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ABSTRACT: Here, we present the first examples of amino-trifluoroacetoxylations of alkenes using N-alkoxy carbamate teth-
ers. The trifluoroacetate group can be conveniently removed from the product by treatment with a solution of NH3 in MeOH. 
Hypervalent iodine oxidants mediate this transformation, providing a “green” alternative to existing intramolecular amino-
hydroxylation protocols which use toxic metals such as osmium. In all cases examined, the reaction is regioselective and ste-
reospecific, with the geometry of the starting alkene controlling the diastereomeric outcome.   By analogy to prior art and 
from our own observations, we posit that a transient nitrenium species serves as a key intermediate in this transformation.

Given the enormous interest in intramolecular al-
kene functionalization reactions with tethered nitrenes,1-17 
we were surprised to find very few reports with tethered 
nitreniums,18-20 their isoelectronic relatives.21  Nitreniums 
themselves have been explored in synthetic organic chem-
istry since the 1960s, arguably starting with the work of 
Gassman and co-workers.22 The advent of heteroatom stabi-
lized nitrenium ions allowed for an explosion in synthetic 
protocols utilizing these species for alkene, alkyne, and 
arene functionalization reactions.23-26 We were intrigued 
that although many alkene functionalization reactions with 
nitreniums have been developed, almost all employ amines 
or amides (Scheme 1).27-37 Our laboratory has a program-
matic focus on developing alkene functionalization reac-
tions with tethers that can be attached to ubiquitous func-
tional groups such as alcohols and amines and then re-
moved post-reaction.38-47 Such versatile reactions greatly 
expand the substrate scope of and employable contexts for 
intramolecular alkene functionalizations.  Here, we describe 
the first examples of amino-trifluoroacetoxylations of al-
kenes using N-alkoxy carbamate tethers. The trifluoroace-
tate group can be excised from the product upon mild treat-
ment with a solution of NH3 in MeOH. Hypervalent iodine 
oxidants mediate this transformation, providing a “green”, 
metal-free alternative to existing intramolecular amino-hy-
droxylation protocols which use toxic metals such as os-
mium.48, 49 Based on prior art and our own observations, we 
hypothesize that the formation of a transient nitrenium is a 
key step in our optimized protocol.  

We began reaction exploration with (E)-hex-2-en-
1-yl methoxycarbamate, prepared in an excellent yield from 
commercially available trans-2-hexen-1-ol (Table 1) 

using a two-step protocol (1. 1,1’-carbonyldiimidazole 
(CDI), CH2Cl2 2. MeONH2•HCl, pyridine).16 Stirring substrate 
with 1.5 equivalents of [bis(trifluoroacetoxy)]iodobenzene 
(PIFA) gave desired product in a 41% yield (Table 1, Entry 
1). Decreasing the reaction concentration from 0.1 M to 0.05 
M or 0.033 M improved the yield of product (Table 1, En-
tries 2 – 3), mirroring what we have observed in our labor-
atory’s I(III)- promoted alkene disulfonoxylation.50 Further 
dilution, however, did not help reaction performance (Ta-
ble 1, Entries 4 – 5). In related prior work with N-methoxy 
amides,36, 37 the authors reported a dramatic, positive effect 
on yield with the addition of trifluoroacetic acid. In contrast, 
with our N-methoxy carbamates, we saw no improvement 
with either acid or base additives (Table 1, Entries 6 – 7). 
Switching solvents from CH2Cl2 to C2H4Cl2, CHCl3, or PhCF3 
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was deleterious to reaction performance (Table 1, Entries 
8 – 10). For this substrate, the use of [bis(trifluoroace-
toxy)iodo]pentafluorobenzene (5F-PIFA) led to a dimin-
ished product yield (Table 1, Entry 11), but we found that 
this was not a general trend across all substrates tested 
(vide infra).  

 
 
 We next wished to explore the scope of carbamate 
tethers (Scheme 2). We found that in addition to N-meth-
oxy carbamates, N-ethoxy, N-isopropoxy, N-n-butoxy, and 
N-isobutoxy tethers were all very competent in delivering 
product (Scheme 2, Entries 1 – 5). We hypothesize that the 
increase in steric bulk with the N-isopropoxy tether caused 
a slight diminution in product formation (Scheme 2, Entry 
2). In all cases, the formation of a single diastereomer was 
observed (within the limits of 1H NMR detection), increas-
ing the utility of this method. A crystal structure of product 
2 (CCDC: 2363976) allowed assignment of the relative ste-
reochemistry of the two newly formed stereocenters, and 
the relative configurations of other products have been as-
signed by analogy. Not all tethers were useful for this reac-
tion (Scheme 2, Poor Performers). In some cases, we hy-
pothesize that steric bulk precluded reactivity (Scheme 2, 
Substrates 11 and 13).  In others, side reactions led to com-
plex product mixtures (Scheme 2, Substrates 12 and 16). 
We have also shown that tethers bearing an N-alkoxy sub-
stituent were necessary for product formation. With N-alkyl 
carbamates or N-hydroxy carbamates, there was little to no 

desired product formation (Scheme 2, Substrates 15 and 
16). 
 Our optimized protocol was compatible with a va-
riety of substrates (Scheme 3). Cis-di-substituted alkenes, 
trans-di-substituted alkenes, and tri-substituted alkenes all 
reacted well. In general, homoallylic carbamates gave better 
yields than analogous allylic ones. Terminal alkenes could 
be functionalized, but the products were unstable to purifi-
cation (Scheme 3, Entry 3). Several functional groups were 
tolerated, including alkyl ethers, benzylic ethers, tosylates, 
and TBS ethers (Scheme 3, Entries 7 and 8). Stereoarrays 
could be assembled in one pot with good to excellent dia-
stereoselectivities (Scheme 3, Entries 9, 10, and 12). In ad-
dition to carbamate tethers, we were pleased to see excel-
lent reactivity with substrates bearing urea tethers 
(Scheme 3, Entry 13).  
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Some examples of poorly performing substrates 
are shown in Scheme 4. With our current protocol, we have 
seen no evidence of arene functionalization (Scheme 4, 
Substrate 50). In addition, while allylic and homoallylic 
carbamates fared well (Scheme 2 and Scheme 3), carba-
mates with more remote double bonds (Scheme 4, Sub-
strate 51) failed to react productively. With urea 52 
(Scheme 4), the presence of an additional activated N-H 
likely led to a complex product mixture.  
 

             
 

Given the high diastereoselectivity and predictable 
stereochemical outcome across all substrates tested and by 
analogy to prior art, 21 we propose that our reaction follows 
the mechanism depicted in Scheme 5A. A transient 
nitrenium is formed from the oxidation of the N-alkoxy car-
bamate by an I(III) species. This electrophilic nitrenium at-
tacks the pendant olefin to form a transient bicyclic 
aziridinium ion. This aziridinium ion is ring-opened in an 
exo-selective, SN2 reaction with CF3CO2–. During the solvent-
screen portion of the reaction optimization, we observed 
the quantitative formation of (E)-hex-2-en-1-yl dimethox-
ycarbamate (Compound 54) when (E)-hex-2-en-1-yl meth-
oxycarbamate was reacted with PIFA in MeOH (Scheme 
5B). With this reaction, we posit that the nitrenium inter-
mediate was rapidly trapped by solvent. 
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 The scale of our reaction could be increased from 
0.2 mmol to 1 mmol without loss of yield or selectivity 
(Scheme 6A).  The products were amenable to further 
transformations. Upon treatment with SmI2, a very interest-
ing and unexpected carbamate transposition occurred with 
both trifluoroacetate 2 and oxazolidinone 18 (Scheme 6B). 
With substrates 55 and 18, the carbamate could be excised 
with LiAlH4/AlCl3,51 allowing for the preparation of linear 
amino-alcohols. 

           

In summary, we have developed a convenient al-
kene amino-hydroxylation mediated by commercial hyper-
valent I(III) oxidants. To our knowledge, this is the first 
study which explores the synthetic utility of nitreniums 
generated in situ using carbamate tethers. Across a range of 
substrates, the reaction is predictably regioselective and di-
astereoselective. Given the importance of toxic-metal free 
protocols for alkene functionalization reactions, we expect 
this technology to be welcomed by academic and industrial 
chemists.  
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