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Abstract 
The valorization of CO2, the most abundant waste product of human activities, has become a 

priority for modern society. This study explores the innovative use of sodium bicarbonate (NaHCO3) 

as a solid source of CO2 for carboxylation reactions performed under mechanochemical conditions. 

We demonstrate that NaHCO3 can be effectively used to produce high-value chemicals such as cyclic 

carbamates and carbonates via ball milling with propargylamines and epoxides. This approach not 

only avoids the handling of gaseous CO2 and high-pressure cylinders but also highlights the potential 

of NaHCO3 in synthesizing pharmaceutically active molecules without the massive use of solvents. 

Our findings suggest that the use of NaHCO3 as a solid CO2 surrogate could significantly contribute 

to reducing greenhouse gases and enhancing the valorization of CO2 in industrial applications. 

 

Introduction 
CO2 is the main greenhouse gas and the main responsible of the global warming. From the 

beginning of the industrial revolution, the increasing impact of human activities has been causing 

irreversible effects on the planet and, currently, the reduction of CO2 emissions has become one of 

the main priorities for society.[1] The reduction of CO2 emission likely needs the implementation of 

technological, societal and political actions at the same time. From the technological point of view, 

Carbon Capture and Storage (CCS),[2] Direct-Air Capture (DAC)[3] and BioEnergy with Carbon 

Capture and Storage (BECCS)[4] are some of the most promising solutions. Fortunately, CO2 is also 

a renewable source of carbon, which in principle might become useful for the synthesis of a large 

variety of industrially relevant products, including chemicals, fuels and materials (Fig. 1A).[5] On 

one side, high volume commodities lead to a consistent amount of fixed CO2, while small volume 

and high value-added chemicals can ensure a superior financial return. Additionally, CO2 serves as 

the primary carbon source for plants, enabling the synthesis of complex molecules essential for their 

survival. Overall, it should be noted that the chemical fixation of CO2, besides affording useful 

products from a waste, could significantly help mitigate the greenhouse effect of anthropogenic CO2 

emissions by 7-10%.[6] 

One promising solution to mitigate the rise of CO2 in the atmosphere is the storage of carbon 

dioxide in disused carbon sinks, though this approach presents significant challenges. A more efficient 

and nature-inspired strategy involves converting CO2 into bicarbonate (Fig. 1B). This process not 

only stabilizes and safely stores CO2 but also provides a reliable carbon source for future applications. 

Bicarbonate's stability and safety make it an attractive option for long-term carbon management and 

utilization. In this context, NaHCO3 is manufactured during the Solvay process, aimed to produce 

soda ash (Na2CO3). Compared to Na2CO3, NaHCO3 is marketed in much lower amount (2 Mt/y vs 
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65 Mt/y) being sold for small-scale domestic and industrial applications, including uses in the food 

industry, medicine, and as a component of dry-chemical fire extinguishers.[7] In chemical syntheses, 

it is primarily used as a base for the neutralization of acids and only sporadically as a CO2 surrogate 

in solvent-based reactions, often with poor results.[8-10] We envisage that NaHCO3 has the 

potentiality to be largely exploited for the manufacture of chemicals under solvent-free conditions, 

contributing both to the indirect valorisation of CO2 as well as to the reduction of greenhouse gases 

in a sustainable way. 

While bicarbonate can serve as a carbon source, its low solubility in common organic solvents 

poses a challenge. However, mechanochemistry can address this by bypassing traditional solubility 

limitations. Moreover, it allows for the design of synthetic transformations that require minimal 

amounts of solvents, and often none at all, greatly increasing the sustainability of chemical 

reactions.[11] It has been also demonstrated that mechanochemistry can promote alternative reactivity 

and may improve safety of chemical reactions.[12] For example, although solid-gas reactions are 

reported to be a viable synthetic strategy under ball milling conditions,[13] researchers have turned 

to mechanochemical techniques for the in-situ generation of gases, starting from solid surrogates (Fig. 

1C).[14-18] This approach avoids the storage of potentially hazardous gases and the use of specialized 

equipment, allowing one to further improve the safety of a process while reducing, at the same time, 

its complexity and cost.  
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Fig. 1. A) CO2 as valuable source of carbon for chemicals and fuels; B) NaHCO3 as a natural and safe CO2 

surrogate; C) Mechanochemical strategies to replace gaseous reactants; D) This work.  

 

The implementation of mechanochemical carboxylative reactions that employ solid CO2 

surrogates remains restricted to a few investigations. For instance, in 2011 Pinhas et al. utilized dry 

ice as a solid source of CO2 for the synthesis of oxazolidinones from aziridines via High-Speed Ball 

Milling (HSBM) technique.[19] In the same year, the same method was used to obtain dialkyl 

carbonates from organic halides and potassium/caesium carbonate, in the presence of cation 

complexing reagents and dry ice.[20] The generation of diethyl carbonate from inorganic carbonates 

and ethyl trifluoromethanesulfonate under mechanochemical conditions, has been recently elucidated 

by Borchardt and coworkers through implementation of both ex-situ and in-situ monitoring 
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techniques.[21] Sodium Methyl Carbonate (SMC) has been employed in conjunction with Grignard 

reagent by Bolm’s group for the synthesis of carboxylic acids under ball milling conditions.[22]  

Herein, we describe the use of NaHCO3 as an attractive solid CO2 surrogate for 

mechanochemical carboxylations (Fig. 1D). As a widely accessible source of CO2, NaHCO3 is 

inexpensive, safe, easy to handle, and eliminates the need for high-pressure equipment. Industrially 

relevant chemicals such as cyclic carbamates and carbonates can be efficiently obtained from 

NaHCO3 and the corresponding propargylamines/epoxides under nearly solventless conditions. 

Notably, pharmaceutically active molecules such as Toloxatone and a Linezolid-like precursor can be 

obtained in their 13C labelled form in good to high yields without handling high-pressure cylinders of 
13C-labelled gases. Moreover, our unprecedented NaHCO3-based carboxylative protocol represent an 

invaluable tool to access the thermodynamic product (cyclic carbonate) over the kinetic one 

(copolymer) in the reaction of epoxides with CO2 (vide infra). 

 

Results 
 

The synthesis of oxazolidinones from NaHCO3 and propargylic amine 

We started our investigation working on a well-studied transformation: the synthesis of the 

oxazolidinone from propargylamine and CO2.[23] The oxazolidinone fragment is found in 

pharmaceutical compounds such as Linezolid,[24] agrochemicals[25] and Evans auxiliaries.[26] 

Straightforward methodologies to access this valuable scaffold from propargylamines may involve 

the utilization of metallic catalysts (i.e. Ag, Cu, Pd, Zn, Au) often in combination with strong bases 

(amidines, guanidines).[27-32] In a limited number of examples, oxazolidinones can be obtained via 

carboxylation using caesium or potassium hydrogencarbonate as CO2 surrogates with the use of large 

amount of organic solvent.[9,10,33,34] Our laboratory reported for the first time the exploitation of 

NaHCO3 as a CO2 surrogate for the synthesis of oxazolidinones from propargylamines by the use of 

guanidines in water.[8] From this expertise, we initially set out to develop a versatile method to 

mechanochemically activate NaHCO3 for the incorporation of the -CO2- moiety into a 

propargylamine with a minimal amount of solvent and short reaction times. An extensive optimization 

study (Table S1-4, SI) allowed to identify the optimal reaction conditions and the most relevant 

deviations (Fig. 2). The selected catalytic system (AgNO3 and guanidine G) enabled the almost 

complete consumption of propargylamine S1 and NaHCO3, delivering the corresponding 

oxazolidinone 1 in 95% yield (Fig. 2, entry 1). Alternative commercially available superbases, such 

as DBU, TBD and MTBD were slightly less efficient under mechanochemical conditions (Table S1, 

SI). Notably, a comparative reaction carried out in solution (2 ml of dry DCE at room temperature for 
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4 hours) did not yield any product (Fig. 2, entry 2). Control experiments revealed the importance of 

the simultaneous presence of the silver catalyst, guanidine, and LAG (Fig. 2, entries 3-5). The use of 

Na2CO3 in place of NaHCO3 was completely ineffective (Fig. 2, entry 6). Similarly, the reaction was 

hindered in the absence of NaHCO3 (Fig. 2, entry 7).[35] The milling frequency was found to be 

crucial for a productive transformation as only 11% of 1 was observed at 30 Hz (Fig. 2, entry 8). 

However, recent observations indicate that increasing the temperature during the grinding process, 

known as "Heat & Beat," can significantly enhance outcomes. By raising the temperature by just a 

few degrees, the results can be markedly improved, sometimes leading to the complete conversion of 

the reagents. In particular, when the temperature was increased to 60 °C, 30 Hz were good enough to 

produce an excellent 93% yield of compound 1 (Fig. 2, entry 9). The yield of oxazolidinone 1 dropped 

to 44% using 4 equiv. of NaHCO3 (Fig. 2, entry 10). On the other hand, by increasing the reaction 

time to 4 h, an excellent 95% yield of the desired cyclic carbamate was obtained (Fig. 2, entry 11). 

Additional experiments varying the catalyst nature and its loading, the base and other parameters are 

included in the SI file (Table S1-4). 
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Fig. 2. Effect of the most relevant parameters in the mechanochemical carboxylation of propargyl amine S1 to 

oxazolidinone 1. a Reaction conditions: Stainless-steel jar of 15 mL, stainless-steel ball (10 mm, 13.5 g), 2 hours, 50 Hz, 

S1 (0.3 mmol), G (0.195 mmol), NaHCO3 (2.4 mmol), dry DCE as LAG (250 µL, η=1). b Yield determined by 1H NMR 

with dimethyl maleate as internal standard. c Yield after isolation. 

 

Substrate scope for the synthesis of oxazolidinones 

 

After obtaining suitable reaction conditions, we explored the substrate scope for the Ag/G-

catalyzed cyclocarboxylation of propargylic amines using NaHCO3 as substitute of gaseous CO2 (Fig. 

3). Electron-rich and electron-poor benzyl moieties on the N nucleus gave good to excellent yields of 

the products, including those with sterically hindered ortho positions (1-6). Notably, even 

supermarket-grade NaHCO3 proved to be equally effective in the reactions, demonstrating its 

practicality and accessibility for use in these synthetic transformations. The anthracenyl unit is less 

compatible (7), whereas heteroaromatic rings such as pyridine and thiophene can be incorporated into 

the final product with high yields (8-9). As expected, a less nucleophilic phenyl ring directly attached 

to the N affords only 35% yield of the corresponding oxazolidinone (10).[23] Increasing the 

temperature of the system to 60 °C, along with an improved electron density on the aromatic ring, 

results in fully satisfactory outcomes (11-12). Remarkably, compound 12 is present in the core 

structure of Linezolid. Propargyl amine bearing an alkyl chain gave quantitatively compound 13. 

Importantly, product 14 containing the D-phenylalanine fragment was obtained in 78% yield. 

Propargyl amines with an internal triple bond were compatible with this transformation, as arenes 

substituted with both electron-donating (Me, OMe) and electron-withdrawing groups (CF3, CN, 

COMe, CO2Me, NO2) on the phenylacetylene unit were nicely tolerated (15-22). In these cases, an 

endo/exo mixture of isomers was observed with electron-withdrawing groups (CF3, CN, COMe, 

CO2Me), whereas the Z-isomers of the exo product were selectively formed using more electron-

enriched arenes (15-17). Endo isomers, that were successfully separated from their analogues, may 

derive from the tautomerization of exo isomers under basic conditions.[36] Steric congestion 

generated by double substitution at the ortho position of the aromatic ring (22) or at the propargylic 

position (23) led to lower yields. However, the unreacted starting material can be recovered in these 

cases. Stable labelled pharmaceutical molecules are essential for accurately tracking and studying 

drug distribution, metabolism, and elimination in biological systems.[37] They help researchers 

understand how drugs interact with specific targets and tissues, leading to safer and more effective 

therapeutic interventions.[38] Indeed, with good yields for the reaction using NaHCO3, we attempted 

the incorporation of 13C isotope into bioactive compounds using NaH13CO3. The present method, 

allowing to consume a controlled amount of expensive 13C isotope containing CO2 surrogate, 
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provided labelled oxazolidinones 24 and 25 in good to excellent yields. Moreover, labelled compound 

26 was obtained with 97% yield and subsequently converted into the corresponding antidepressant 

toloxatone 27 by hydroboration/oxidation sequence with complete carbon isotope incorporation (see 

SI). 

 

 
Fig. 3. Reaction conditions: Stainless-steel jar of 15 mL, stainless-steel ball (10 mm, 13.5 g), 4 hours, 50 Hz, 

propargylic amine (0.3 mmol), G (0.195 mmol), NaHCO3 (2.4 mmol), dry DCE as LAG (250 µL, η = 1). All 

reported yields are intended after isolation. a NaHCO3 purchased from supermarket. b Modified condition: 4 

hours, 50 Hz, 60 °C, propargylic amine (0.3 mmol), G (0.6 mmol), NaHCO3 (2.4 mmol), dry DCE as LAG 

(250 µL, η = 1). c Modified condition: 4 hours, 50 Hz, 60 °C, propargylic amine (0.3 mmol), G (0.3 mmol), 

NaHCO3 (2.4 mmol), dry DCE as LAG (250 µL, η = 1). 
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The synthesis of cyclic carbonates from NaHCO3 and epoxides 

 

From an industrial point of view, the synthesis of cyclic carbonates by carboxylation of 

epoxides is one of the most relevant CO2-based processes.[39] Cyclic carbonates are used as 

electrolytes in lithium-ion batteries, in pharmaceuticals and agrochemicals, and as monomers for 

polycarbonates. We started our research by investigating the most used metal catalysts with the 

potential to effectively carboxylate styrene oxide. An extensive experimental investigation (Tables 

S5-11, SI) led us to concluded that the most efficient activation system relied on utilizing 

commercially accessible ZnI2 and tetrabutylammonium iodide (TBAI) as a source of iodide (Fig. 4). 

In particular, the standard conditions enabled the formation of styrene carbonate (28) in almost 

quantitative yield (Fig. 4, entry 1). TBAI was found to promote the formation of the desired product 

(Fig. 4, entry 2). No consumption of styrene oxide was observed in the absence of either ZnI2 or 

TBAI, or without LAG (Fig. 4, entries 3-4). A careful investigation of the kinetic profile of the 

reaction revealed that compound 28’ is an intermediate (Fig. 4, entries 5-7, see SI for independent 

conversion of 28’ to 28). The milling frequency is also crucial to achieve a high reaction rate together 

with full selectivity (Fig. 4, entries 8-10). Byproducts formed at lower frequency could reasonably be 

kinetically favoured polymeric materials.[40]  

 

 

+ NaHCO3

ZnI2 (60 mol%)
TBAI (2 eq.)

S28 28

O
O O

O

28'

OH
I+

DMF (300 µL) (η=0.5)
50 Hz, 4h, 25 °C

https://doi.org/10.26434/chemrxiv-2024-zm9fw ORCID: https://orcid.org/0000-0002-7853-7954 Content not peer-reviewed by ChemRxiv. License: CC BY-NC-ND 4.0

https://doi.org/10.26434/chemrxiv-2024-zm9fw
https://orcid.org/0000-0002-7853-7954
https://creativecommons.org/licenses/by-nc-nd/4.0/


 
Fig. 4. Effect of the most relevant parameters in the mechanochemical carboxylation of styrene oxide S28. a 

Standard conditions: Stainless-steel jar of 15 mL, stainless-steel ball (10 mm, 13.5 g), 4 hours, 50 Hz, S28 (0.3 

mmol), TBAI (0.6 mmol), NaHCO3 (6.0 mmol), dry DMF as LAG (300 µL, η = 0.5). b Determined by 1H 

NMR with dimethyl maleate as internal standard. c Yield after isolation. 

 

Substrate scope for the synthesis of cyclic carbonates 

 

With the optimized conditions in our hands a series of terminal epoxides was studied and the 

results are summarized in Fig. 5. Monosubstituted epoxides were converted into cyclic carbonates 

under standard conditions in good to excellent yields. Similarly to styrene oxide, 4-bromostyrene 

oxide, bearing a useful substituent for versatile derivatization, afforded the corresponding cyclic 

carbonate 29 in 90% yield. Reactions of alkyl-substituted epoxides proceeded smoothly and generated 

cyclic carbonates 30-33 in high yields. Apparently, the presence of the benzyl substituent hinders the 

cycloaddition to a certain extent, while a bromide on the alkyl chain is fully tolerated. Different ether-

substituted epoxides reacted nicely and gave cyclic carbonates 34−37 in 48−80% yields. Remarkably, 

the methacrylate unit, which is commonly used in the production of copolymers, is highly compatible 
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with this transformation (38). An epoxide derivative containing a free OH group led to the 

corresponding product 39 in near quantitative yield. Synthetically useful handles, such as NHTs and 

Cl substituents, were also tolerated as compounds 40 and 41 were isolated in 83 and 90% yield, 

respectively. Symmetric substrate S42, displaying two epoxide units, underwent mono 

cyclocarboxylation on one ring and iodohydrin formation on the other. Although with limited 

conversion, biologically relevant spirooxindole carbonate 43 was accessed from the corresponding 

spirooxindole epoxide with high selectivity.[41] Finally, a polyhedral oligomeric silsesquioxane 

(POSS) bearing the epoxide function has been successfully converted into the desired cyclic 

carbonate 44 together with its functionalized precursor 44’. POSS are regarded as ideal building 

blocks for fabricating hybrid materials in biomedical applications.[42] 

 

 
Fig. 5. Reaction conditions: Stainless-steel jar of 15 mL, stainless-steel ball (10 mm, 13.5 g), 4 hours, 50 Hz, 

starting epoxide (0.3 mmol), TBAI (0.6 mmol), NaHCO3 (6.0 mmol), dry DMF as LAG (300 µL, η = 0.5). All 

reported yields are intended after isolation. a NMR yield.  

 

Proposed reaction pathway 

 

It is well known that NaHCO3 starts to slowly release CO2 at 80 °C with the concomitant 

formation of Na2CO3.[43] However, to the best of our knowledge, the mechanochemical 

decomposition of NaHCO3 into CO2 and Na2CO3 has been rarely studied. In particular, it is reported 
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that the decomposition of NaHCO3 is accelerated by grinding the substance in a ball mill.[44] In this 

study, we employed powder X-ray diffraction (PXRD) to understand the nature of solid material 

resulting from the exposure of NaHCO3 to 50 Hz ball-milling for 2 hours.  

The Fig. 6A compares the XRD patterns of NaHCO3 collected before (black) and after 

grinding carried out without (green line) and with (blue line) guanidine. The majority of the NaHCO3 

remains unaffected, except for the expected decrease of the crystal size. This reduction in crystal size 

is accompanied by the partial decomposition of NaHCO3, resulting in the formation of a small yet 

significant amount of Na2CO3. These results indicate that ball milling action can cause, albeit 

partially, the release of CO2 and H2O and consequent formation of Na2CO3. Moreover, the presence 

of G is found to promote this process.[45] Fig. 6B shows the Lebail fitting performed on XRD data 

collected from the inorganic carbonates obtained after mechanosynthesis. The potential presence of 

an amorphous phase was not considered, and the smoothed background was modeled using a 

polynomial function. Therefore, the fitting in Fig. 6B aims to identify the most prevalent carbonate 

phases rather than to conduct a quantitative analysis. The significant presence of the 

Na2CO3·3NaHCO3 (Wegscheiderite) double salt indicates again the decomposition of NaHCO3. 

Previous studies demonstrated that this double salt is an intermediate during NaHCO3 

decomposition.[46] Additionally, the formation of Na2CO3·3NaHCO3 is favored by moderate 

temperature increases and low water vapor pressure. These conditions seem to be met during the 

milling operations conducted within the jar at a frequency of 50Hz. 

These preliminary findings clearly support a scenario in which ball-milling induces the in-situ 

generation of CO2. We then demonstrated that gaseous CO2 can be incorporated in the oxazolidinone 

core under standard milling conditions in the absence of NaHCO3 (Fig. 6C-1). In addition, a 

synthesized guanidine-hydrogencarbonate adduct GH+HCO3- (Fig. 6C-2)[47] was used under 

standard conditions affording the corresponding carboxylated compound in 95% yield (Fig. 6C-3). 

Collectively, these data provide support for a plausible mechanism that starts with the generation of 

CO2 and proceeds with its further catalytic incorporation in organic substrates (propargyl amines) 

through GH+HCO3- (Fig 6D).[8,23] As further evidence, temperature can promote the reaction likely 

by boosting NaHCO3 decomposition to CO2 (Fig. 2, entry 9). In this context, the complete 

inefficiency of Na2CO3 (Fig. 2, entry 6) can be explained by its high decomposition temperature (up 

to 780 °C for pure Na2CO3).  
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Fig. 6. A) Direct comparison of the X-ray diffraction patterns of NaHCO3 before (black) and after grinding 

without (green) and with guanidine (blue). The reflections characteristic of Na2CO3 are indicated by the red 

arrows. B) Powder x-ray diffraction pattern of the crude after the mechanosynthesis process. The pink line 

represents the calculated pattern of the compound Na2CO3·3NaHCO3 (Wegscheiderite). C) Control 

experiments. D) Proposed reaction pathway. 

 

Conclusions 
In summary, we have described the unprecedent use of NaHCO3 as cheap and safe solid CO2 

surrogate for carboxylation reactions under mechanochemical conditions. High value-added 

chemicals such as cyclic carbamates and carbonates can be efficiently obtained ball-milling NaHCO3 

and the corresponding propargylamines/epoxides. Labelled NaH13CO3 is equally effective to provide 

pharmaceutically active molecules such as Toloxatone and a Linezolid-like precursor without 

handling gases and high-pressured cylinders. Beyond the synthesis of oxazolidinones and cyclic 

carbonates from CO2, including the small-scale synthesis of labelled bioactive compounds, this work 

lays the foundation for ample future developments. The valorization of NaHCO3 as a solid CO2 

surrogate holds for vast synthetic application, from high-value pharmaceuticals to polymer chemistry. 

We hope that present proof-of-concept will thus contribute to the collective effort connected with the 

valorization of the most abundant, renewable, C1 carbon source. 
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