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Abstract

Granular  activated  carbon  (GAC)  is  widely  used  to  treat  contaminated per-  and  polyfluoroalkyl

substances (PFAS) waste streams, resulting in the accumulation of large quantities of spent GAC that

need  to  be  landfilled  or  regenerated.  A  novel  modified  supercritical  CO2 (scCO2)  extraction  for

regeneration of spent GAC is developed. With the addition of organic solvents and acid modifiers, the

procedure yielded > 97% perfluorooctanoic acid (PFOA) desorption after  a  60-minute  treatment in a

continuous flow reactor.  The mild extraction conditions at T ~ 100°C do not trigger the formation of

volatile organic fluorine or changes in GAC sorbent properties. Mechanistically, the high miscibility of

co-solvent/scCO2 eliminates diffusion transport limitations, enabling rapid reagent and PFAS transport in

a  single-phase  (gas-like)  medium.  The  introduction  of  organic  co-solvent  and  the  absence  of  water

reverses  hydrophobic  interactions  between  GAC  and  the  PFAS.  The  acid  modifier  minimizes  the

electrostatic  PFOA/ GAC  interactions  by  protonating  the  perfluorooctanoate  ion  and  providing

competition for active GAC sites. The approach offers an economically effective regeneration scheme,

enabling the reuse of sorbents and yielding effluent with a high loading of PFAS that is amenable to

subsequent end-of-life treatment technologies. 

Keywords:  PFAS;  PFOA;  granular  activated  carbon;  GAC  regeneration;  supercritical  CO2;  modified

supercritical fluid extraction
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Synopsis:  Supercritical  CO2 with  minimal  co-solvents  regenerates  PFOA-laden  GAC  with  > 99.9%

desorption efficiency.

1 Introduction

Granular  activated  carbon  (GAC)  is  used  to  treat  contaminated  waters  with  per-  and

polyfluoroalkyl substances (PFAS). 1 While widespread adoption of GAC offers a cost-effective

solution, it also creates a pressing need for managing the accumulation of spent GAC. Sorbent

regeneration unlocks the potential for sustainable, large-scale treatment of PFAS-contaminated

streams. 2 Thermal regeneration utilizes high temperatures, ~600-1000°C, to desorb PFAS and

other contaminants. The higher temperatures can also effectively destroy PFAS in situ; however,

the process is energy-demanding and can lead to GAC degradation and loss. 3 Recent studies also

show  that  thermal  degradation  yields  the  formation  of  volatile  organo-fluorine  (VOF)

compounds that could re-enter the environment as gases or aerosols. 4 

Motivated  by  the  development  of  various  end-of-life  PFAS destruction  technologies 5,  6,  the

effective  PFAS  transport  from  sorbents  into  concentrated  liquid  feedstock  becomes  highly

desirable. Approaches that can desorb PFAS without forming VOFs while preserving GAC's

structural  and  adsorptive  properties  are  highly  desirable.  Several  reported  low-temperature

methods rely on organic solvents 7-10 or aqueous solutions 8. The application of these methods for

the desorption of long-chain (C-8) PFAS is challenging due to their strong affinity to surfaces,

and  the  large  quantities  of  solvents  required  for  GAC  treatment  hinder  large-scale

implementation (Table S1). 11 

Above its critical point (31°C, 7.4 MPa), CO2  becomes a supercritical fluid (scCO2)–a nonpolar

solvent with low dielectric constant and negligible  molecular  dipole moment.  12 Supercritical

fluid extraction (SFE) temperatures (T<100° C) would not trigger volatile fluorinated species

formation via thermal  degradation. 6,  13 SFE is used in commercial  applications for removing
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organics from solid matrices, e.g., botanical extraction, surface sterilization, food pasteurization,

and material synthesis. 12, 14 In analytical chemistry, the SFE enables quantitative PAH recovery

from sorbent traps at T=45° C. 15 There is also a report on scCO2 use to extract PFOA and PFOS

from nonporous materials such as paper, fabrics, and sand. 16 

This study is the first investigation of low-temperature spent GAC regeneration using scCO2

extraction with the addition of co-solvents and acid modifiers. Perfluorooctanoic acid (PFOA)

was chosen for this study due to its environmental persistence and high adsorption affinity, yet

our modified SFE approach yielded >99% desorption after 1 hour of GAC treatment.

2 METHODS AND MATERIALS

All  chemicals  and  solvents  used  in  this  study  are  described  in  Section  S1  in  Supporting

Information (SI). The analytical methods for PFAS analysis are described in Section S2 in SI.

Each GAC sample was weighed (0.71  0.01 g) and mixed with 19.0 mL of an aqueous solution

of PFOA at 20 ppm. After 5 days, the GAC was removed, and the liquid was analyzed using LC-

MS/MS. The GAC pellets were dried in an oven at 70°C for 12 hours. The spent GAC sub-

samples were extracted into 20 mL of ethanol (EtOH) + 0.15% NH4OH solution 11 to determine

the amount of PFOA sorbed onto GAC. After 24 hours, the GAC was removed, and the liquid

was analyzed using LC-MS/MS.

Figure S1 describes the laboratory continuous flow reactor used in this study. The CO2 from the

gas cylinder is condensed to the liquid phase in a calcium chloride cold bath (-10 to -5°C) CO2

and  pumped  at  25 mL/min. The  co-solvent  (MeOH,  or  MeOH +  1% v/v H2SO4)  injected  at

1 mL/min,  T~20°C,  is  mixed  with  scCO2 before  entering  the  reactor  section.  The  CO2 and

solvent post-mixing become a supercritical  single-phase fluid if the organic solvent does not

exceed its solubility limit  in the scCO2. 17 P = 20.3 MPa, T = 110 - 120°С were chosen as the
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operational parameters to satisfy single-phase conditions. After performing SFE for 60 minutes,

the column contents were dried in an oven at 70°C for 24 hours. The sample was divided into

two  sub-samples:  one  was  subjected  to  extraction  by  soaking  in  EtOH  and  ammonium

hydroxide, followed by LC-MS/MS; the other  was loaded with PFOA again and underwent a

second  regeneration  cycle.  Each  experiment  was  performed  in  triplicates.  The  desorption

efficiency (DE) was calculated as:

DE=
[ PFAS∈spent GAC ]−[ PFAS∈GAC after regeneration ]

[ PFAS∈spent GAC ]
× 100 %,

where [PFAS in spent GAC] is the PFOA concentration (mg/g) in the spent sorbent, and [PFAS

in GAC after regeneration] is the PFOA concentration (mg/g) in the regenerated sorbent. 

3 RESULTS AND DISCUSSION

3.1 Modified scCO2 method for GAC regeneration 

PFOA exhibits strong adsorption onto GAC due to hydrophobic and electrostatic interactions,

which present challenges for conventional techniques. 18 The modified scCO2 extraction yielded

near complete desorption of PFOA (Figure 1) by counteracting both forces. First, the method

takes advantage of the transition from a polar aqueous to a nonpolar scCO2 environment, which

weakens/eliminates  hydrophobic  interactions.  Once  in  scCO2,  PFOA  miscibility  decreases

compared  to  the  shorter  fluorinated  molecules. 
19 Due  to  the  high  polarity  of  the

perfluorooctanoate ion, C8F15O2
-, electrostatic interactions become the dominant force; therefore,

in pure scCO2, desorption efficiency was limited to < 30% (Figure 2). 

The addition of organic co-solvents can enhance PFAS solubility in scCO2. E.g.,  Chen et al. 16

reported  that  the  scCO2/ MeOH mixture  was  effective  in  extracting  PFOA and  PFOS from

nonporous  materials. Table  S1  shows  that  organic  solvent-based  extraction  (MeOH,  EtOH,
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Acetone) in the batch GAC/ C-8 PFAS systems reach the DE ~ 40-95% after 12-24 hours. 7, 8

MeOH extraction  showed  the  best  results.  Chularueangaksorn  et  al.  utilized  a  column flow

reactor and MeOH, reporting DE = 67% desorption of PFOA from GAC 400 after 24 hours of

treatment. 9 The solubility of PFAS in alcohols generally decreases for longer PFAS molecules

and longer carbon chain lengths of alcohol. 20 For example, the solubility of PFOS in MeOH is

~ 37 g/L; it is ~ 5 times higher than in EtOH (~ 7 g/L). The solubility of PFOA in MeOH is

37.1 g/L, similar to PFOS's. Thus, in this proof-of-concept study, MeOH is used as a co-solvent.

In our experiment, adding MeOH alone did not significantly affect PFOA desorption (Figure 1),

indicating that scCO2 is an effective agent for disrupting the hydrophobic interaction.  A slight

increase in desorption efficiency from 18.7% to 26.3% in the second cycle might be attributed to

carryover  from the  previous  cycle. While  dipolar  organic  solvents  can  disrupt  hydrophobic

interactions 18, 21,  they  are  unlikely  to  affect  the  electrostatic  interactions  between  PFAS

molecules  and  GAC surfaces. 16 Lacking  hydrophobic  PFOA/GAC interaction  in  scCO2 and

scCO2/MeOH mixtures, the low desorption is contributed to electrostatic interactions, which can

be weakened  by introducing  an  ionic  agent. Thus,  adding  sulfuric  acid  (1% vol  in  MeOH)

increased the desorption efficiency to >97%.
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Figure 1. PFOA desorption from GAC using only scCO2, scCO2 + MeOH, and scCO2 + MeOH/H2SO4. 
Experimental conditions are 110C, 10 MPa, and an exposure time of 60 min. The second cycle of desorption in CO2

was not conducted. Error bars are standard deviations from triplicated experiments. 

The modified SFE regeneration method yielded significantly faster  and more efficient  PFAS

removal  compared to conventional  solvent-based techniques  (Table S1).  Treatment  time was

1 hour, compared to 5-24 hours for traditional methods, yielding >97% PFAS removal (max

DE~99.9%). Notably,  solvent consumption was decreased to ~ 4% of other reported solvent-

based methods,  presenting  an environmentally  friendly and cost-effective  approach for GAC

regeneration. The synergistic  result  of  combining  scCO2,  a  co-solvent,  and an acid  modifier

achieves remarkable desorption results and complete restoration of GAC properties (Table 1).

3.2 Proposed mechanisms for modified supercritical CO2 GAC regeneration

PFOA/GAC interaction is governed by two key forces, which must be effectively counteracted.

Specifically, the Filtrasorb 400 GAC has a point of zero charge (pHpzc) of 8.65, 1 characteristic of

activated  carbons  with  low  oxygen  content. 22 The  low  oxygen  content  is  reflected  in  the

measured  concentration  of  oxygen-containing  groups  (phenolic,  carboxylic,  lactonic)  of

0.21 mmol/g. 23 The measured pH during adsorption in this study (~ 4.8) was  below the pHpzc.

Under such conditions, the surface of the activated carbon becomes positively charged due to the

protonation of surface groups, enhancing electrostatic interactions with negatively charged PFAS

anions.  The shift  to the scCO2 environment  weakened hydrophobic interactions,  leading to a

change from a predominantly surface-aligned orientation  to  a perpendicular  orientation.  This

reorientation,  consistent  with  the  classical  work  of  Zisman  and colleagues 24,  minimizes  the

contribution  of  hydrophobic  forces,  leaving  electrostatic  interactions  as  the  dominant  force

between the monovalent PFOA anion and the GAC surface in the scCO2 environment.
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Route I  is enabled by the high dielectric permittivity of scCO2, facilitating proton availability

from PFOA dissociation. This can lead to the association of PFOA molecules (Figure 2, Route I)

and subsequent desorption in its protonated form. However, this route exhibits limited efficacy

for PFOA, DE < 30% (Figure 1). The effectiveness of this route may vary in other systems.

Route  II  involves  the  interaction  of  CO2 molecules  with  water  retained  in  the  GAC pores,

leading to  the  formation  of  bicarbonate  ions.  While  the  bicarbonate  ion  is  typically  a  weak

competitor for PFAS on GAC under normal conditions, the high concentration of CO2 and small

pore volume may enhance the effect (Figure 2, Route II). However, the presence of water within

the pores can also promote hydrophobic interactions, potentially hindering the efficacy of Route

II. 

Route III is based on disrupting the electrostatic forces between GAC and PFAS. The scCO2 or

methanol  cannot  effectively  weaken  the  electrostatic  interaction  between  GAC  and  PFOA.

Figure 1 shows no significant  change in  desorption efficiency from scCO2 to scCO2/ MeOH

experiments. On the other hand, adding the MeOH/ acid mixture yields significant improvement

in  the  PFOA  desorption.  The  MeOH  assists  in  introducing  sulfuric  acid  to  a  single-phase

supercritical mixture and ultimately inside the sorbent’s pores. Mechanistically, a divalent sulfate

ion exhibits a stronger affinity to the active sites on the GAC surface, causing the release of a

weaker  PFOA  monovalent  perfluorooctanoate  ion,  C8F15O2
-  (Figure 2,  Route III).  Moreover,

sulfuric acid (pKa = -3) can protonate PFOA (pKa = - 0.2 – +3.8). 25 The long-chain PFAS may

form micelles/hemi-micelles 18,  26 in  an aqueous environment  that can interact  with the GAC

surface during sorption; however, it is unclear if these structures interact in a scCO2/organic co-

solvent  environment  in  the  absence  of  liquid  water.  We expected  that  micelle  formation  is

negligible in a nonpolar solvent and does not significantly affect the proposed mechanism of
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hydrophobic and electrostatic forces disruption in the scCO2 environment. Though beyond the

scope of the current report and the subject of ongoing work, we suspect that Route III should also

hold for other PFAS.

Figure 2: PFOA desorption routes from GAC, blue – porous water, green – scCO2. Route I - in pure scCO2, high 
dielectric permittivity and subsequent proton association lead to partial PFOA protonation; Route II - in pure scCO2, 
bicarbonate ions formed from CO2 interaction with retained water compete with PFOA for adsorption sites; Route 
III - in scCO2/ MeOH/ H2SO4 (i) competition of the sulfate ion for GAC active site and (ii) PFOA protonation. 

3.3 Impacts of co-solvent concentration on regeneration efficiency

Increasing the concentration of acid-modified co-solvent in scCO2 yielded the highest desorption

efficiency  of  99.9%  (Figure  S2).  In  these  experiments,  the  CO2 flow  rate  was  constant

(25 mL/min), and the co-solvent flow rate varied from 0.2 to 6.8 mL/min. The results showed

only marginal improvement for high MeOH flow rates. This corroborates that the hydrophobic

interaction  does  not  play  a  significant  role  in  the  scCO2 environment,  and the disruption  of
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electrostatic attraction by the pH surface modifier is the dominant mechanism. Further research

is needed to optimize the acid concentration in the scCO2/ MeOH mixture and substitute MeOH

with more environmentally friendly solvents. 

From a  practical  perspective,  these  observations  suggest  that  the  process  can  yield  a  very

concentrated effluent, reducing consumption of co-solvent and, in turn, reducing the volume of

effluent  that  needs to be treated  in the end-of-life  destruction step.  In a binary CO2/ solvent

system, the pressure, temperature, and mole fractions of each solvent determine the phase of the

overall fluid mixture. Based on data extrapolation from Reighard et al.27, at  X MeOH=0.1792 and

10 MPa,  the  dew  point  of  the  CO2/ MeOH  mixture  is  at  ~ 110°C. Assuming  that  a  trace

concentration of sulfuric acid does not affect the solubility of MeOH in CO2, a lower  X MeOH

would lead to a single-phase supercritical gas-like mixture of MeOH completely dissolved in

CO2, while a higher X MeOH would lead to a two-phase mixture of liquid MeOH and the gas-like

scCO2.  Adjusting  the  flow  rates  controls  MeOH  concentration  and  mixture  phase  during

regeneration. Though limiting the concentration of MeOH produces more concentrated effluent,

the  presence  of  a  liquid  interface  at  the  GAC  surface  may  improve  the  desorption  and

regeneration  efficiency,  as  seen  in  the  experiment  at  6.8 mL/min,  where  the  experimental

condition was close to the MeOH dew point.  

3.4 Assessment of GAC properties after regeneration

A sustainable PFAS regeneration approach must also maintain GAC's structural integrity and

adsorption  capacity  after  regeneration. Table  1  shows that  BET surface  area  and micropore

volume of spent GAC decreased (971 to 922 m2/g), indicating the occupation of active sorption

sites and pore blockage by PFOA molecules. After the regeneration step, the BET surface area

and  micropore  volume  slightly  increased  (971 to 1012 m2/g)  compared  to  the  virgin  GAC.
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Though it is unclear what fraction of PFOA molecules resided within the micropores or on the

surface, the modified SFE could desorb PFOA from all active sites, preserving the GAC porous

structure. The adsorption capacity of regenerated GAC was 0.52 ± 0.02 mg/g—nearly identical

to the virgin GAC. We inferred that sulfate ions that competed with the C8F15O2
- ion in the scCO2

environment  entered  the  aqueous  phase  during  the  next  adsorption  cycle,  allowing  reuse  of

regenerated GAC.

Table 1: Characteristics of the porous structure of virgin GAC, PFOA-laden GAC, and regenerated GAC

Virgin GAC PFOA-laden GAC Regenerated GAC
BET Surface Area (m2/g) 973.1 922.1 1012.2
Micropore Surface Area (m2/g) 573.7 544.3 609.8
Micropore Volume (cm3/g) 0.287 0.271 0.299

4 Environmental Implications

Traditional  waste  management  approaches  often  involve  the  disposal  of  contaminated

adsorbents,  leading  to  substantial  environmental  and  economic  burdens.  This  unsustainable

practice necessitates  the development  of efficient  and environmentally  friendly spent  sorbent

regeneration  approaches.  Our  scCO2-based  sorbent  regeneration  method  holds  significant

promise for mitigating the environmental impact of PFAS contamination, offering a sustainable

alternative to traditional practices. Mild temperature conditions minimize energy consumption

and reduce the risk of sorbent degradation. Though the CO2 was naturally aspirated during the

experiment,  it  can  be  captured  and  reused  in  practical  applications.  After  dropping  the

temperature and pressure below supercritical conditions, the MeOH, H2SO4, and PFOA mixture

naturally separates to form a concentrated liquid effluent.

The modified SFE process offers significant environmental benefits. The need for disposal is

minimized  by  regenerating  the  GAC,  reducing  landfill  waste,  and  reducing  the  associated

environmental impact. Reusable GAC practices lessen the demand for new materials, promoting
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resource conservation and minimizing the environmental impact of production. Furthermore, the

process  produces  a  concentrated  PFAS  effluent,  facilitating  efficient  and  cost-effective

downstream end-of-life PFAS (and other contaminant) destruction. Future research should focus

on expanding  the  applicability  of  this  method  to  a  broader  range  of  PFAS compounds  and

optimizing  operational  parameters  (e.g.,  temperature,  exposure  time,  and  co-solvent

formulation).  The  potential  of  this  approach  extends  beyond  GAC  regeneration,  with

applications for other sorbents, such as ion-exchange resins.

Supporting Information – 

S1. Experimental setup, chemicals, and reagents

S2. Analytical method

Disclaimer – This document has been subjected to the U.S. Environmental Protection Agency's

review and has been approved for publication.  The research presented was not performed or

funded by the EPA and was not subject to the EPA’s quality system requirements.  The views

expressed in this article are those of the authors and do not necessarily represent the views or

policies of the Agency. The Agency does not endorse any commercial  products,  services, or

enterprises.
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