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Abstract

A common approach for computing free energy differences among multiple states

is to build a perturbation graph connecting the states and compute free energy dif-

ferences on all edges of the graph. Such perturbation graphs are often designed to

have cycles. Because free energy is a function of states, the free energy around any

cycle is zero, which we refer to as the cycle consistency condition. Since the cycle

consistency condition relates free energy differences on edges of a cycle, it could be

used to improve the accuracy of free energy estimates. Here we propose a Bayesian

method called coupled Bayesian multistate Bennett acceptance ratio (CBayesMBAR)

that can properly couple the calculations of free energy differences on edges of cycles in

a principled way. We apply CBayesMBAR to compute free energy differences among

harmonic oscillators and relative protein-ligand binding free energies. In both cases,

CBayesMBAR provides more accurate results compared to methods that do not con-

sider the cycle consistency condition. Additionally, it outperforms the cycle closure

correction method that also uses cycle consistency conditions.
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1 Introduction

It is often needed in computational chemistry to compute free energy differences among mul-

tiple thermodynamic states.1 A common approach for this task is to build a perturbation

graph connecting the states, and compute free energy differences on all edges of the graph.2–6

The free energy difference between any two states can then be obtained by integrating along

a path connecting the two states. When the perturbation graph has cycles, there will be

multiple paths connecting two states. Because free energy is a function of states, the free

energy difference between any two states should be independent of the path chosen. Equiv-

alently, the free energy around any cycle is zero, which we refer to as the cycle consistency

condition. The cycle consistency condition, on the one hand, could help diagnose potential

systematic problems in the calculation.7 For example, if the free energy around a cycle is

significantly different from zero in practical calculations, it indicates that there might be

systematic issues in sampling, such as the system being trapped in a meta-stable state.8,9

On the other hand, if there are no systematic sampling issues, the cycle consistency condition

can be used to improve the accuracy of free energy estimates.

Several methods have been proposed to use the cycle consistency condition to improve

the accuracy of free energy estimates. They could be classified into two types. The first

type computes the free energies on edges of a cycle independently and then adjusts them to

satisfy the cycle consistency condition. Such methods include the cycle closure correction

(CCC) method7 and its weighted variant.10 The second type couples the calculations of

free energies on edges of a cycle and estimate them simultaneously. An example method of

this type is the MBARnet11 method, which computes free energies on edges of a cycle by

optimizing an objective function subject to the cycle consistency condition. Although there

is little evidence suggesting which type of methods is more accurate, the second type can

potentially make better use of the cycle consistency condition because it uses the condition

throughout the calculation.

The key to the second type of method lies in effectively coupling the calculations of free
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energies along the edges of a cycle using the cycle consistency condition. Intuitively, this cou-

pling should not significantly alter the free energy estimates on edges where the estimates are

already highly precise. Instead, it should leverage these high-precision edges and the cycle

consistency condition to refine the estimates on edges with lower precision. Here, we propose

a probabilistic method that accomplishes this coupling, which we call the coupled Bayesian

multistate Bennett acceptance ratio (CBayesMBAR) method. We applied CBayesMBAR to

compute free energy differences among four harmonic oscillators and relative protein-ligand

binding free energies. In both examples, CBayesMBAR provides more accurate results than

those obtained without considering the cycle consistency condition. Furthermore, CBayesM-

BAR outperformed the widely used cycle closure correction method that also uses the cycle

consistency condition. We have implemented CBayesMBAR as part of the BayesMBAR

package,12 which is freely available at https://github.com/DingGroup/BayesMBAR

2 Methods

CBayesMBAR is built upon the Bayesian multistate Bennett acceptance ratio (BayesMBAR)

method,12 a Bayesian generalization of the multistate Bennett acceptance ratio (MBAR)

method.13 In BayesMBAR, we formulate free energy estimation as a Bayesian inference

problem14 and derive a posterior distribution of free energy differences given sampled config-

urations. This posterior distribution is then used to estimate free energy differences and their

uncertainties. The Bayesian framework of BayesMBAR naturally facilitates the coupling of

multiple BayesMBAR calculations on a perturbation graph with cycles. Here, we first briefly

review the BayesMBAR method and then explain how to couple multiple BayesMBAR cal-

culations in CBayesMBAR using the cycle consistency condition.
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2.1 BayesMBAR

Let ui(x), with i ranging from 1 to m, be the reduced potential energy functions13 of m

states. We aim to compute the free energy differences among these states by sampling con-

figurations from their Boltzmann distributions. For the i-th state, we use {xik, k = 1, . . . , ni}

to represent the ni configurations sampled from its Boltzmann distribution and we assume

that these configurations are uncorrelated. We use F = (F1, . . . , Fm) to denote the free ener-

gies of the m states. In BayesMBAR, we introduce yik as the index of the state from which

configuration xik is sampled. Therefore, yik is equal to i. Although the indices of states for

sampled configurations are determined during sampling, they are treated as random vari-

ables in BayesMBAR. Specifically, yik is viewed as a sample from a categorical distribution

with parameters π = (n1/n, . . . , nm/n), meaning that the probability of sampling a configu-

ration from the i-th state is p(y = i) = πi = ni/n, where n =
∑m

i=1 ni is the total number of

configurations. The concatenation of state indices and configurations, denoted as (y, x), is

viewed as samples from the conditional distribution p(y, x|F ), defined as

p(y = i, x|F ) = p(y = i) · p(x|y = i;F )

= e−[ui(x)−Fi−log πi], (1)

for i ∈ {1, . . . ,m}. The free energy F , which was traditionally treated as a parameter in

MBAR, is treated as a random variable in BayesMBAR and we assign a prior distribution

p(F ) to it. Given the prior distribution p(F ) and the conditional distribution p(y, x|F )

described above, the joint distribution of (F, Y,X) is

p(F, Y,X) = p(F ) · p(Y,X|F )

= p(F ) ·
m∏
i=1

ni∏
k=1

p(yik = i, xik|F ), (2)
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where Y = {yik : i = 1, ...,m; k = 1, ..., ni} and X = {xik : i = 1, ...,m; k = 1, ..., ni}. The

posterior distribution of F given sampled configurations and state indices is therefore

p(F |Y,X) =
p(Y |F,X)p(F )∫
p(Y |F,X)p(F )dF

∝ p(F )
m∏
i=1

ni∏
k=1

p(yik = i|xik;F ), (3)

where

p(y = i|x, F ) =
p(y = i, x|F )∑m
j=1 p(y = j, x|F )

=
e−[ui(x)−Fi−log πi]∑m
j=1 e

−[uj(x)−Fj−log πj ]
. (4)

BayesMBAR uses the posterior distribution (Eq. 3) to estimate the free energies and their

uncertainties. Specifically, it estimates the free energy with either the mode or the mean of

the posterior distribution, and computes the uncertainty of the estimate using the standard

deviation of the posterior distribution.15,16 When the prior distribution p(F ) is chosen to be

a uniform distribution, the mode of the posterior distribution is identical to the MBAR esti-

mate.13 Our previous work has shown that BayesMBAR provides more accurate uncertainty

estimates than the asymptotic analysis used in MBAR, especially when the number of con-

figurations is small.12 Futhermore, as a Bayesian method, BayesMBAR provides a principled

way to incorporate prior information to improve the accuracy of free energy estimates.12

2.2 Coupled BayesMBAR

The Bayesian framework used in BayesMBAR enables the coupling of multiple BayesMBAR

calculations on a perturbation graph with cycles. For example, consider three thermody-

namic states, A, B, and C. To compute their free energy differences, we construct a pertur-

bation graph connecting these states (Fig. 1). In this graph, red, orange, and blue circles

represent the three end states, and arrows indicate the paths connecting them. Small black

circles along the paths represent intermediate states between the end states. Configurations
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are sampled from both the end states and the intermediate states along each path. We use

Xh to denote the configurations sampled from states on the h-th path, where h ranges from

1 to 3, and Y h to denote the state indices of Xh. In other words, Xh and Y h correspond to

X and Y in Eq. 2 and 3. We use F h to denote the free energy of states on the h-th path,

expressed as F h = (F h
1 , ..., F

h
−1), where F h

1 and F h
−1 are free energies of the two end states.

A

BC

path 1

path 2

path 3

Figure 1: Perturbation graph connecting three thermodynamic states A, B, and C. The small
black circles on each path represent intermediate states between the two end states.

In CBayesMBAR, we estimate all free energies of F = (F 1, F 2, F 3) simultaneously using

a Bayesian probabilistic framework. Specifically, we assign a prior distribution p(F ) to F

and view all configurations and state indices ({Y h, Xh}3h=1) as samples from the conditional

distribution p({Y h, Xh}3h=1|F ) =
∏3

h=1 p(Y
h, Xh|F ), where p(Y h, Xh|F ) is defined similarly

as in Eq. 2. Then the joint distribution of (F, {Y h, Xh}3h=1) is

p(F, {Y h, Xh}3h=1) = p(F ) ·
3∏

h=1

p(Y h, Xh|F h). (5)

Based on the joint distribution, we derive the posterior distribution of F given sampled
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configurations and state indices as

p(F |{Y h, Xh}3h=1) ∝ p(F )
3∏

h=1

p(Y h, Xh|F h). (6)

CBayesMBAR uses the posterior distribution in Eq. 6 to estimate the free energies and their

uncertainties.

Because the three paths form a cycle, the free energy F = (F 1, F 2, F 3) must satisfy the

cycle consistency condition: F 1
−1−F 1

1 +F 2
−1−F 2

1 +F 3
−1−F 3

1 = 0. In CBayesMBAR, we encode

this condition as prior information in the prior distribution p(F ). Specifically, we set p(F ) =

0 when the cycle consistency condition is violated. When the cycle consistency condition is

satisfied, we assume no other prior information about F and set p(F ) ∝ 1, making p(F ) a

uniform distribution over the space of F that satisfies the cycle consistency condition. Similar

to BayesMBAR, CBayesMBAR estimates the free energy using either the mode or the mean

of the posterior distribution and calculates the uncertainty using the standard deviation of

the posterior distribution. The mode of the posterior distribution is computed by maximizing

the posterior density, while the mean and standard deviation are estimated by sampling

from the posterior distribution using Hamiltonian Monte Carlo methods.15–17 Although we

used a simple perturbation graph with one cycle in the above example for illustration, the

same framework applies to perturbation graphs with multiple cycles, where multiple equality

constraints are encoded in the prior distribution p(F ). Computational details on calculating

the posterior mode, sampling from the posterior distribution, and handling perturbation

graphs with multiple cycles are provided in the Supporting Information.
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A B

CD

Figure 2: Perturbation graph connecting four harmonic oscillators: A, B, C and D. The
small black circles on each path represent intermediate states between the two end states.

3 Results

3.1 Harmonic Oscillators

We begin by applying CBayesMBAR to calculate free energy differences among four 2-D har-

monic oscillators, labeled A, B, C, and D (Fig. 1). Each oscillator has a reduced potential

energy function given by ui(x) =
1
2
ki∥x − µi∥2, where ki represents the force constant and

µi denotes the equilibrium position for i ∈ {A,B,C,D}. The assigned values are: kA = 9,

kB = 16, kC = 25, kD = 36, and µA = (−1, 1), µB = (1, 1), µC = (1,−1), µD = (−1,−1).

Our perturbation graph (Fig. 2) has paths connecting all state pairs, with three intermedi-

ate states introduced along each path. These intermediate states are also modeled as 2-D

harmonic oscillators, with force constants and equilibrium positions linearly interpolated

between the end states. We sample n configurations from each state on every path, vary-

ing n from 10 to 5000. Using these configurations, we estimate free energy differences for

all paths using three methods: BayesMBAR, cycle closure correction, and CBayesMBAR.

For BayesMBAR, we independently compute free energy differences for each path, using
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the posterior mode as the free energy estimate and the standard deviation of the posterior

distribution (estimated from 1000 samples) as the uncertainty. For CCC, we adjust the

free energy differences obtained with BayesMBAR to satisfy the cycle consistency condition

(details are in the Supporting Information). For CBayesMBAR, we simultaneously estimate

free energy differences across all paths, coupling the calculations using the cycle consistency

condition. As with BayesMBAR, we use the posterior mode for the free energy estimate

and the standard deviation of the posterior distribution (estimated from 1000 samples) for

uncertainty quantification.

To evaluate the three methods, we compare their free energy estimates against analyt-

ically computed exact results. Our first evaluation metric is the root mean square error

(RMSE) of the free energy differences across all paths, defined as:

√√√√1

6

6∑
h=1

(
F h
−1 − F h

1 −∆F h
exact

)2
.

Here, ∆F h
exact represents the exact free energy difference between the end states of the h-th

path, and F h
−1 −F h

1 is the estimated value. To ensure statistical robustness, we conduct 100

repetitions of the calculations, compute the mean RMSE over these repetitions, and perform

paired t-tests to compare the three methods using the RMSEs obtained (Table 1 and Figures

S1-S2). Across all sample sizes n, CBayesMBAR has significantly smaller RMSEs compared

to BayesMBAR and CCC, with p-values less than 10−4 for all cases. Next, we assess the

performance of the three methods in computing the free energy difference between the end

states of individual paths using the mean absolute error (MAE) over the 100 repetitions

as the metric (Table 2 and Table S1). In all cases, CBayesMBAR has the smallest MAEs

among the three methods.

Both BayesMBAR and CBayesMBAR quantify uncertainties in free energy estimates

using the standard deviation of the posterior distribution. Table S2 presents the mean es-

timated uncertainties for free energy differences between the end states of individual paths.
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Table 1: The mean RMSE of free energy differences between end states of all paths for
harmonic oscillators. All values are in units of kBT .

n BayesMBAR CCC CBayesMBAR
10 1.66 1.21 1.11
13 1.52 1.09 0.94
18 1.29 0.90 0.79
28 1.01 0.74 0.65
48 0.75 0.54 0.49
99 0.52 0.36 0.33
304 0.31 0.22 0.20
5000 0.08 0.06 0.05

Table 2: The mean absolute error of free energy differences between end states on individual
paths for harmonic oscillators. All values are in units of kBT .

path n = 10 n = 28

BayesMBAR CCC CBayesMBAR BayesMBAR CCC CBayesMBAR
A→B 0.85 0.90 0.77 0.49 0.51 0.43
B→C 1.10 0.95 0.88 0.68 0.68 0.61
C→D 1.39 1.11 1.09 0.79 0.66 0.62
D→A 1.14 1.01 0.95 0.62 0.58 0.50
A→C 1.59 1.08 1.01 0.87 0.61 0.57
B→D 1.99 1.22 1.04 1.38 0.81 0.64

path n = 99 n = 5000

BayesMBAR CCC CBayesMBAR BayesMBAR CCC CBayesMBAR
A→B 0.28 0.27 0.24 0.04 0.04 0.03
B→C 0.34 0.30 0.28 0.05 0.04 0.04
C→D 0.45 0.33 0.31 0.06 0.05 0.05
D→A 0.38 0.29 0.27 0.05 0.04 0.04
A→C 0.50 0.33 0.31 0.07 0.04 0.04
B→D 0.61 0.35 0.29 0.10 0.06 0.05
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Consistently, CBayesMBAR yields smaller uncertainties compared to BayesMBAR, high-

lighting how coupling free energy estimates via cycle consistency conditions enhances es-

timation precision. The performance improvement of CBayesMBAR over BayesMBAR in

estimating free energy differences along individual paths (Table 2) correlates closely with the

uncertainties associated with these estimates (Table S2). For instance, paths with smaller

uncertainties (e.g., A → B) demonstrate modest improvements in MAE, whereas paths with

larger uncertainties (e.g., B → D) have more substantial improvements. This observation

aligns with the theoretical expectation that cycle-based coupling primarily benefits estimates

with lower precision by leveraging high-precision paths and the cycle consistency condition.

3.2 Relative Protein-Ligand Binding Free Energies

Figure 3: (Left) The common scaffold structure shared by the 6 ligands with the R group
representing the chemical group that is different among ligands. (Right) The R group of
each ligand and the alchemical perturbation graph connecting the ligands.

Next, we apply CBayesMBAR to compute the relative binding free energies of multiple

ligands to a given protein. This type of calculation typically employs an alchemical per-
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turbation graph connecting the ligands. Free energy differences along the graph’s edges are

computed with alchemical methods.5,18 In our study, we apply CBayesMBAR to calculate

the relative binding free energies of 6 ligands to the tyrosine kinase 2 (Tyk2) protein (Protein

Data Bank ID: 4GIH19), a system widely used as a benchmark in the field.3 The 6 ligands

share a common scaffold structure, with the R group representing the chemical group that

differs among them (Fig. 3). We construct an alchemical perturbation graph with multiple

cycles to connect the ligands (Fig. 3).

We use the dual topology approach5 to alchemically change one ligand into the other

ligand on each edge of the perturbation graph. To do that, we use the following soft-core

potential20 to smoothly turn on and off the Leonard-Jones potential between a ligand’s R

group and the system:

Evdw(r) = λvdw · 4ϵ
[

1

(α · (1− λvdw) + (r/σ)6)2
− 1

α · (1− λvdw) + (r/σ)6

]
, (7)

where α = 0.5, r is the distance between two particles, and σ and ϵ are the Leonard-Jones

parameters of the two particles. The alchemical variable λvdw controls the soft-core potential:

when λvdw = 0, the Leonard-Jones potential is fully off and when λvdw = 1, it is fully on.

Electrostatic interactions between a ligand’s R group and the system vary linearly with the

alchemical variable λelec:

Eelec(r) = λelec
qiqj
r

, (8)

where qi and qj are the charges of the two particles. For an edge from ligand A to ligand

B, we employ 13 intermediate alchemical states. These states progressively deactivate the

nonbonded interactions involving ligand A’s R group with the system, while simultaneously

activating those involving ligand B’s R group with the system. To prevent singularities, the

electrostatic interactions between a ligand’s R group and the system are only present when

the corresponding Leonard-Jones interactions are fully turned on. The specific values of the
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alchemical variables for states along the path from ligand A to ligand B are detailed in Table

3, with states 1 and 15 corresponding to ligands A and B, respectively, and states 2 to 14

representing intermediates.

Table 3: Values of alchemical values for states on the path from ligand A to ligand B.

state index 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15

λA
elec 1 0.66 0.33 0 0 0 0 0 0 0 0 0 0 0 0

λA
vdw 1 1 1 1 0.95 0.9 0.7 0.5 0.3 0.1 0.05 0 0 0 0

λB
elec 0 0 0 0 0 0 0 0 0 0 0 0 0.33 0.66 1

λB
vdw 0 0 0 0 0.05 0.1 0.3 0.5 0.7 0.9 0.95 1 1 1 1

For our molecular dynamics simulations, we use the Amber ff14SB force field21 for the

protein, the general Amber force field22 for ligands, and the TIP3P model23 for water. Both

water and protein phase simulations are conducted in a periodic water box. We calculate

electrostatic interactions using the particle mesh Ewald method,24 while Leonard-Jones in-

teractions are smoothly truncated at 10 Å using a switching function that starts at 9 Å.

We sample configurations from each state by running molecular dynamics simulations with

OpenMM.25 These simulations are performed at 298.15 K using the Langevin integrator26

with a 2 fs time step and a 1 ps−1 friction coefficient. We maintain a pressure of 1 atm using

a Monte Carlo barostat with Monte Carlo moves attempted every 25 steps. Each state is

simulated for 5000 ps, with configurations saved every 2 ps.

We compute the alchemical free energy differences among the ligands using BayesMBAR,

CCC, and CBayesMBAR with configurations sampled over simulation times ranging from

20 ps to 5000 ps. To ensure statistically meaningful comparisons, we repeat the calculations,

including the molecular dynamics simulations, 10 times. The performance of the three

methods were evaluated using the same metrics as in the harmonic oscillator example. Since

the exact alchemical free energy differences are unknown, the reference free energy differences

are calculated using all configurations sampled from all 10 repeats of the molecular dynamics

simulations. The mean RMSEs of the free energy differences between end states of all paths

are shown in Table 4. For both the water phase and the protein phase, CBayesMBAR has
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significantly smaller RMSEs than BayesMBAR, with p-values less than 0.05 for all cases

(Fig. S3 and S4). Compared to CCC, the RMSE of CBayesMBAR is either significantly

(p-value ≤ 0.05) smaller or statistically indistinguishable from that of CCC (Fig. S5 and

S6).

Table 4: The mean RMSE of free energy differences between end states of all paths in the
alchemical perturbation graph. All values are in units of kcal/mol.

simulation
time (ps)

water phase protein phase

BayesMBAR CCC CBayesMBAR BayesMBAR CCC CBayesMBAR
20 0.51 0.38 0.34 0.76 0.59 0.56
26 0.43 0.32 0.30 0.69 0.55 0.51
36 0.36 0.25 0.24 0.62 0.50 0.46
54 0.31 0.22 0.20 0.55 0.45 0.42
92 0.26 0.21 0.20 0.43 0.37 0.35
182 0.17 0.14 0.14 0.32 0.26 0.26
514 0.12 0.09 0.08 0.25 0.21 0.19
5000 0.03 0.03 0.02 0.14 0.13 0.12

We also compare the three methods using the MAEs of their free energy estimates on

individual paths. The results are shown in Table 5 and S3 for the water phase and Table 6 and

S4 for the protein phase. Although CBayesMBAR and CCC have reduced RMSEs aggregated

over all paths compared to BayesMBAR (Table 4), their improvement over BayesMBAR on

individual paths is not as consistent as in the harmonic oscillator example. CBayesMBAR

and CCC have smaller MAEs than BayesMBAR for some paths, while for other paths, they

have larger MAEs. This indicates that incorporating the cycle consistency condition does

not uniformly enhance the accuracy of free energy estimates on all paths, although it does

improve the overall accuracy.

Mean estimated uncertainties of free energy estimates on individual paths are presented

in Table S5 and S6 for the water and protein phases, respectively. Similar to the harmonic

oscillator example, CBayesMBAR demonstrates smaller uncertainties than BayesMBAR, un-

derscoring improved precision in free energy estimates by leveraging the cycle consistency

condition. Comparing the uncertainties and the MAEs of the free energy estimates on indi-

vidual paths, we observe that whether the cycle consistency condition improves the accuracy
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of free energy estimates on a path depends on the initial precision of the estimate on the path

relative to that of other paths in the cycle. For paths with low precision, CBayesMBAR and

CCC significantly improve the accuracy of the estimates, while for paths with high precision,

CBayesMBAR and CCC could perform worse than BayesMBAR. This phenomenon occurs

because coupling allows noise from low-precision paths to pass into higher precision paths,

thereby slightly reducing the accuracy of the estimates on the latter. Notably, for paths

where CBayesMBAR and CCC perform worse than BayesMBAR, CBayesMBAR tends to

have smaller MAEs than CCC. This suggests that the cycle consistency condition is more

effectively utilized in CBayesMBAR than in CCC to improve the accuracy of free energy

estimates on individual paths.

Table 5: The mean absolute error of free energy differences between end states of individual
paths in the water phase. All values are in units of kcal/mol.

path 20 ps 54 ps

BayesMBAR CCC CBayesMBAR BayesMBAR CCC CBayesMBAR
ejm_31→ejm_42 0.16 0.33 0.21 0.11 0.16 0.09
ejm_42→ejm_50 0.50 0.35 0.33 0.34 0.17 0.15
ejm_50→ejm_31 0.64 0.29 0.30 0.31 0.18 0.19
ejm_31→ejm_55 0.24 0.39 0.27 0.15 0.19 0.15
ejm_55→ejm_50 0.50 0.33 0.34 0.40 0.26 0.23
ejm_55→ejm_54 0.45 0.34 0.36 0.28 0.21 0.22
ejm_54→ejm_43 0.37 0.28 0.23 0.20 0.16 0.17
ejm_43→ejm_42 0.28 0.25 0.24 0.09 0.17 0.14

path 514 ps 5000 ps

BayesMBAR CCC CBayesMBAR BayesMBAR CCC CBayesMBAR
ejm_31→ejm_42 0.04 0.04 0.04 0.01 0.02 0.01
ejm_42→ejm_50 0.10 0.07 0.06 0.03 0.02 0.03
ejm_50→ejm_31 0.12 0.05 0.05 0.04 0.02 0.02
ejm_31→ejm_55 0.05 0.09 0.06 0.03 0.03 0.02
ejm_55→ejm_50 0.18 0.10 0.08 0.04 0.03 0.03
ejm_55→ejm_54 0.08 0.08 0.08 0.02 0.02 0.02
ejm_54→ejm_43 0.12 0.09 0.09 0.02 0.02 0.02
ejm_43→ejm_42 0.07 0.08 0.08 0.01 0.01 0.01
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Table 6: The mean absolute error of free energy differences between end states of individual
paths in the protein phase. All values are in units of kcal/mol.

path 20 ps 54 ps

BayesMBAR CCC CBayesMBAR BayesMBAR CCC CBayesMBAR
ejm_31→ejm_42 0.22 0.43 0.31 0.21 0.33 0.25
ejm_42→ejm_50 0.64 0.44 0.43 0.42 0.41 0.39
ejm_50→ejm_31 0.82 0.39 0.41 0.73 0.42 0.37
ejm_31→ejm_55 0.35 0.40 0.26 0.20 0.30 0.16
ejm_55→ejm_50 0.96 0.55 0.50 0.57 0.39 0.40
ejm_55→ejm_54 0.41 0.49 0.47 0.33 0.41 0.39
ejm_54→ejm_43 0.68 0.59 0.55 0.42 0.43 0.43
ejm_43→ejm_42 0.96 0.78 0.81 0.54 0.43 0.45

path 514 ps 5000 ps

BayesMBAR CCC CBayesMBAR BayesMBAR CCC CBayesMBAR
ejm_31→ejm_42 0.10 0.14 0.11 0.06 0.10 0.07
ejm_42→ejm_50 0.12 0.10 0.13 0.09 0.07 0.08
ejm_50→ejm_31 0.27 0.15 0.14 0.11 0.07 0.07
ejm_31→ejm_55 0.16 0.19 0.17 0.14 0.15 0.14
ejm_55→ejm_50 0.26 0.17 0.15 0.17 0.11 0.09
ejm_55→ejm_54 0.20 0.23 0.22 0.14 0.14 0.14
ejm_54→ejm_43 0.31 0.25 0.21 0.15 0.12 0.12
ejm_43→ejm_42 0.21 0.13 0.14 0.13 0.11 0.11
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4 Conclusion & Discussion

In this work, we introduce CBayesMBAR, a new method for computing free energy differ-

ences on perturbation graphs with cycles. As a Bayesian approach, CBayesMBAR integrates

the cycle consistency condition to couple free energy estimates across all edges of a pertur-

bation graph in a principled manner. It incorporates the cycle consistency condition into the

prior distribution of free energies and combines this with sampled configurations to form the

posterior distribution, which is then used to estimate the free energies and their uncertainties.

This ensures that free energy estimates directly satisfy the cycle consistency condition. Un-

certainty estimates, derived from the standard deviation of the posterior distribution, reflect

both the sampled configurations and the cycle consistency condition. Through two example

applications, we demonstrate that CBayesMBAR significantly improves the accuracy of free

energy estimates on perturbation graphs with cycles, outperforming both BayesMBAR and

CCC. The computational cost of CBayesMBAR is comparable to that of multiple indepen-

dent BayesMBAR calculations and is negligible compared to the cost of molecular dynamics

simulations. For example, when computing relative protein-ligand binding free energies,

CBayesMBAR takes about one minute to compute free energy differences and their uncer-

tainties for all edges in the alchemical perturbation graph, using 2500 configurations from

each state and running on a single RTX A5000 graphic processing unit.
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Supporting Information Available

Linear constraints imposed by the cycle consistency condition in a perturbation graph

with multiple cycles, computational details of the CCC method, computational details of

CBayesMBAR for computing posterior mode and sampling from the posterior distribution,

RMSEs of the free energy differences between end states of all paths for harmonic oscilla-

tors, mean absolute error of free energy differences between end states on individual paths

for harmonic oscillators, mean estimated uncertainty of free energy differences between end

states of individual paths calculated using BayesMBAR and CBayesMBAR for harmonic

oscillators, RMSEs of the alchemical free energy differences between end states of all paths

in the water and protein phase, mean absolute error of free energy differences in the water

and protein phase between end states of individual paths and mean estimated uncertainty

of free energy differences in the water and protein phase between end states of individual

paths calculated using BayesMBAR and CBayesMBAR.
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