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Abstract 

We report the synthesis and characterization of crystalline uranium(IV) and uranium(III) 

complexes supported by the bulky hexa-iso-propyl-m-terphenylthiolate ligand system, 

SAriPr6 (SAriPr6 = {SC6H3-2,6-(Tripp)2}; Tripp = 2,4,6-iPr-C6H2). These constitute the first 

examples of m-terphenylthiolate complexes of uranium in any oxidation state and highlight 

the supporting role of U···arene interactions in the isolation of heteroleptic complexes with 

this ligand set, and demonstrate the diverse reactivity of [UIV(BH4)4]. Treatment of UIVCl4 with 

two equivalents of KSAriPr6 in Et2O afforded [UIV(SAriPr6)2(Cl)2] (1) in poor yield along with 

several crystals of the Et2O adduct, [UIV(SAriPr6)2(Cl)2(Et2O)2] (1·Et2O). While the reaction 

between [UIV(BH4)4] and one equivalent of KSAriPr6 in toluene gave several crystals of the 

poorly soluble double salt, [UIV(μ-SAriPr6)(BH4)2(μ-BH4)(μ3-BH4)K]2 (2), exposing the crude 

reaction mixture to Et2O gave the oxidized disulfide ligand dimer, (SAriPr6)2 as the sole 

identifiable product. The reaction between [UIV(BH4)4] and one equivalent of HSAriPr6 in hot 

toluene gave [UIII(H3B·SAriPr6 κS,H,H)(BH4)2] (3) – the net product of thermolytic reduction 

of the uranium and deprotonation of the arylthiol. Complex 3 proved resistant to further 

substitution using either HSAriPr6 or KSAriPr6. Both U(III) mono-arylthiolates, 

[UIII(SAriPr6)(BH4)2] (4a) and [{UIII(SAriPr6)(BH4)}2{μ-B2H6}] (4b) were isolated as a mixture 

from the reaction between [UIII(BH3)3(toluene)] and one equivalent of KSAriPr6. Complex 4b 

is a rare example of a nido-mettaloborane. When two equivalents of KSAriPr6 were reacted 

with [UIII(BH3)3(toluene)], the bis-arylthiolate complex [UIII(SAriPr6)2(BH4)] (5) was isolated in 

good yield. Complexes 1–5 have been characterized variously by single-crystal X-ray 

diffraction, multi-nuclear NMR spectroscopy, infra-red spectroscopy, UV-Vis-NIR 

spectroscopy, SQUID magnetometry, elemental analyses as appropriate. Quantum 

chemical calculations have been employed to interpret the nature of the U–S bonding 

interactions across these U(III) and U(IV) complexes. 
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Introduction 

The coordination chemistry of uranium (U) with ligands featuring hard first-row donors such 

as amides and alkoxides (along with their aryl congeners) in oxidation states from III–VI is 

a mature area.[1-6] Soft sulfur-based extractants are crucial in minor actinide separation 

processes, and so the chemistry of U–S bonded species is of great importance.[7-12] 

However, the molecular coordination chemistry of U(III) and U(IV) with thiolates and 

arylthiolates is underdeveloped relative to first-row congeners. Reported routes to U–S 

bonded species include protonolysis,[13-15] salt-elimination,[14,16-18] σ-bond metathesis,[19-21] 

or oxidation of lower oxidation state uranium precursors.[22-28] Generally, structurally 

characterized examples of uranium(III) with sulfur donors are rarer than with higher oxidation 

states such as U(IV).[29]  

 

Advances in low oxidation state (M(IV) and below) uranium chemistry have shown that U(II) 

is accessible within cyclopentadienyl (Cp) ligand frameworks,[30-32] and also using hard 

aryloxide and anilide ligands where metal-to-ligand back-bonding affords δ-bonding 

interactions which reduce charge build-up on the metal.[33-35] Softer sulfur-based ligands 

may also stabilize uranium in lower oxidation states such as U(III) or U(II) with different 

properties and reactivities to those using harder donors due to the potential for increased 

M–L covalency, but there is a paucity of suitable precursor complexes with which to explore 

this. It would be instructive to advance low oxidation state uranium chemistry beyond first-

row donors to explore the effect of softer donor systems on the electronic structure of these 

rare ions.[36,37] Given the stability imparted by δ-bonding interactions, and our own interest 

in f-block arene bonding,[38,39] we were inspired by Meyer’s recent work on a U(III) complex 

featuring a tethered tris-arylthiolate ligand system (Figure 1A), and sought other frameworks 

which provide both a sulfur donor and pendant arene groups to facilitate U→arene 

backdonation and therefore possibly stabilize lower formal oxidation states of uranium.[40] 
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Both Niemeyer, and more recently Evans,[41] have previously shown that Power’s m-

terphenyl ligand, {SAriPr6} (SAriPr6 = {SC6H3-2,6-(Tripp)2}; Tripp = 2,4,6-iPr-C6H2),[42,43] 

supports lanthanide (Ln) aryl thiolate complexes with metal–arene interactions in both the 

Ln(III) and Ln(II) oxidation states (Figure 1B). This framework is structurally analogous to 

that used in Odom and Boncella’s arene-stabilized U(II) complex, [UII(NHAriPr6)2],[35] and also 

recently reported M(II) rare-earth complexes by Odom and Demir, and some of us (Figure 

1C).[39,44]  

 

 

Figure 1. (A) Meyer’s U(III) tethered tris-arylthiolate complex, complex A; (B) a heteroleptic 

Eu(III) arylthiolate complex along with Ln(II) congeners; (C) neutral M(II) terphenyl-anilide 

complexes.  

 

Here, progress towards the isolation of low oxidation state uranium arylthiolates is reported, 

which encompass a range of heteroleptic U(IV) and U(III) structures, and which can be 

accessed from [UIV(BH4)4] by salt elimination, protonolysis, and thermolysis routes. These 

complexes have been variously characterized by single-crystal X-ray diffraction, multi-

nuclear NMR, ATR-IR, and UV-Vis-NIR spectroscopies, SQUID magnetometry, and 

elemental analyses as appropriate. Quantum chemical calculations have been used to 

examine the U–S interactions. 

  

https://doi.org/10.26434/chemrxiv-2024-x2dlc ORCID: https://orcid.org/0000-0002-4320-2548 Content not peer-reviewed by ChemRxiv. License: CC BY-NC-ND 4.0

https://doi.org/10.26434/chemrxiv-2024-x2dlc
https://orcid.org/0000-0002-4320-2548
https://creativecommons.org/licenses/by-nc-nd/4.0/


 5 

Results and Discussion 

Synthesis 

As both U(IV) and U(III) arylthiolate complexes were sought, we first explored UIVCl4 as a 

precursor in salt elimination reactions, reasoning that U(III) complexes might be 

subsequently accessed through reduction. Stirring two equivalents of KSAriPr6 with UIVCl4 in 

Et2O led to the precipitation of a red powder and gave a pale amber solution. Workup and 

crystallization of the red powder from hot n-hexane gave [UIV(SAriPr6)2(Cl)2] (1) in low 

crystalline yield (20%; Scheme 1) which gave satisfactory results by elemental 

microanalysis. The 1H NMR spectrum of 1 in d6-benzene shows broad resonances at δH = 

16.85 (�̅� = 195 Hz, iPr CH3) and –1.00 (�̅� = 133 Hz, iPr CH), along with a sharper singlet at 

10.60 ppm (Tripp CH), which were tentatively assigned by their relative integrals. The SAr 

3,4,5-CH groups could not be conclusively located. The pale amber Et2O supernatant 

contained unreacted KSAriPr6. The use of toluene as the reaction medium or extended 

reaction times reproducibly resulted in the isolation of unreacted KSAriPr6. On one attempt, 

several crystals of [UIV(SAriPr6)2(Cl)2(OEt2)2] (1·Et2O) were isolated as a co-crystallized 

mixture with unreacted KSAriPr6. Attempts to isolate the diamagnetic Th(IV) analogue were 

unsuccessful using [ThIVCl4(DME)2],[45] resulting in the conversion of KSAriPr6 to HSAriPr6 

along with unknown Th-containing byproducts (Scheme 1).  

 

 

Scheme 1. The synthesis of [UIV(SAriPr6)2(Cl)2] (1) from UIVCl4 and two equivalents of 

KSAriPr6 in Et2O, and attempted synthesis of the Th(IV) analogue from [ThCl4(DME)2]. Tripp 

= {C6H2-2,4,6-iPr3}. 
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Given the sensitivity to solvent choice, sluggish reactions, and low yield of 1 from UIVCl4,[46] 

an alternative U(IV) precursor was sought. Daly recently reported the convenient synthesis 

of [UIV(BH4)4]n by ball-milling UIVCl4 and LiBH4.[47] This is a useful precursor as (i) the 

synthesis does not require U-metal, unlike [UI4(OEt2)2];[48,49] (ii) the {BH4} group is 

synthetically versatile;[50-57] and, (iii) careful thermolysis of [UIV(BH4)4]n gives U(III)-

borohydrides (Scheme 2A) which Ephritikhine has shown can be isolated as U(III) arene 

adducts such as [UIII(BH4)3(toluene)], therefore allowing the same material to be employed 

in both U(IV) and U(III) chemistry.[58]  

 

 

Scheme 2. (A + B) Different pathways for the thermolysis of [UIV(BH4)4]n depending on the 

reaction conditions. 

 

Two different crystalline phases of [UIV(BH4)4]n can be obtained depending on the 

temperature of the condensing surface during the sublimation step.[59-63] [UIV(BH4)4]n-α forms 

when the condensation surface is ca. 20°C, has rather poor solubility in ethereal solvents 

(<20 g·L–1 in Et2O),[64] and produces large dark green/black block-like crystals on the surface 

of the sublimator (see the Supporting Information for images). [UIV(BH4)4]n-β forms when the 

condensing surface is at –80°C, has a much higher solubility in organic solvents (up to 44 

g·L–1 in benzene),[62,63] and takes on a paler green/brown color. Herein, we have used both 

phases without a discernible difference in their reactivities. When a portion of dark 

green/black crystalline [UIV(BH4)4]n-α was left standing in d6-benzene at room temperature 

for 7 days, several dark red crystals deposited and were shown to be [UIV(BH4)2{μ-B2H6}]n 

by SC-XRD (Scheme 2B, and see Supporting Information for the molecular structure). No 

further analysis could be obtained on this material, which was consumed during the SC-
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XRD study. However, subsequent examination of [UIV(BH4)4]n-β in d6-benzene (δH = 134.84, 

br. singlet, h1/2 = 556 Hz; δB = 130.86, quintet 1JBH = 87.0 Hz)[47,60,61,65] by 1H NMR 

spectroscopy shows that it slowly liberates H2 (as evidenced by a peak at δH = 4.47 ppm) at 

room temperature, and this is accompanied by the growth of a broad singlet at δB = 31.10, 

and a complex feature at δB = 17.29 which we suggest is due to the formation of a small 

quantity of [UIV(BH4)2{μ-B2H6}]n. 

 

Using the [UIV(BH4)4]n precursor, mono-substituted U(IV) SAriPr6 complexes were targeted 

first to examine whether reduced steric saturation would facilitate the isolation of crystalline 

material. The reaction between [UIV(BH4)4]n and one equivalent of KSAriPr6 in toluene gave 

a single crop of the double salt [UIV(μ-SAriPr6)(BH4)2(μ-BH4)(μ3-BH4)K]2 (2) as red crystals 

from hot toluene in very poor crystalline yield as the solvent cooled (3% isolated crystalline 

yield; Scheme 3). A batch of 2 was isolated (in 26% yield) by repeating the reaction and 

washing the precipitated solids with toluene. The ATR-IR spectrum of this material was found 

to be superposable with that of crystalline 2. A large number of poorly resolved features 

between 𝜈  = 2,500 and 2,000 cm–1 suggest a range of binding modes for the {BH4} 

groups.[66] The 1H NMR spectrum of 2 in d6-benzene shows seven broad peaks spanning δH 

= 14.46 to –4.54, commensurate with C2 symmetry in solution and both Tripp groups being 

equivalent on the NMR timescale. A further 12 minor 1H resonances were observed outside 

of this range between 87.15 and –76.69 ppm, which we tentatively attribute to the various 

BH environments. The 11B NMR spectrum shows one single resonance at δB = 141.25, which 

is similar to [UIV(BH4)4]n (δB = 131.6). An attempt to extract crude 2 into Et2O (instead of 

toluene) gave the sulfide-bridged dimer (SAriPr6)2 as the only isolable crystalline product 

(Scheme 3). 
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Scheme 3. The synthesis of [UIV(μ-SAriPr6)(BH4)2(μ-BH4)(μ3-BH4)K]2 (2) from [UIV(BH4)4]n 

and one equivalent of KSAriPr6 in toluene. 

 

Protonolysis was explored as an alternative route to mono-arylthiolate U(IV) complexes 

through the reaction of [UIV(BH4)4]n with one equivalent of HSAriPr6 in hot toluene (Scheme 

4). After workup, this gave red-green crystals of [UIII(H3B·SAriPr6 κS,H,H)(BH4)2] (3) in good 

yield (69%). Complex 3 is the net product of thermolytic reduction of [UIV(BH4)4]n, 

deprotonation of HSAriPr6, and capture of byproduct BH3 by the S-atom lone pair. Doublets 

at 𝜈 = 2,467 and 2,152 cm–1 in the ATR-IR spectrum of 3 are attributed to stretching modes 

from B–Ht (A1) {κ2-H3B·SAriPr6} and B–Hb (A1 and E) from {κ3-BH4} respectively.[66] The 1H 

NMR spectrum of 3 in d6-benzene could not be definitively assigned. The absence of 

residual HSAriPr6 and satisfactory elemental microanalysis results suggest the large number 

of peaks is due to low symmetry in solution. It has been shown that M···Tripp contacts can 

be sufficiently strong to preclude the exchange of the metal-bound and “terminal” Tripp 

groups in [Yb(NHAriPr6)2],[39] and this may be the case for 3. The 11B NMR spectrum in d6-

benzene revealed three broad singlets (δB = 102.91, 75.24, 59.01). By comparison with 

4a/4b (see below), the resonance at 59.01 ppm can be assigned to the B-atom of the {κ2-

H3B·SAriPr6} ligand. The remaining two peaks in the spectrum of 3 cannot be definitely 

assigned, but their similarity to features seen in 4a/4b suggests a mixture of {κ3-BH4}, and 

also {µ-B2H6}2– groups are present, the latter of which may arise due to dehydrocoupling in 

solution.[67-69] The 11B NMR spectrum of [UIII(BH4)3(THF)2] shows a broad singlet at a 

significantly different chemical shift (d6-benzene, δB = 153;[47] d8-THF, δB = 230)[57] to either 
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of the remaining features and so we have discounted the presence of residual U(III) 

precursor. 

 

 

Scheme 4. The synthesis of [UIII(H3B·SAriPr6-κS,H,H)(BH4)2] (3) from [UIV(BH4)4] and one 

equivalent of HSAriPr6 in toluene. 

 

Given the facile thermolytic reduction of U(IV) to U(III) under the conditions above, we 

instead sought to isolate mono-arylthiolate complexes using a pre-formed U(III) precursor 

and a salt-elimination strategy. [UIV(BH4)4]n was thermolyzed in toluene and dried under 

vacuum to give [UIII(BH4)3(toluene)] as a red microcrystalline powder which was used in situ 

without further purification.[47,58] Addition of Et2O to a pre-cooled (–98 °C) mixture of 

[UIII(BH4)3(toluene)] and one equivalent of KSAriPr6 gave, after workup and crystallization 

from n-hexane, dark red crystals of [UIII(SAriPr6)(BH4)2] (4a). A second crystalline crop was 

isolated from n-hexane after trituration with hot toluene, and was found to be dimeric 

[{UIII(SAriPr6)(BH4)}2(µ-B2H6)] (4b) – see Scheme 5. The combined yield was fair (37%), and 

the ATR-IR spectra from each crop are almost perfectly superposable, suggesting both 

batches contain a mixture of 4a and 4b in roughly equal proportions. These spectra show a 

strong singlet at 𝜈 = 2,472 cm–1 for the {κ3-BH4} B–Ht A1 stretching mode, which presents 

with poorly-resolved doublet character (Δ ca. 25 cm–1) in some batches, suggesting the 

presence of a {κ2-BH4} coordination mode. A doublet at 2,154 cm–1 (Δ ca. 60 cm–1) likely 

arises from the A1 and E bridging B–Hb stretching modes of the {κ3-BH4} groups.[66] These 

first two sets of peaks are essentially identical to those found in 3, which aided assignment. 

Notably, the spectra for 4a/4b have an additional feature at 𝜈 = 2,281 cm–1 (singlet) which is 
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absent in 3, and is similar to other nido-metalloborane complexes with reported IR data,[70-

74] and which we tentatively assign to the κ2-BH3 stretching mode of the {μ-B2H6}2– moiety. 

1H NMR spectra of the 4a and 4b mixture could not be assigned conclusively. Still, two 

singlet resonances (δB = 102.89, 75.42) were observed in the 11B NMR spectrum of the 

mixture, which are remarkably similar to those observed for complex 3. We tentatively assign 

these to the terminal {κ3-BH4} and {μ-B2H6}2– groups in 4a/4b. A weak feature at ca. δB = 60 

is likely be due to traces of {κ2-H3B·SAriPr6} by analogy to 3. Attempts to monitor the thermal 

conversion of 4a to 4b by 1H and 11B NMR spectroscopy were inconclusive (see Supporting 

Information). 

 

 

Scheme 5. The synthesis of both [UIII(SAriPr6)(BH4)2] (4a) and [{UIII(SAriPr6)(BH4)}2(µ-B2H6)] 

(4b) from [UIII(BH4)3(toluene)] and one equivalent of KSAriPr6 in Et2O; and [UIII(SAriPr6)2(BH4)] 

(5) from [UIII(BH4)3(toluene)] and two equivalents of KSAriPr6. 

 

With a range of mono-arylthiolate complexes in hand which demonstrate the ability of this 

ligand set to support both U(III) and U(IV)-arene interactions, the synthesis of 

[UIII(SAriPr6)2(BH4)] (5) was attempted by reacting two equivalents of KSAriPr6 with 
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[UIII(BH4)3(toluene)] in Et2O (Scheme 5). Crystallization from hot hexane gave 5 in modest 

yield (52%). The ATR-IR spectrum of microcrystalline 5 shows a distorted doublet (𝜈 = 2,480 

cm–1, A1 and B1) and a singlet (𝜈 = 2,134 cm–1, A1 and B2) for the B–H stretching modes, 

commensurate with a {κ2-BH4} group. The 1H NMR spectrum of 5 in d6-benzene displayed 

broadened resonances between δH = 8 to –1 for the {SAriPr6} ligand which integrate well for 

a C2 symmetric structure in solution whereby the metal-bound and terminal Tripp groups 

exchange on the NMR timescale, though definitive assignment has not been possible. The 

{BH4} group appears at δH = 126.58 in the 1H NMR spectrum, which is shifted from both 

[UIV(BH4)4] (δH = 130.86) and [UIII(BH4)3(THF)2] (δH = 118.58). A broad resonance for the {κ2-

BH4} group is observed in the 11B spectrum at δB = 177.75 (FWHM = 340 Hz).  

 

 

Molecular structures  

The molecular structures of complexes 1, 1·Et2O, and 2–5 were determined by single crystal 

X-ray diffraction (SC-XRD) studies, and selected bond metrics are given in Table 1. 

Complexes 1 and 1·Et2O, crystallized from hexane and toluene respectively in the P1̅ space 

group (see Figure 2 for the molecular structure of 1·Et2O, and the Supporting Information 

for 1). In the case of 1, the resolution of the data is limited due to weak diffraction at higher 

angles due to the large unit cell (V = 50,235 Å3; Z′ = 10). While the connectivity is 

unambiguous and supported by further characterization data, there is limited precision 

associated with the metrical parameters. However, the large number of molecular units 

allows us to provide mean bond lengths and angles (where the number in parenthesis is the 

standard deviation of the mean, rather than the crystallographic ESD) for the U–S (2.675(5) 

Å) and U–Cl (2.545(23) Å) distances, and also the S–U–S and Cl–U–Cl angles (154.5(7)° 

and 95.6(5)° respectively). The geometry is best described as pseudo-sawhorse with 

respect to the U, Cl and S-atoms, while the U-center is capped by a single η6-Tripp group 
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for each molecule (mean U···η6-Tripp = 2.591(2) Å). On the other hand, complex 1·Et2O 

which is an Et2O adduct of 1, is octahedral (SHAPE analysis = 0.306)[75] and has an inversion 

center situated at the U-atom. The U–Cl (2.5699(10) Å) bond lengths are indistinguishable 

at the 3σ-level of statistical significance from the mean in 1, and the U–S (2.6526(9) Å) is 

shorter than the mean in 1 (Δ = 0.022 Å). In both 1 and 1·Et2O the U–S distances are 

somewhat shorter than the sum of the covalent radii for a U–S single bond (2.73 Å),[76] and 

is in the middle of the range of terminally bound organo-sulfur U(IV) distances reported in 

the CCDC (2.61(5) to 3.029(4) Å).[77-79] The U–S–Cipso angle (158.71(14)°) in 1·Et2O is larger 

than either mean values in complex 1 (115.3(5) and 123.3(6)°).  

 

 

Figure 2. Molecular structure of complex 1·Et2O. Ellipsoids set at 50% probability and H-

atoms removed for clarity (operations: 1–X, 1–Y, 1–Z). Selected bond lengths and angles: 

U1–S1 = 2.6526(9) Å, U1–Cl1 = 2.5699(10) Å, U1–O1 = 2.368(2) Å, U1–S1–Cipso = 

158.71(14)°. 

 

Complex 2 crystallized as a centrosymmetric dimer (Z′ = 0.5) comprised of two 

{UIV(BH4)4KSAriPr6} units, and is best described as a double salt of [UIV(BH4)4] and [KSAriPr6] 

– see Figure 3. Each S-atom bridges between a U and a K (U–S = 2.6948(10) Å and K–S 
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= 3.1109(13) Å). The U–S bond of is slightly longer than in 1 and 1·Et2O, but is shorter than 

the sum of the covalent radii for a single bond, again implying a polar-covalent bond.[76] The 

K–S bond is ca. 0.07 Å longer than in [KSAriPr6]2 as a result of coordination to U(IV).[80] 

Complex 2 possesses {κ3-BH4} units that bind in a terminal fashion (U···BBH4 = 2.489(6) and 

2.508(7) Å), and also two different bridging modes: one μ:κ3:κ3 to both the U and K-atoms 

(U···B = 2.557(6) Å) whereas the other binds μ3:κ2:κ2:κ2 to one U-atom (U···B = 2.865(7) Å), 

and both K-atoms of the dimer – in all cases these distances compare well to previous 

structural determinations of parent [UIV(BH4)4]n,[59-63] and other U(IV)-borohydride 

complexes.[56,81-103] Unlike complex 1, there are no η6-Tripp–U interactions in 2; instead, the 

softer K-atom binds to an η6-Tripp group (η6-Trippcentroid···K = 2.881(2) Å).  

 

 

Figure 3. Molecular structure of complex 2. Ellipsoids set at 50% probability and non-BH4 

H-atoms removed for clarity (operations: 1–X, 1–Y, 1–Z). Selected bond lengths and angles: 

U1–S1 = 2.6948(10) Å, K1–S1 = 3.1109(13) Å, U1···B1 = 2.489(6) Å, U1···B2 = 2.508(7) Å, 

U1···B3 = 2.557(6) Å, U1···B4 = 2.865(7) Å, K1···Trippcentroid = 2.881(2) Å, U1–S1–K1 = 

101.94(3)°, U1–S1–Cipso = 124.88(14)°. 
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The molecular structures of the U(III) complexes 3 and 4a are shown together in Figure 4 

(Z′ = 1 for both). The U–S bond in 3 (2.8824(9) Å) is elongated compared to 4a (2.687(4) Å; 

Δ = 0.195(4) Å), and more so than expected from increasing the coordination number at 

U(IV) (e.g. 6-coordinate = 0.89 Å to 8-cordinate = 1.00 Å; Δ = 0.11 Å).[104] The coordination 

of Lewis-acidic BH3 reduces the charge density of the S-anion, weakening the U–S 

interaction and so the U–S distance in 3 is one of the longest for any anionic S-donor to 

uranium. The U–S in complex 4a is short compared to other U(III) thiolate complexes. For 

example, the range of U–S distances in [UIII(SMes*)3] (Mes* = {2,4,6-tBu3-C6H2}) is 

2.7127(11) to 2.7247(10) Å; and in Meyer’s complex A, the three equivalent U–S distances 

are 2.7082(7) Å – all of which are longer by a statistically significant amount.[14,15] To the best 

of our knowledge, complex 4a has the shortest U–S bond length for any structurally 

authenticated molecular U(III) complex, and this is likely a reflection of its electron-poor U-

center.[79] While U···B distances in 3 (2.584(6) and 2.603(7) Å) and 4a (2.56(2) and 2.56(3) 

Å) are statistically indistinguishable, the U···Trippcentroid distances (3, 2.5379(15) Å; 4, 

2.482(7) Å) differ by only 0.056(7) Å. These differences suggest that the change in U–S 

bond length is due to more than just a change in formal coordination number. The S–B bond 

length in complex 3 (1.939(5) Å) is within the range (1.897(8) to 2.00(2) Å) of the few 

previously reported complexes containing metal-bound organo-sulfur BH3 adducts,[105-111] 

and to the best of our knowledge is the first example with an f-element.  
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Figure 4. Molecular structure of complexes 3 (left) and 4a (right). Ellipsoids set at 50% (3) 

and 30% (4a) probability, and non-BH4 H-atoms and lattice solvent molecules removed for 

clarity (operations for 3 and 4a: X, Y, Z). Selected bond lengths and angles for complex 3: 

U1–S1 = 2.8824(9) Å, S1–B1 = 1.939(5) Å, U1···B2 = 2.603(7) Å, U1···B3 = 2.584(6) Å, 

U1···Trippcentroid = 2.5379(15) Å, U1–S1–B1 = 64.55(14)°, U1–S1–Cipso = 109.54(12)°; 

complex 4a: U1–S1 = 2.687(4) Å, U1···B1 = 2.56(2) Å, U1···B2 = 2.56(3) Å, U1···Trippcentroid 

= 2.482(7) Å, U1–S1–Cipso = 113.6(5)°. 

 

Complex 4b (shown in Figure 5) crystallized as a dimer (Z′ = 0.5) where two 

{UIII(SAriPr6)(BH4)} units are bridged by a diborane(6) dianion, {B2H6}2–. This structure type 

is equivalent to arachno-tetraborane(10) (B4H10) wherein two of the {BH2} units have been 

replaced by U(III)-centers, and so 4b is the first example of an f-element nido-metalloborane 

(aside from [UIV(BH4)2{μ-B2H6}]n shown above).[112] The {μ-B2H6}2– binds asymmetrically to 

each U-atom (U···B = 2.609(6) and 2.892(6) Å). The B–B bond length of 1.783(12) Å is 

within the range (1.63(3) to 1.846(4) Å)[69,113,114] of reported transition metal examples in the 

CCDC.[79] The U···BBH4 distances (2.556(8) Å) in 4b are indistinguishable from those in 4a. 

The {SAriPr6} ligand in 4b is disordered over two components in a 82:18 ratio, giving two U–

S bond lengths (2.721(3) and 2.663(17) Å respectively).  
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Figure 5. Molecular structure of complex 4b. Ellipsoids set at 30% probability and non-BH4 

H-atoms removed for clarity (operations: 1–X, 1–Y, 1–Z). Selected bond lengths and angles: 

U1–S1 = 2.721(3) Å, U1···B1 = 2.556(8) Å, U1···B2 = 2.609(6) Å, U1···B2′ = 2.892(6) Å, 

U1···Trippcentroid = 2.5168(19) Å, U1–S1–Cipso = 111.7(4)°.  

 

The molecular structure of complex 5 (Figure 6) shows the U-atom is sandwiched equally 

between two Tripp arene rings (U···Trippcentroid = 2.744(1) and 2.747(2) Å) and almost 

perfectly within the S2B plane (deviation = 0.004(2), below statistical significance). Despite 

this, 5 does not possess crystallographic C2 symmetry (Z′ = 1), and the two U–S bonds are 

distinct (2.7888(8) and 2.7969(7) Å; Δ = 0.0081(10) Å). The U–S lengths in 5 are longer than 

in both U(IV) complexes 1 and 2, and also U(III) 4a and 4b, whereas those of complex 3 

(2.8824(9) Å) are almost 0.1 Å longer than that of 5. In both 3 and 5, these values are longer 

than the sum of the covalent radii for a U–S single bond (2.73 Å),[76] and also longer than 

those in [UIII(SMes*)3] (2.7127(11) to 2.7247(10) Å) and complex A (2.7082(7) Å).[14,15] 

Lastly, the U–S distances in 5 are shorter than those in [La(SAriPr6)2(I)] (2.8235(12) and 

2.8173(10) Å) by more than the difference in the ionic radii of U(III) (1.025 Å) and La(III) 

(1.032 Å), which is often ascribed to covalent contributions to the bonding in uranium 

complexes which are absent in the lanthanum congeners..[41,104] The U···B distance in 5 

(2.872(4) Å) is larger than the other U(III) and U(IV) complexes presented herein, though it 

is similar to other terminal and bridging U–{κ2-BH4} distances previously reported for U(III) 

complexes.[54,55,57]  
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Figure 6. Molecular structure of complex 5. Ellipsoids set at 50% probability and non-BH4 

H-atoms removed for clarity. Selected bond lengths and angles: U1–S1 = 2.7888(8) Å, U1–

S2 = 2.7969(7) Å, U1···B1 = 2.872(4) Å, U1···Trippcentroid1 = 2.744(2) Å, U1···Trippcentroid2 = 

2.747(2) Å, U1···S2B-plane = 0.004(2) Å, S1–U1–S2 = 128.23(2)°, U1–S1–Cipso = 

118.15(11)°, U1–S2–Cipso = 118.53(11)°, Trippcentroid1···U1···Trippcentroid2 = 176.79(4)°. 

 

Table 1. Bond lengths (Å) and angles (°) for complexes 1, 1·Et2O, 2, 3, 4a, 4b, and 5. 

(Å or °) 1 A 1·Et2O 2 3 4a 4b B 5 

U–S 2.675(5) 2.6526(9) 2.6948(10) 2.8824(9) 2.687(4) 2.721(3) 

2.7888(8), 

2.7969(7) 

U···B – – 
2.489(6) – 

2.865(7) 

2.584(6), 

2.603(7) 

2.56(2), 

2.56(3) 

2.556(8), 

2.609(6) 
2.872(4) 

U–TrippC6 – C – – 
2.883(4) – 

2.920(4) 

2.815(16) – 

2.918(17) 

2.867(5) – 

2.899(5) 

3.030(3) – 

3.152(3) 

U···η6-Trippcent 2.591 – – 2.5379 2.482 2.5168 
2.744, 

2.747 

U–S–Cipso 

115.3(5), 

123.3(6) 

158.71(14) 124.88(14) 109.54(12) 113.6(5) 111.7(4) 118.53(11) 

A Mean value of all ten independent molecules, and the ESD is given as the standard deviation of all the values. B The {SAriPr6} unit is disorder over two 

positions which refined to a ratio of 82:18, only metrics for the highest occupancy unit are given. C Not given due to the poor data quality. 
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UV-Vis-NIR spectroscopy 

The UV-Vis-NIR spectra of complexes 1, and 2-5 were recorded at room temperature as 

Et2O solutions and are shown in Figure 7. Note that in the case of 2, while exposure of the 

crude reaction mixture to Et2O caused decomposition to (SAriPr6)2, this was not the case for 

isolated crystalline material.  

 

The electronic absorption spectra for 1 and 2 are typical for U(IV): 1 features two broad 

charge transfer features with maxima at ca. 26,000 cm–1 (385 nm, ε ca. 1,800 M–1 cm–1) and 

20,000 cm–1 (500 nm, ε ca. 880 M–1 cm–1) which tail off below 14,000 cm–1 (715 nm); and 2 

displays a broad absorbance across the whole visible range which then tails off below 

14,000 cm–1. The NIR region for both feature weak Laporte-forbidden intra-configurational 

f–f transitions (1, ε ca. 15 M–1 cm–1; 2, ε ca. 100 M–1 cm–1).[115-118] The UV-Vis region of 

complexes 3, 4a, and 4b are remarkably similar, showing multiple strong overlapping 

absorptions with maxima centered around 22,880 cm–1 (437 nm), 21,000 cm–1 (476 nm), 

19,940 cm–1 (502 nm), 18,115 cm–1 (552 nm), and ca. 16,195 cm–1 (617 nm) with molar 

absorptivity values (ε) ranging from ca. 400 to 1200 M–1 cm–1. These broad features then 

tailing into the NIR region below 14,000 cm–1 (715 nm). The UV-Vis-NIR spectrum of 5 is 

similar to that of [U(NHAriPr6)2(I)],[35] with a broad charge transfer feature at ca. 20,512 cm–1 

(488 nm, ε ca. 1,333 M–1 cm–1). The NIR region of the mono arylthiolate U(III) complexes 3, 

4a, and 4b features a broad series of poorly defined Laporte-forbidden intra-configurational 

f–f transitions (ε ca. 60 M–1 cm–1). On the other hand, complex 5 shows well-defined features 

between 7,830 cm–1 (1,277 nm) and 12,173 cm–1 (821 nm; ε ca. 55–118 M–1 cm–1).  
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Figure 7. Solution UV-Vis-NIR spectra of U(IV) 1 and 2 (top panel), and 3-5 (bottom panel) 

– all as 1.0 mM (of U content) in Et2O at ambient temperature.  

 

 

SQUID magnetometry 

We examined the magnetic properties of complexes 1–3, 4b and 5 using variable-

temperature SQUID magnetometry (see Figure 8, and Supporting Information) to better 
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understand their ground state electronic structures as room temperature magnetic moments 

do not allow for the unambiguous assignment oxidation state in U(III) or U(IV) complexes.[119] 

 

 

Figure 8. Variable temperature SQUID magnetic moment data (T, left) over the 

temperature range 1.8–300 K in an applied field of 1000 Oe and magnetization (right) over 

the field range 0–7,000 Oe at 1.8 K for 1 (black), 2 (red), 3 (blue), 4a/b (green), 5 (purple).  

 

For U(IV) (5f2, 3H4 at the LS limit) complexes 1 and 2, effective magnetic moments of 3.14 

B (1.24 cm3 mol–1 K; 1) and 2.22 B (0.62 cm3 mol–1 K; 2 per U ion) were measured at 300 

K. These values decrease smoothly over the temperature range reaching 0.51B (0.03 cm3 

mol–1 K; 1) and 0.24 B (0.01 cm3 mol–1 K; 2 per U ion) at 1.8 K and tend to zero. This 

behavior is typical of the thermal depopulation of crystal field states of the split 3H4 ground 

multiplet into an orbital singlet ground state, which is common for U(IV).[6,119] An isolated f2 

ion has an integer spin so can be an orbital singlet at low temperature, subject to 

temperature independent paramagnetism (TIP), resulting in non-zero magnetic moments. 

However, the magnetic profiles for 1 and 2 exhibit notable differences. The curve does not 

fall as quickly for 1 as it does for 2, which is characteristic of strongly donating or charge-

rich ligands exerting larger crystal field effects on U(IV) ions.[120] The effective magnetic 
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moments at 300 K for 1 and 2 differ significantly (3.14 B vs. 2.22 B both per U ion), and 

both are markedly reduced from the free-ion value (3.58 B) which we attribute to crystal 

field effects resulting in different degrees of excited state mixing into the ground state.[121,122] 

Isothermal magnetization vs field measurements at 1.8 K for 1 and 2 exhibit low values of 

magnetization, with no sign of approaching saturation up to the highest field (0.19 B mol–1 

for 1 and 0.05 B mol–1 per U ion for 2 at 7 T and 1.8 K) consistent with their non-Kramers 

U(IV) formulations. In short, all the data for 2 (see Supporting Information) suggests it 

contains two non-interacting U(IV) ions. 

 

For U(III) (5f3, 4I9/2 at the LS limit) complexes 3 and 5, effective magnetic moments of 1.99 

B (0.50 cm3 mol–1 K; 3) and 2.47 B (0.76 cm3 mol–1 K; 5) were measured at 300 K. These 

values exhibit a slow reduction across the temperature range reaching 1.49 B (0.28 cm3 

mol–1 K; 3) and 1.39 B (0.24 cm3 mol–1 K; 5) at 1.8 K. This is a result of the thermal 

depopulation of crystal field states of the 4I9/2 ground multiplet into an orbital doublet ground 

state giving rise to higher (non-zero) low temperature moments, which is typical for 

U(III).[119,123] For both, the effective magnetic moment at 300 K is low compared to that of the 

theoretical U(III) 4I9/2 free-ion value (3.62 B); however, this has been observed for other 

arene-anchored U(III) complexes.[15,124,125] Isothermal magnetization vs field measurements 

for at 1.8 K 3 and 5 exhibit magnetization values commensurate with U(III) Kramers ion 

configurations, approaching saturation up to the highest field (0.82 B mol–1 for 3 and 0.59 

B mol–1 for 5 at 7 T and 1.8 K). 

 

In the case of 4a and 4b, ATR-IR data suggests that both are present in both batches of 

crystalline material. Given the difference between these two complexes is just one unit of 

H2, their per-uranium magnetic properties should be comparable absent any exchange 

interactions through the {B2H6}2– bridge and so we have collected data for the 4a/b mixture. 
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Both the low- and high-temperature magnetic susceptibility for 4a/b (300 K: 2.21 B, 0.61 

cm3 mol–1 K; and 1.8 K: 1.38 B, 0.24 cm3 mol–1 K – all per U ion) are in good agreement 

with those of 3 and 5, and therefore for a U(III) composition. Likewise, the isothermal 

magnetization for 4a/b approaches saturation at the highest fields, reaching 0.69 B mol–1 

per U ion at 7T and 1.8 K. The similarity of the per-ion magnetic profile to that of 3 and 5 

suggests that if any magnetic communication between the two U-atoms is present, it is very 

weak, and that the magnetic contribution from 4b to the data is what would be expected 

from a pair of magnetically isolated U(III) ions. 

 

 

Electronic structure calculations 

To better understand the nature of the U–S bonding and U···arene interaction in these 

complexes unrestricted Kohn-Sham density-functional theory (DFT) calculations were 

performed in ORCA 5.0[126] using the PBE0 functional[127,128] on H-atom optimized 

coordinates for 1·Et2O (S = 1), 2 (S = 2), 3, 4a, 5 (S = 3/2), 4b (S = 3) derived from the SC-

XRD data. In the case of 1, all coordinates were optimized due to the presence of ten 

crystallographically independent molecules (see Supporting Information). For complex 1, 

the (mean) SC-XRD and calculated U–S and U–Cl distances differ by ≤0.005 Å except for 

the U–S linkage for the {SAriPr} ligand with a U···η6-Tripp contact which differs by 0.014 Å, 

though this is within 2σ of the mean and so represents a sound model. 

 

Computational analyses of atomic charges derived from Kohn-Sham molecular orbitals (KS 

MOs) are fraught with difficulty,[129-132] and the differing coordination numbers in 1–5 preclude 

meaningful direct comparisons. However, a comparison of the Mulliken charges (QAM) and 

spin populations for the S-atoms (SM S) is instructive towards the nature of their interaction 

with the U-atoms. In a similar fashion, the U-atom spin populations (SM U) report whether 
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there is net exchange of spin density away from, or towards the metal. These data are 

summarized in Table 2 along with the Mayer bond orders and the U–S bond lengths from 

SC-XRD, or calculation in the case of 1. The U–S MBO values are broadly in agreement 

with other examples of U(III) and U(IV) thiolate linkages.[15,133] 

 

Table 2. Spin population (SM) and Mulliken atomic charge (QAM) analyses, and the U–S 

Mayer bond orders (MBO) and crystallographic bond lengths for the U–S linkages of 

complexes 1-5. 

Complex SM U QAM S SM S U–S MBO U–S bond (Å) 

1 2.23 
–0.33 

–0.45 

–0.07 

–0.08 

1.04 

0.86 

2.678 A 

2.653 A 

1·Et2O 2.23 
–0.46 

–0.46 

–0.05 

–0.05 

0.76 

0.76 
2.6526(9) 

2 B 2.20 –0.51 –0.06 0.82 2.6948(10) 

3 3.06 –0.17 –0.02 0.50 2.8824(9) 

4a 3.06 –0.39 –0.05 0.94 2.687(4) 

4b B 3.04 –0.41 –0.04 0.97 2.721(3) 

5 3.15 
–0.41 

–0.41 

–0.04 

–0.04 

0.71 

0.71 

2.7888(8) 

2.7969(7) 

A Bond lengths from the fully optimized structure and so no ESD is given. B Values are given for only one of the U-atoms as there are no significant differences 
in these dimers. 

 

The U-atom spin populations of 2.23, 2.23, and 2.20 for complexes 1, 1·Et2O, and 2 

respectively show they are net importers of spin density as all somewhat exceed the 

expected values of 2 for U(IV) 5f2, whereas values of 3.06, 3.06, and 3.04 for 3, 4a, and 4b 

respectively are in good agreement with their U(III) 5f3 configurations. Complex 5 (3.15) is 

an outlier. These data show that: (i) there is a weak positive correlation between the number 

of S (and Cl) donors, and increased U-atom spin population; (ii) there is no clear correlation 

between the MBO and the U-atom oxidation state; (iii) complex 3, for which the coordination 
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of BH3 to the S-atom withdraws charge, and also complex 5, possess the lowest U–S MBO 

values; (iv) complex 5 is the only U(III) complex with a notable deviation of the spin 

population from the ideal value. 

 

While U···arene δ-bonding interactions are a common feature in low oxidation state uranium 

complexes with arene ligands,[6,15,33-35,38,40,125,134-141] inspection of the KS-MOs in all 

complexes herein reveals no δ or π U-arene overlap in the occupied orbitals, though most 

show such an interaction in their first unoccupied orbitals. This is likely due to the arene 

groups sitting further from the U(III) center (e.g. in 5, U···Trippcentroid = 2.744 and 2.747 Å) 

than in similar complexes such as A (U···Mescentroid = 2.464 Å), or a recently reported U(III) 

tris-boryloxide complex (U···arenecentroid = 2.616 Å) – both of which,[15,125] exhibit δ-bonding 

interactions. 

 

Due to the delocalized nature of KS MOs we next turn to analysis of the U–S interactions 

using the natural bond order (NBO) and quantum theory of atoms in molecules (QTAIM) 

formalisms. Error! Reference source not found. reports the natural localized molecular 

orbitals (NLMOs) for the U–S σ- and π-components in complexes 1–5. Note that such 

notation is a guide for the interaction symmetry and that the U–S overlap is often poorly 

oriented as has been observed elsewhere due to the low symmetry.[142,143] For complex 1, 

the two inequivalent U–S bonds decompose into four NLMOs with U-contributions ranging 

from 14–20%, divided almost equally between 6d and 5f contributions in three of the four 

cases (the last being >60% U 5f – see Figure 9. In 1·Et2O the U–S π-bonding is prominent 

(Figure 9) with a U-content of 13.3% (38.28% 5f, 61.48% 6d) which is dominated by the 6d 

contribution. The corresponding σ-bond is poorly localised (U, 15.6%; 64.02% 5f, 31.31% 

6d) and a larger 5f composition than in the π-bond.  
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1 U1–S2 (NLMO150) 1 U1–S2 (NLMO151) 

U (16.711%; 42.35% 5f, 57.13% 6d) 

S (80.387%) 

U (19.932%; 38.96% 5f, 44.78% 6d) 

S (77.049%) 

  

1·Et2O U1–S1 (NLMO149) 1·Et2O U1–S1 (NLMO150) 

U (13.277%; 38.28% 5f, 61.48% 6d) 

S (84.055%) 

U (15.590%; 64.02% 5f, 31.31% 6d) 

S (79.322%) 

Figure 9. Selected NLMO isosurfaces (0.05 a.u.) for 1 (top) and 1·Et2O (bottom).  

 

For complex 2 both σ- and π-components for the U–S bond were found, with the σ-bond (U, 

25.431%; 34.53% 5f, 57.02% 6d) bearing a larger uranium (and 6d) component than the 

corresponding π-bond (U, 14.193%; 61.94% 5f, 37.51% 6d). In complex 3, the BH3 group 
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occupies the S-atom lone pair and only a U–S σ-bond is found (U, 16.155%; 28.64% 5f, 

63.81% 6d). Despite this lone pair being available for U–S π-bonding in the case of complex 

4a, we find two poorly oriented interactions (12.022% and 18.378% U-character) with 

approximate σ-symmetry which compare well to the U–S σ-bond in 3 – all show dominant 

U 6d character as would be expected from Bursten’s FEUDAL description of actinide 

bonding (see Figure 10 for both 3 and 4a).[144] Complex 4b is comparable to 4a, and so the 

data are presented in the Supporting Information. Finally, in complex 5 we find each U–S 

interaction is spread across three NLMOs, each showing poor orientation of the respective 

parent atomic orbitals and low U-content (3.708–10.492%). At low isovalues (<0.03 a.u.) U–

S π-bonds can be seen, but clearly the interaction is essentially ionic in nature due to the 

poor overlap. NLMO compositions are collated in Table S16. 

 

  

3 U1–S1 (NLMO92) 4a U1–S1 (NLMO92) 

U (16.155%; 28.64% 5f, 63.81% 6d) 

S (79.781%) 

U (18.378%; 21.02% 5f, 65.86% 6d) 

S (78.885%) 

Figure S10. Selected NLMO isosurfaces (0.05 a.u.) for 3 (left) and 4a (right).  

 

Bader’s Quantum Theory of Atoms In Molecules (QTAIM), is a topological analysis of the 

surface density between atoms and provides intuitive definitions and metrics for chemical 

bonding. A combination of these metrics can paint a picture of the nature of the chemical 
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bond, and is a complementary technique to the NBO and NLMO analysis above. Here, we 

focus on the delocalization index (δ), electron density (ρ), energy density (H), and the QTAIM 

charges for the U- and S-atoms of each complex.[132] The δ(U,S) for the U–S bonds in 1 

(0.761, 0.807) are larger than for 1·Et2O (0.690), and this is reflected at the bond critical 

points (BCPs) where for 1 both ρ (0.072, 0.072) and H (–0.019, –0.019) are larger in 

magnitude than in 1·Et2O (ρ = 0.060, H = –0.012). For both U(IV) complexes, the U–S 

interactions are polar as indicated by the small ρ values and positive values for the Laplacian 

of the electron density (∇2ρ); however, the modest values for δ(U,S), and negative H-values 

describe some covalent contributions. For complex 2, δ(U,S) (0.699), ρ (0.067), and H (–

0.016) lie between those of 1 and 1·Et2O. These metrics and others are summarized in 

Table 3. 

 

Table 3. QTAIM charges, electron densities (ρ), energy densities (Η), ellipticity, and 

delocalization (δ) and localization indices of complexes 1–5. 

Complex QTAIM charge (U/S) ρ ∇2ρ H δ(U,S) LI(U) 

1 
+2.160/–0.438 

+2.160/–0.541 

0.072 

0.073 

0.0914 

0.099 
–0.019 

0.761 

0.804 
87.717 

1·Et2O +2.354/–0.567 0.060 0.137 –0.012 
0.690 

0.691 
87.622 

2 +2.271/–0.556 0.067 0.096 –0.016 
0.699 

0.700 
87.603 

3 +1.968/–0.535 0.044 0.095 –0.007 0.397 88.197 

4a +1.960/–0.498 0.065 0.110 –0.016 0.671 88.295 

4b 
+1.944/–0.498 

+1.943/–0.498 

0.063 

0.063 

0.104 

0.104 

–0.015 

–0.015 

0.634 

0.635 
88.232 

5 +1.935/–0.533 
0.055 

0.054 

0.101 

0.099 
–0.011 

0.570 

0.563 
88.475 
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When comparing the U(IV) complexes above, to U(III) complexes 3, 4a, 4b, and 5, we 

observe a decrease in all topological metrics measured. The effect of the S-bound BH3 group 

in 3 is pronounced as ρ (0.044), H (–0.007), and δ(U,S) (0.397) are significantly reduced 

compared to those in 4a (0.065, –0.016, 0.671 respectively), though QTAIM metrics are 

highly M–X distance dependent and the U–S length in 3 is longer than the others. There are 

negligible differences in the U–S bonds between complexes 4a and 4b (see Table 3). 

Analysis of complex 5 reveals U–S bonding somewhat more ionic than the other complexes 

herein, though again the U–S distance is somewhat longer than for other complexes. Metrics 

for the U–S bonding in the U(III) complexes here are similar to those reported 

elsewhere.[15,133] 

 

The localization index, LI, can be used to examine the metal–element linkages. Deviations 

in the value returned for the metal indicate charge transfer interactions. For a pure ionic 

system, values of 88 and 89 for U(IV) and U(III) respectively would be expected. Reduced 

values are found for all complexes, with deviations of 0.28–0.40 for the U(IV) complexes (1, 

1·Et2O, and 2) and 0.52–0.80 for the U(III) systems (3, 4a, 4b, and 5), suggesting charge 

transfer, and is in line with qualifying covalent assessments made earlier. Meyer and co-

workers have used this metric to assess the U(III) arene-anchored tris-thiophenolate 

complex, [UIII{(SArAd,Me)3Mes}], with a reported LI(U) of 88.25 (a deviation of 0.75).[15]  

 

 

Conclusions 

In summary, we have expanded the field of molecular uranium organo-sulfur complexes, 

demonstrating diverse bonding modes and coordination environments facilitated by the 

weakly coordinating arene rings of the {SAriPr6} meta-terphenyl framework including 
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examples of both the shortest and one of the longest UIII–S distances to date for anionic 

sulfur donors.  

 

Limited success was found in using UIVCl4 in salt elimination reactions with two equivalents 

of KSAriPr6 for the isolation of U(IV) complexes, with both [UIV(SAriPr6)2(Cl)2] and 

[UIV(SAriPr6)2(Cl)2(Et2O)2] being obtained in low yield. While the reaction between [UIV(BH4)4] 

and one equivalent of KSAriPr6 gave the double salt [UIV(μ-SAriPr6)(BH4)2(μ-BH4)(μ3-BH4)K]2 

in toluene, or oxidative coupling to give (SAriPr6)2 in Et2O, one equivalent of HSAriPr6 reacted 

with [UIV(BH4)4] under thermal conditions in toluene to give the U(III) sulfur-borane complex 

[UIII(H3B·SAriPr6-κS,H,H)(BH4)2], the first such example with an f-element complex. Salt 

elimination using [UIII(BH4)3(toluene)] and one equivalent of KSAriPr6 allowed access to 

borane-free [UIII(SAriPr6)(BH4)2] which appears to undergo slow thermolysis to 

[{UIII(SAriPr6)(BH4)}2(µ-B2H6)]. The latter complex contains a diborane(6) dianion and is the 

first example of an f-element nido-metalloborane. The bis-arylthiolate complex 

[UIII(SAriPr6)2(BH4)] bearing two U···arene interactions was isolated from the reaction 

between [UIII(BH4)3(toluene)] and two equivalents of KSAriPr6.  

 

Quantum chemical analysis of the U–S bonding in all complexes reveals polar covalent 

interactions with both σ- and π-contributions to the bonding in some cases, though low 

symmetry in all complexes precludes efficient orbital overlap. In [UIII(H3B·SAriPr6-

κS,H,H)(BH4)2], the Lewis-acid capping of the S-donor significantly reduces bonding to the 

U-atom. Despite the prevalence of U-arene interactions in the molecular structures of most 

complexes herein, no substantial U-arene π- or δ-bonding interactions were found within 

the occupied molecular orbitals, and a topological analysis corroborated this.  
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