures or material crystallinity, other rheolog-432

ical properties, and printing parameters could all have an impact on printing quality, and433

their relationships should be investigated. The Pearson correlation coefficent describes434

the linear correlation between two factors. Using the dataset described in section 2.6, the435

Pearson correlation coefficient matrix was generated. Figure 9 displays the corresponding436

results as a heatmap, with each cell displaying the coefficient of correlation between two437

cell components. The scale of the heatmap ranges from 1 to -1, with 1 indicating direct438

association between two parameters, -1 indicating direct negative correlation, and 0 indi-439

cating no correlation. The correlation coefficient between targets and material properties440

found to be significantly low, indicating no positive or negative linear correlation between441

two factors. Moreover, the correlation coefficient between targets and printing parameters442

also found to be almost zero. On the other hand, correlation coefficient between ∆Di and443

∆W found to be around 0.8 which indicates a strong positive correlation. This result is444

also consistent with the previous discussions where the ∆Di shown to have similar trend445

with ∆W . Between RA - ∆W , and RA - ∆Di no direct correlation found at all. This is446

also consistent with the previously discussed relation between RA and ∆W where both447

over and under-extrusion could increase the roughness average. It is noteworthy to men-448
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tion that while the Pearson Correlation Coefficient found to be successful to reveal the449

correlation of targets with each other, it is not possible to deduce the effect of material450

properties or printing parameters on the targets. It is evident that these factors do not451

act in isolation when influencing the printing and final quality and that is why there is no452

single direct correlation between one target and one property. In fact, there is a complex453

interplay or collaboration among multiple factors at play. Given the substantial amount454

of experimental data and the intricate interplay between these parameters, it becomes455

challenging to assess the relationship between individual factors and properties.456

3.3. Predicting the printing quality457

For examining complex, possibly non-linear associations between features that affect458

the printing and final quality, machine learning algorithms like Random Forest are ca-459

pable of capturing synergistic effects among various features [33, 34]. Accordingly, a460

Random Forest model was built to predict the ∆W using the complete dataframe where461

the extrusion of the failed prints were included as ∆W = −1.0. Figure 10a shows the462

graphical assessment of predictive model for ∆W . The performance metrics of the ∆W463

model presented in Table 6 demonstrates strong predictive skills, as evidenced by its high464

R2
train values of 0.87 and 0.82 for R2

test respectively. The results demonstrate that the465

model effectively captures underlying patterns, as evidenced by the comparatively low466

MAE values of 0.16 for the test set and 0.12 for the training set. The feature importance467

analysis presented in Figure 10b indicates that the flow index, n, exhibits the highest level468

of impact, accounting for approximately 33% of the model’s predictive capacity. The flow469

consistency index, K, has the second significant impact on the predictive performance470

of the model, accounting for approximately 19% of the significance. This suggests that471

these two properties have a substantial impact on the ∆W . It is noteworthy to mention472

that printing parameters almost have very little effect on the predictive capacity and473

accordingly on the ∆W .474

The geometrical features of samples with −1.0 ≤ ∆W < −0.8 were impossible to475

analyse. Accordingly, another ∆W model, namely Filtered ∆W , was built by excluding476

the −1.0 ≤ ∆W < −0.8 range. The graphical assessment of the predictive model is shown477
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Figure 10: Graphical assessment of predictive models and feature importance analysis for ∆W . (a)

Predictive model and (b) feature importance analysis of model including all ∆W , (c) predictive model

and (d) feature importance analysis of model excluding the range −1.0 ≤ ∆W < −0.8.
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in Figure 10c. The Filtered ∆W model exhibits lower R2
test value of 0.73 in comparison478

to the initial model. However, it still exhibits a strong performance with R2
train value of479

0.85 with a notably low MAE (0.09) for the training set. This indicates that the model480

effectively captures the underlying patterns and it still exhibits robust prediction abilities,481

particularly demonstrated by its capacity to generalize effectively to unfamiliar data.482

Furthermore, the examination of feature importance (Fig.10d) exhibited a considerable483

shift following the exclusion of failed printings. The variable rheological loss factor, tanδ,484

and printing parameter temperature, T, emerged as the most influential elements on the485

objective both having 17% of importance. The flow consistency index and the extrusion486

flow were the second and third most influential parameters on the predictive model.487

In the first model, failed printings were included in the dataframe, and n was the most488

relevant variable for predicting ∆W . In the second model, tanδ and printing temperature489

became more prominent. The inherent nature of the flow index, which characterizes the490

behavior of the steady flow curve and likely exerts a greater influence on the outcome of491

unsuccessful printing attempts, explains this finding. The tanδ characterizes the mate-492

rial’s viscoelastic behavior and is the ratio of storage modulus to loss modulus. Along493

with the printing temperature, it turned out to be more effective in predicting successful494

printings. The importance of forecasting successful printings (filtered ∆W ) highlights the495

impact of viscoelastic behavior on printing stability. Also, Pearson correlation coefficients496

did not show any direct links between ∆W and printing parameters. However, the ran-497

dom forest model did show that printing parameters and material properties had a big498

impact on the quality of the predictions.499

The geometrical features, ∆Di and RA, of the printed samples with ∆W ≥ −0.8500

were also predicted using Random Forest algorithm. Figure 11a. highlights the graphical501

assessment of the predictive model for the ∆Di and Figure 11b. show the significance502

analysis of the features for predicting the ∆Di. The model exhibits remarkable predictive503

capability, with a R2
test value of 0.76 and a R2

training value of 0.90. The MAE values for both504

the test and training sets are remarkably low, measuring at 0.02 and 0.01, respectively,505

indicating the strong accuracy of the predictions. The flow consistency coefficient was506
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Figure 11: Graphical assessment of RF models and feature importance analysis for geometrical features.

(a) Predictive model and (b) feature importance analysis of ∆Di, (c) predictive model and (d) feature

importance analysis of RA.

28

https://doi.org/10.26434/chemrxiv-2024-33788 ORCID: https://orcid.org/0009-0004-1712-8606 Content not peer-reviewed by ChemRxiv. License: CC BY 4.0

https://doi.org/10.26434/chemrxiv-2024-33788
https://orcid.org/0009-0004-1712-8606
https://creativecommons.org/licenses/by/4.0/


found to be the most influential parameter for the prediction, with an importance of 38%.507

The complex viscosity,η∗, and change in the complex viscosity,∆η∗, followed the K with508

significance of 15 and 13%, respectively. These findings underscore the pivotal role of509

material viscosity and thermal stability in shaping geometric features during the printing510

process.511

Figure 11c presents the graphical assessment of the predictive model for RA, while512

Figure 11d showcases the significance analysis. Although the model targeting RA captures513

some variance in the data with a test R2
test score of 0.57 and a training R2

train score of 0.73, it514

falls short compared to other models assessed in this study. Furthermore, both the training515

and test sets exhibit rather large MAE, indicating significant differences between predicted516

and actual RA values. The analysis identifies several influential factors in determining517

RA values, with complex viscosity, flow index, and cooling enthalpy emerging as the518

most important. These findings align with recognized rheological principles, highlighting519

the crucial role of material viscosity, flow behavior, and thermal properties in shaping520

surface roughness during printing processes. While the model considers some of the key521

rheological and thermal properties, it might miss out on other important factors affecting522

RA. To improve the model’s accuracy, a wider range of elements needs to be considered.523

Table 6: Performance metrics of the predictive models.

Target R2
test MAEtest R2

train MAEtrain

∆W 0.82 0.16 0.87 0.12

Filtered ∆W 0.73 0.14 0.85 0.09

Filtered ∆Di 0.76 0.02 0.90 0.01

Filtered RA (mm) 0.57 0.44 0.73 0.37

4. Conclusion524

This study aims at quantifying the possibility and quality of 3D printing of thermoplastic-525

based nanocomposites. Specifically, we developed predictive models capable of determin-526

ing the printability of polymer nanocomposites by employing machine learning algorithms,527

specifically the Random Forest algorithm. Our investigation encompassed a compre-528
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hensive exploration of the complex interplay between material properties and printing529

parameters, shedding light on the factors influencing the final printed product. The re-530

sults demonstrate the efficacy of our predictive models in capturing intricate relationships531

between material attributes and printing outcomes such as over-/under-extrusion or vari-532

ation in diameter of a cylindrical specimen. The resulting models for ∆W and ∆Di533

have high R2 values and low MAE values. Our analysis highlights the importance of534

considering both material properties and printing parameters when predicting printing535

quality. The interaction of these components highlights the intricate nature of 3D print-536

ing processes and the need for advanced modeling methods. However, challenges remain,537

particularly in predicting roughness average. The observed discrepancies between pre-538

dicted and actual values for these parameters point towards further research on different539

factors that could be influential on the roughness average. Finally, our study optimizes 3D540

printing procedures for thermoplastic-based nanocomposites by using a predictive model541

to decrease trial-and-error iterations. By providing a comprehensive predictive modeling542

framework, this study paves the way for the adaptation of innovative materials to additive543

manufacturing.544
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