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Utilizing Reanalysis Datasets to Improve the Performance of Low-
Cost Air Sensors in the Global South 

Michael R. Giordano*,a,b, Matthias Beekmannc,d, Emmanuel Appohe, Allison F. Hughese,f, Michael J. 
Gatarig, James Nimoe,f, Moses N. Njerug, Stuart Pikethh, Albert Prestoa, Nyaga Waiguruc,d, Daniel M. 
Westervelti,j, R. Subramaniank,* 

A Low-cost sensors for particulate matter can provide high spatiotemporal resolution monitoring of air quality, especially in 

much of the Global South, and sub-Saharan Africa (SSA) in particular, where reference-grade instrumentation is often not 

available. However, ensuring high-quality data from low-cost sensor (LCS) platforms is essential. Until now, LCS required 

calibration by collocation with a reference-grade monitor to be used for more than qualitative studies of air quality, but 

reference-grade monitors are not available in many countries of the Global South. Since a key artifact in optical PM sensors 

is aerosol hygroscopic growth, we explore the viability of an alternative LCS calibration method: a hygroscopic growth 

correction factor using particle composition data from the MERRA-2 reanalysis dataset. We compare 3 different LCS located 

in 3 different areas of SSA – Kenya, Ghana, and South Africa - with 3 different calibration techniques: traditional linear 

calibrations with a reference-grade monitor, a κ-Köhler-derived correction with MERRA-2 data, and a random forest machine 

learning regression utilizing MERRA-2 and the regulatory-grade monitor. Random forest regressions using MERRA-2 particle 

composition data and collocation with a reference-grade monitor improve sensor performance to near that of regulatory-

grade monitors. But even without collocation, a hygroscopic growth correction based on MERRA-2 particle composition 

alone can improve LCS PM2.5 performance by reducing mean-normalized bias to near-zero and reducing error by up to 40%.

Introduction  

Poor air quality is one of the leading causes of premature 

mortality across the globe. In sub-Saharan Africa (SSA), the 

problem of poor air quality is especially acute and is not only 

linked to high morbidity and mortality but also to billions of 

dollars of lost economic output.1,2 Addressing the issue of poor 

air quality, however, first requires that pollution concentrations 

are measured. In much of SSA, regulatory-grade, high-fidelity 

monitoring of air pollution is not widely available (if at all), 

generally due to the price of such monitors (on the order of USD 

40,000 after duties and taxes), which creates a barrier for policy 

and decision-makers to take action against air quality issues.3 

Low-cost sensors (LCS), with costs on the order of USD 10-1000, 

offer an attractive alternative to high fidelity monitoring (i.e. 

regulatory- or research-grade monitors) due to their low(er) 

initial and maintenance costs and ease of deployment. 

Unfortunately, out-of-the-box performance of LCS is generally 

low and unsuitable for anything more than qualitative 

assessments of air quality, especially when deploying LCS in 

areas very different from factory-calibration conditions, i.e. the 

Global South in general and SSA in particular.4  Out-of-the-box 

performance can, however, be corrected to near-regulatory 

grade measurements and much work has been done on the 

subject.5  

 A common and effective method to correct LCS PM2.5 

performance is through collocations with regulatory- or 

research-grade instruments (hereafter “reference 

instruments”) in proximately the same area where the sensors 

are to be deployed. Collocation-based corrections empirically 

account for the varied factors that affect LCS performance, such 

as usual mass loadings, size distributions, particle shape, 

particle composition, source mixtures, and ambient 

temperature and humidity ranges.e.g. 6–8 These methods, 

whether they use simpler linear regression methods or more 

complex machine learning tools, however, necessitate the 

presence of a reference instrument. In much of SSA, access to 

such instrumentation is simply unavailable or inaccessible, so 

alternative methods to ensure higher-accuracy data from LCS 

are needed. Fully theoretical approaches to LCS calibration have 

recently been developed utilizing Mie Theory but these 
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approaches can be computationally expensive, fairly opaque to 

all but the most advanced of users, and require a priori 

knowledge of the aerosols being measured by the LCS.9,10 A 

different approach is to use semi-empirical relationships, such 

as κ-Köhler theory.11 This approach still requires some a priori 

knowledge of aerosol size distribution and composition but is 

much less computationally expensive and much more 

transparent to lay-users. Previous work has already 

demonstrated that by using κ-Köhler theory LCS accuracy can 

be improved to within 33% of reference instruments and can 

result in lower mean absolute errors.12–14 However, information 

about aerosol hygroscopicity, which depends on aerosol size 

distribution and chemical composition, is still needed. Aerosol 

chemical composition is generally measured with filters or 

aerosol mass spectrometers, but collecting such data can be 

logistically complicated and difficult, especially on an ongoing 

basis and at high time resolution (~hourly), which usually 

requires the use of aerosol mass spectrometers.  

 To overcome the need for reference monitors and 

measured aerosol composition, we build upon, first, recent 

work showing that most cheap particle sensors (e.g Plantower, 

Sensirion, etc.) are relatively insensitive to aerosol size 

distribution15 and, second, the finding by Malings et al. (2020) 

that the hygroscopic correction factor (as applicable to LCS) is 

not particularly sensitive to the exact aerosol composition; an 

approximation of the regional composition may be sufficient 

(this latter finding may well be a result of the former). A 

relatively new, freely available source of spatially-resolved 

global aerosol composition is NASA’s Modern-Era Retrospective 

analysis for Research and Applications-2 (MERRA-2) reanalysis 

data set, obtained from satellite observations combined global 

chemistry transport modelling.  In this paper, we evaluate how 

MERRA-2 PM2.5 composition outputs can be used with κ-Köhler 

theory to generate correction factors for LCS deployed in SSA. 

We performed this analysis at sites in East Africa, West Africa, 

and South Africa, where reference-grade instruments were 

available for verification. While typical correction models are 

built on linear regressions, the complexity of aerosol 

hygroscopic behavior may not be captured well by linear 

parametric relationships. Hence, we also examine how machine 

learning algorithms can be applied to the combined MERRA-2 

and LCS data to improve LCS performance in data-sparse 

regions. 

 

Experiment 

Sites, Instrumentation, and Data Availability 

This paper covers data from three deployments of LCS 

collocated with reference instruments from AfriqAir 

(www.afriqair.org) and AfriqAir partners across sub-Saharan 

Africa. The first set of instruments includes 2 Real-time, 

Affordable, Multi-Pollutant (RAMP) monitors deployed with 

attached PurpleAir PA-II (Plantower PMS5003) units and a Met 

One Beta Attenuation Monitor (BAM-1020). These instruments 

were deployed at the Theha Setjhaba Primary School 

(26°51'09.5"S 27°51'23.0"E) in Zamdela, South Africa. Zamdela 

is a semi-urban informal settlement approximately 80km SSW 

of Johannesburg with approximately 90000 residents. Major 

PM2.5 sources include vehicles and combustion from residential 

cooking, heating, and waste disposal. The RAMPs were 

deployed from November 2019 to April 2021. In this study, we 

focus on data from November 2019 to April 2020 due to 

instrument maintenance issues caused by COVID-19 lockdowns. 

We use an average of the (cf = atm) A and B PM2.5 channels from 

the Plantower sensors, provided they are within 10% of each 

other (data are not included if this check is not passed).  

 The second set of instruments covered here are 5 Clarity 

Node-S monitors (with internal Plantower PMS 6003 sensors for 

PM measurements) deployed with another Met One BAM 1020 

at the University of Nairobi (UoN; 1°16'44.2"S 36°49'02.9"E) 

from February 2021 to June 2021. The UoN campus is located in 

central Nairobi and previous work has shown that mineral dust 

and traffic are the dominant PM2.5 sources though other 

combustion and industrial and “mixed” sources are also 

important.(Gaita et al., 2014) Data from the Clarity nodes were 

downloaded from the Clarity API. We use the “Raw PM2.5 Mass 

Concentration” (pm2_5ConcMass.raw) data. PM2.5 

concentrations of less than 1 μg/m3 were removed from the 

dataset but no other filtering of the data was necessary. 

 The final set of instruments used in this study was a Quant-

AQ Modulair-PM unit deployed with a US Dept. of State Met-

One BAM-1020 at the US Embassy in Accra, Ghana (5°34'46.2"N 

0°10'14.6"W). We use data from July 2021 to January 2022. The 

Modulair-PM uses two light scattering-based particle sensors 

(Plantower PMS5003 and Alphasense OPC-N3) to measure PM1, 

PM2.5, and PM10 concentrations and size distributions. Here we 

use the PM2.5 output of the instrument on which Quant-AQ 

applies a calibration incorporating assumptions of chemical 

composition. The Modulair-PM calibration utilizes the dual 

optical sensor outputs along with size-dependent 

hygroscopicity (κ) and density (ρ) assumptions to calibrate the 

output data.(Hagan and Cross, 2022) In Accra, the κ and ρ values 

were taken from the instrument data portals and range from 

0.02 < κ < 0.3 and 1.65 < ρ < 2.5. 

 

MERRA-2 

MERRA-2 is an atmospheric reanalysis of the modern satellite 

era produced by NASA’s Global Modeling and Assimilation 

Office (GMAO), utilizing satellite observations combined with 

the Goddard Earth Observing System model.(Gelaro et al., 

2017) We utilize the Modern Era Retrospective analysis for 

Research and Applications Aerosol Reanalysis (MERRAero) 

reanalysis which simulates, through the Goddard Chemistry, 

Aerosol, Radiation, and Transport aerosol module, the surface 

concentrations of five types of aerosols: dust (PM2.5 segregated; 

DUST2.5), sea salt (PM2.5 segregated; SS2.5), black carbon (BC), 

organic carbon (OC) and sulfate (SO4). These are treated as non-

interacting external mixtures and are derived from surface 

wind-speeds (dust and sea salt) and standard emissions 

inventories such as EDGAR 4.2.(Buchard et al., 2016) MERRA-2 
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has a native spatial resolution of 0.5° lat x 0.625° lon (nominal 

~50km latitudinal resolution) and 1-hour temporal resolution. 

 

Correction Models 

Three different methods of calibrating the LCS are presented 

here: multilinear regressions, composition dependent 

hygroscopicity corrections, and a machine learning random 

forest regression. These three methods are respectively the 

“traditional” (and simplest) method, a novel application of a 

semi-empirical method, and a novel application of machine 

learning algorithms for LCS calibration. The linear calibrations 

all follow the same form: 

𝑃𝑀2.5,𝑐𝑎𝑙 =  𝛼𝑃𝑀2.5,𝐿𝐶𝑆 + 𝛽𝑅𝐻𝐿𝐶𝑆 + 𝛾    (1) 

where PM2.5, cal is the calibrated PM2.5 from the LCS (the PM2.5 

measurements from the collocated reference instrument when 

calculating the regression coefficients), RHLCS is the relative 

humidity measurement from the LCS, and α, β, and γ are 

regression coefficients solved by a multilinear regression 

implemented in Python. As noted in Giordano et al.(Giordano et 

al., 2021), temperature measurements (from the LCS or 

external) are generally not necessary for many LCS collocations. 

This was confirmed for the collocations presented here by 

including a temperature term in Eq. 1 which resulted in 

standard errors on the temperature coefficients showing that 

the terms are not statistically significant in this case. 

 The semi-empirical hygroscopic correction applied here are 

described in detail in Malings et al.13. In short, the LCS 

measurements are corrected such that: 

𝑃𝑀2.5,𝑐𝑎𝑙 =  
𝑃𝑀2.5,𝐿𝐶𝑆

𝑓(𝑅𝐻, 𝑇, 𝜅)
     (2) 

where the hygroscopic growth factor f(RH,T, κ) is calculated as: 

𝑓(𝑅𝐻, 𝑇, 𝜅) =  1 + 𝜅𝑏𝑢𝑙𝑘

𝑎𝑤(𝑇, 𝑅𝐻)

1 − 𝑎𝑤(𝑇, 𝑅𝐻)
    (3) 

where water activity aw is calculated as: 

𝑎𝑤(𝑇, 𝑅𝐻) = 𝑅𝐻𝐿𝐶𝑆𝑒𝑥𝑝(
4𝜎𝑤𝑀𝑤

𝜌𝑤𝑅𝑇𝐷𝑝
)−1    (4) 

where σw, Mw, and ρw are the surface tension, molecular weight, 

and density of water, respectively; T is the absolute 

temperature from the LCS; R is the ideal gas constant; and Dp is 

the particle diameter. κbulk is calculated from the MERRA-2 

dataset such that: 

𝜅𝑏𝑢𝑙𝑘 =  𝜅𝑆𝑂4𝜀𝑆𝑂4 +  𝜅𝑆𝑆𝜀𝑆𝑆 + 𝜅𝑂𝐶𝜀𝑂𝐶    (5)  

where κSO4, κSS, and κOC are the sulfate, sea salt PM2.5, and 

organic carbon κ vales set to 0.5,  1.1, and 0.15, respectively; 

and εSO4, εSS, and εOC are the mass fractions of the sulfate, sea 

salt, and organic carbon in PM2.5 from MERRA-2 where the total 

mass of PM2.5 from MERRA-2 is calculated using the five aerosol 

types as described in Buchard et al.16 

 The Random Forest (RF) regression is a machine learning 

algorithm that predicts regression values from new input data 

by constructing an ensemble of decision trees using a training 

data set.17 Here we construct and train the RF using the PM2.5, 

RH, and T measurements from the LCS along with the 5 aerosol 

masses from MERRA-2 with the reference instrument PM2.5 

measurements as the known training values. A Python 

implementation of the RF regression is implemented with the 

Scikit-learn library.18 The default settings for the 

RandomForestRegressor are used with the exceptions of 

increasing the number of trees to 1000 due to the density of the 

measurements used here and setting random_state = 42 for 

reproducibility. The number of trees can significantly impact the 

performance of the regressor but tests of 100, 250, 500, 750, 

1000, 2000, and 5000 trees indicate that 1000 is a good 

compromise between performance and computation time for 

these datasets. A 5-fold cross validation is performed to help 

mitigate a risk of over fitting as well. 

 

Performance Metrics 

Here we focus on the Pearson correlation coefficient (r), mean-

normalized bias (MNB), mean absolute error (MAE), and 

coefficient of variation in the mean absolute error (CvMAE). All 

are described in detail in Malings et al.13. The metrics presented 

in the main text well capture the accuracy and precision of the 

calibration methods though additional metrics are presented in 

the Supplementary Information. 

Results and Discussion 

Figure 1 Representative PM2.5 concentrations from the reference instruments 

(black) and LCS (red) for the three measurement locations at 1-hour time resolution. 

The blue box indicates a Harmattan dust event captured in Ghana.
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PM2.5 Concentrations 

Figure 1 shows a representative subset of the PM2.5 data 

measured by both the reference instruments and the LCS 

(uncorrected data) from each of the three measurement 

locations.  

 

Over the entire collocation period in Accra, Ghana (195 days) 

PM2.5 concentrations (from the BAM; hourly measurements) 

range from 5-192 μg/m3 with an average of 31.7 μg/m3. If the 

Harmattan dust event in Dec. 2021 (confirmed as a dust event 

from on-the-ground observers) is excluded from averaging it 

will be 24.3 μg/m3. In Nairobi, Kenya, the range is not as 

extreme as Accra but still large at 2-98 μg/m3 and a mean of 

19.9 μg/m3 (from the BAM). Zamdela, South Africa is similar to 

Nairobi with a range of 1-79 μg/m3 and an average of 17.3 

μg/m3. Figure 1 emphasizes an important fact about PM2.5 

measurements in Africa: the range and average values are 

generally much greater than those measured in the Global 

North, irrespective of the sampling heights from ground level. 

This, combined with the fact that the PM sources are also very 

different between the Global North and Africa, means that 

applying calibrations made outside the specific deployment 

location in Africa (since PM sources differ between E, W, and S 

Africa) will generally yield poor results (see SI Figure S1). 

The overall performance of MERRA-2 in terms of surface-level 

PM2.5 mass estimates is also important to note. Figure 2 shows 

the PM2.5 concentrations measured from the 3 reference 

monitors compared to the overall PM2.5 mass estimated by 

MERRA-2, calculated as in Buchard et al.16 Included in the figure 

is an approximate note of the Harmattan period in Accra, Ghana 

(noted as a black box) and a simple linear best-fit regression for 

all 3 locations. Overall, the agreement between estimated and 

measured concentrations is quite poor for both Zamdela, South 

Africa and Nairobi, Kenya with R2 correlation values <0.1. If the 

data is segmented into winter/summer and rainy/dry periods, 

respectively, neither location shows improved agreement 

between measured and estimated PM2.5. In Accra, Ghana, the 

apparent agreement between the reference monitor and 

MERRA-2 is quite high, with a R2 correlation of 0.61. However, 

if the Harmattan period is removed from the data, R2 falls to 

0.01 (see SI figure S2). As shown in the next section, MERRA-2 

agrees with intuition and attributes most of the PM loading in 

the dry season to dust but, in general, over predicts overall PM 

loadings in Accra in the dry seasons by at least 50% and under 

predicts in the rainy seasons by the same (CvMAE = 0.64 and 

0.5, respectively; see Table S1).   

 

MERRA-2-derived PM2.5 Composition 

As previously discussed, LCS are sensitive to aerosol 

physiochemical characteristics, especially aerosol composition 

and size. As most countries in the Global South, and Africa 

especially, have little or no direct composition measurements, 

we must turn to other tools to obtain composition estimates. 

Figure 2 shows the average composition for the three 

measurement locations obtained from MERRA-2, segregated 

into dry and rainy seasons for Nairobi and Accra (where rainy 

seasons are March-May and October-November for Nairobi, 

and March-July Sep.-Nov. for Accra) and winter/summer in the 

case of South Africa. 

For the most part, these MERRA-2 aerosol composition 

predictions make sense for both Nairobi and Zamdela. Given the 

proximity of the measurement sites to anthropogenic PM 

sources (industry, vehicles, biomass burning), OC making up the 

largest fraction in each site and season is reasonable and agrees 

with previous literature.19,20 The high sulfate loadings in 

Zamdela generally agree with the work of Muyemeki et al 

(2021) which showed high year-round loadings with higher 

loadings present in the summer months. The MERRA-2 results 

also generally agree with Muyameki et al.(2021) results for dust 

Figure 2 Comparison of MERRA-2 estimated PM2.5 with surface reference 

measurements in Zamdela, South Africa; Nairobi, Kenya; and Accra, Ghana. The 

inset for Accra shows the Harmattan period.
Figure 3 Average aerosol composition estimates from MERRA-2 for Accra (top), Nairobi 

(mid), and Zamdela (bottom) for the dry/wet (left) and summer/winter (right) seasons
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and sea salt. In Nairobi, dust making up about a quarter of the 

total PM2.5 loading in both the rainy and dry seasons is in 

general agreement with the work of Gaita et al. 21. Gaita et al. 

did show, however, that there are large seasonal differences 

even between the short and long rainy periods for mineral dust 

concentrations which do not appear to be captured in MERRA-

2 (see SI Figure S3). For black carbon and sea salt, not enough 

work has been done in Nairobi to determine if either the overall 

loadings and/or their temporal distribution are correct, but the 

results from MERRA-2 seem reasonable.  

The largest question mark is, however, in Accra where dust 

constitutes the most abundant species in both the rainy and dry 

seasons. Accra does suffer from high dust outflows from the 

Sahara due to the Harmattan winds caused by seasonal changes 

in the Inter-Tropical Convergence Zone, but this generally only 

occurs in December and January.  MERRA-2 calculates 

extremely high dust loadings, showing a sinusoidal pattern with 

elongated peaks that top out at over 80% of the total PM2.5, for 

most of the year except from May to September where the 

contribution drops to near 0 (see SI Figure S4). Even examining 

the overall PM2.5 loadings, MERRA-2, does not seem to perform 

well over Accra. The reanalysis simply has high overall loadings 

from approximately September to March and completely 

misses the March-May rainy season and the short summer dry 

season (see SI Figure S5 or US Embassy BAM-1020 data from 

airnow.gov). Therefore, this dry and wet demarcation of the 

MERRA-2 data for Accra is not applicable. Due to the lack of 

recent speciation measurements, it is unclear if the BC, OC, SO4, 

and sea salt estimated contributions are realistic but it can be 

said that the dust contributions are unrealistic with the 

exception of the Harmattan months.   

It is important to remember that we use MERRA-2 because it 

seems to be the best estimates for aerosol composition that we 

have available. It is also important to remember that this usage 

of MERRA-2 may not be ideal due to both the emissions 

inventories that MERRA-2 uses and the fact that a nominal ~50 

km horizontal spatial resolution may not well capture the urban 

emissions setting that the Accra monitor is in. Still, using these 

estimates could be a good starting point to develop calibration 

models for low-cost sensors. More work can and should be 

done comparing MERRA-2 data for more sites in West Africa 

specifically. 

 

Low-cost sensor calibrations 

In total, there are 4 data streams from the low-cost sensors that 

need to be examined: raw (uncalibrated/uncorrected) data, 

corrected data using collocation-based linear corrections, 

corrected data using the aerosol hygroscopicity f(RH,T,κ) linear 

correction, and corrected data using the aerosol composition-

based random forest calibration. Note that the first and third 

corrections, the linear model and random forest, require the 

presence of a reference monitor while the f(RH,T,κ) correction 

as implemented here does not.  Figures 4, 5, and 6 show the 

four LCS data streams for Accra, Nairobi, and Zamdela, 

respectively, plotted against the reference monitor PM2.5 data 

for those locations. These figures should be viewed in 

conjunction with Table 1 to provide a quantifiable context to the 

visuals.  

 

Figure 4 Raw low-cost sensor PM2.5 data (a), linear correction applied to LCS (b), 

f(RH) correction applied to LCS (c), and random forest correction applied to LCS (d) vs 

reference monitor PM2.5 data in Accra, Ghana with a 1:1 line added for visual aid. All 

points colored by ambient relative humidity.

Figure 5 Raw low-cost sensor PM2.5 data (a), linear correction applied to LCS (b), f(RH) 

correction applied to LCS (c), and random forest correction applied to LCS (d) vs 

reference monitor PM2.5 data in Nairobi, Kenya with a 1:1 line added for visual aid. All 

points colored by ambient relative humidity.

Figure 6 Raw low-cost sensor PM2.5 data (a), linear correction applied to LCS (b), f(RH) 

correction applied to LCS (c), and random forest correction applied to LCS (d) vs 

reference monitor PM2.5 data in Zamdela, South Africa with a 1:1 line added for visual 

aid. All points colored by ambient relative humidity.
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 Nairobi Accra Zamdela 

 Raw Linear fRH  
Random 

Forest 
Raw Linear fRH  

Random 

Forest 
Raw Linear fRH  

Random 

Forest 

Absolute Bias 

(μg/m3) 55.73 32.28 40.12 14.28 33.59 26.68 48.12 12.47 78.90 47.34 55.68 22.91 

Mean Normalized 

Bias 0.24 -0.02 -0.07 -0.01 -0.29 -0.08 -0.44 -0.07 0.45 0.00 0.07 -0.01 

Mean Absolute 

Error (μg/m3) 8.35 5.02 6.51 2.52 10.61 7.38 14.24 4.94 10.93 5.41 7.30 2.97 

Root Mean 

Squared Error 

(μg/m3) 11.32 7.05 8.77 4.57 15.28 11.49 18.45 12.78 17.26 8.20 11.77 5.39 

Bias Corrected 

CvMAE 0.40 0.25 0.32 0.13 0.25 0.24 0.24 0.18 0.60 0.31 0.44 0.18 

Pearson r 0.66 0.73 0.67 0.90 0.90 0.91 0.92 0.88 0.76 0.75 0.73 0.90 

 

Table 1: Performance metrics for the three calibration methods and raw LCS data compared against reference monitor data at the 

three study locations. Metrics for each of the 4 data streams at each of the 3 locations are color coded relative to each other and 

best performance. Absolute and Mean Normalized bias are colored such that 0.0 is optimal performance; MAE, RMSE and CvMAE 

are colored so the lowest value is optimal; and r such that the highest value is optimal. The red color indicates the worst 

performance and green the best performance. 

 

Unsurprisingly, raw, uncalibrated data perform the worst out of 

all the data streams when compared to reference monitor data, 

with the one exception of the r correlation in Zamdela, South 

Africa. However, a difference of 0.02 between r values (or 0.004 

for r2) is negligible and it can be said that neither the linear 

correction nor the f(RH) correction improves the linearity of the 

Zamdela data with respect to the reference monitor. The fact 

that these corrections do decrease bias and error significantly 

suggests that the correlation metrics are being thrown off by 

some systemic error or property of the Plantower low-cost 

sensor.10  In general though, the low-cost sensors perform fairly 

well for linearity with out-of-the-box corrections applied by 

manufacturers (cf = atm for the Plantower sensors, Quant-AQ’s 

κ and ρ curves) which is encouraging as it continues to suggest 

that the use of these sensors is viable in the multitude of 

different meteorological, geographical, and anthropogenic and 

biogeogenic sources of pollution that comprise Africa as a 

continent (e.g. Giordano et al., 2021 and references therein; 

Raheja et al., 2022, 2023).  

 

The performance of the linear correction models will not be 

discussed in detail here as the body of literature on that topic, 

even for the areas of study in this work, is well saturated (see 

Giordano et al., 2021 and references therein). An interesting 

fact to note from the collocation-based linear correction models 

is that these models are excellent at reducing mean-normalized 

bias to near-zero. Instead, we will compare the performance of 

the f(RH) and RF correction models with that of both the raw 

data and the linear models. While collocation-based linear 

correction models are quickly becoming seen as the minimum 

level of data processing that should be expected when 

presenting or analyzing data from these types of low-cost PM2.5 

sensors, most of the Global South simply does not have access 

to the required reference/research-grade instrumentation to 

construct these models. Therefore, the collocation-based linear 

model performance presented here acts as a “corrected 

baseline” against which the other two correction models can be 

compared. 

 

Before discussing the f(RH) correction, it should again be 

stressed that this method does not use, nor requires, any 

collocation with a reference/research-grade instrumentation. 

Instead, the f(RH) model is based solely on freely-accessible 

data from EarthData (www.earthdata.nasa.gov) and the low-

cost sensors themselves. This is important to reiterate as it 

contextualizes the relatively worse performance of the f(RH) 

models as compared against the linear models. In Nairobi and 

Zamdela, the f(RH) model performs worse than the linear model 

but only marginally so. The f(RH) model significantly decreases 

both bias (absolute and mean-normalized) and error (MAE, 

RMSE, CvMAE) compared against the raw/uncorrected LCS 

data. The f(RH) correction does not have any impact on 

linearity/correlation, which makes sense given the form of the 

correction and the fact that the model uses locally-unverified 

composition data from MERRA-2. For both Zamdela and 

Nairobi, this suggests that the PM2.5 composition estimates are 

likely within reason, as discussed earlier, at least with respect to 

the method of calculating a bulk κ used here. There exist 

infinitely many combinations of PM2.5 composition which would 

yield the same bulk κ so while this work cannot verify the 

performance of MERRA-2 reanalysis over Nairobi or Zamdela, it 

at least suggests the overall effects of bulk PM2.5 hygroscopicity 

effects are well-enough-captured in the reanalysis dataset. For 
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Accra, however, the performance of the f(RH) model is 25-50% 

worse than simply using the raw data. The performance of the 

f(RH) model even slightly degrades if separate models are made 

for the dry and rainy seasons. Given MERRA-2’s dust-dominated 

composition estimates over Accra for the entirety of the year, 

however, poor performance of a correction model driven 

entirely by the composition estimates is not unexpected (e.g. 

see SI Figure S4). Pointing out an exact reason for the poor 

performance is not possible with the data available but the 

same analysis centering around bulk κ may yield some insights. 

For the time period of this study, bulk κ averages around 0.4 for 

July-September, 0.2 for September and October, increases from 

0.1 to 0.2 in November, and sharply decreases to less than 0.1 

for December and January (SI Figure S6). This appears to be 

driven completely by the dust component although a full 

analysis of the input emissions inventories and regional 

emissions estimates that go into MERRA-2 would have to be 

performed to say for certain, which is well beyond the scope of 

this manuscript. It is also unclear whether this issue would 

affect all desert and desert-adjacent regions in Africa or if the 

Gulf of Guinea, or simply Accra itself, is uniquely affected. Other 

public data products that provide aerosol composition (e.g. 

GEOS-CF) may be useful where MERRA-2 is currently falling 

short but more work is needed to confirm this. Regardless of the 

reason for the poor performance of this model in Accra, 

however, it can be said that this methodology for creating a 

reference instrument-independent correction model shows 

promise for much of Africa and likely over the Global South as a 

whole - as long as MERRA-2 is approximately correct for bulk κ.  

 

The random forest correction model represents the 

combination of both reference instrumentation and MERRA-2 

composition estimates. The former provides overall mass 

corrections for the LCS whereas the latter refines and helps 

correct systemic biases inherent in the optical sensing used in 

LCS PM2.5 sensors. Overall, the RF models perform extremely 

well. In all 3 study locations, bias is reduced to near-zero, error 

metrics are significantly reduced (50-80%), and even 

correlations are improved (although Accra remains an 

exception on this last point for the reasons discussed above). 

The tail that can be seen in Figure 3 on the RF correction is 

indeed the Harmattan dust event noted in Figure 1. This agrees 

with previous experience with random forest models for low-

cost sensors that these calibrations can perform poorly at the 

upper extremes of the data ranges.24 Forcing a correction on 

this data during model development could be possible but may 

also lead to over-constraining the model. Other techniques such 

as layering correction models (both machine learning and 

“simpler” methods) may improve performance but in this case 

it is difficult to disambiguate the effects of the manufacturer-

implemented calibration for the Accra sensors (which includes 

hygroscopicity and density and therefore is an aerosol 

composition surrogate) and the MERRA-2 composition 

estimates. In summary, although this technique of combining 

machine learning and reanalysis data does yield excellent 

results, the caveats should not be ignored. Not only does this 

method require a reference instrument in the same way that 

the linear correction models do, but it also requires some 

expertise in both machine learning and utilizing reanalysis 

datasets. Combined with the fact that reference 

instrumentation is unavailable in much of the Global South; the 

machine learning techniques are easy to over-constrain; and 

the reanalysis sets have not been verified over much of the 

Global South; it is difficult to recommend this technique for 

general use before much more verification and validation has 

been done. 

 

Conclusions 

Overall, the results presented here show that utilizing reanalysis 

datasets to correct for aerosol composition effects can improve 

the performance of low-cost sensors in the Global South.. Even 

though the reanalysis dataset is not suitable for use in 

predicting overall PM loadings, the aerosol composition 

estimates lead to improved low-cost sensor performance over 

three very different areas in Africa when reference instruments 

are not available, and even more so if reference instruments are 

available. If we can better understand and potentially correct 

for the apparent overestimation of dust in Accra (and similar 

cities) by MERRA-2, we could significantly improve the usability 

of LCS in all regions where no reference instruments are 

available. Even now, the implications here for air quality 

monitoring across the Global South are very promising. 

Reanalysis datasets such as MERRA-2 are freely available and 

we show that correction methods based on these data (and 

established aerosol science) can be used to improve the 

performance of popular cheap PM sensors. Random forest 

regression using collocation and MERRA-2 aerosol composition 

can further significantly improve LCS performance. 

Unfortunately, this method and classical collocation-based 

linear regression require access to expensive and often 

unavailable/inaccessible reference instruments. In places 

where that access is limited, we show that using just the aerosol 

composition from MERRA-2 can be used to make real gains in 

LCS data quality by correcting for aerosol hygroscopicity which 

is a known artifact with light scattering-based PM sensors.  

 

However, there is a major potential hurdle in this methodology: 

the accuracy of MERRA-2. MERRA-2 does seem to capture the 

Harmattan in Accra, Ghana but outside of the known Harmattan 

season, the composition data are questionable. Additionally, 

the MERRA-2 reanalysis dataset is only available 20 days after 

each month. For real-time air quality monitoring (which could 

improve forecasting and aid in proactive air quality controls), 

we could explore the corresponding monthly composition from 

previous years given the relative insensitivity of LCS hygroscopic 

corrections to exact aerosol composition. Improving the 

performance of MERRA-2 over Africa (e.g. with more aerosol 

composition measurements and better emissions inventories) 

would go a long way toward ensuring better quality data from 

rapidly proliferating LCS networks on the continent, which can 

then be used to make real, substantial progress towards clean 

air for all. 
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