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Abstract

Accurate and complete microkinetic models (MKMs) are powerful for anticipating

the behavior of complex chemical systems at di↵erent operating conditions. In hetero-

geneous catalysis, they can be further used for the rapid development and screening

of new catalysts. Density functional theory (DFT) is often used to calculate the pa-

rameters used in MKMs with relatively high fidelity. However, given the high cost

of DFT calculations for adsorbates in heterogeneous catalysis, linear scaling relations

(LSRs) and machine learning (ML) models were developed to give rapid estimates of

the parameters in MKM. Regardless of the method, few studies have attempted to

quantify the uncertainty in catalytic MKMs, as the uncertainties are often orders of

magnitude larger than those for gas phase models. This study explores uncertainty

quantification and Bayesian Parameter Estimation (BPE) for thermodynamic param-

eters calculated by DFT, LSRs, and GemNet-OC, a ML model developed under the

Open Catalyst Project. A model for catalytic partial oxidation of methane (CPOX)
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on Rhodium was chosen as a case study, in which the model’s thermodynamic pa-

rameters and their associated uncertainties were determined using DFT, LSR, and

GemNet-OC. Markov Chain Monte Carlo coupled with Ensemble Slice Sampling was

used to sample the highest probability density (HPD) region of the posterior and de-

termine the maximum of the a posteriori (MAP) for each thermodynamic parameter

included. The optimized microkinetic models for each of the three estimation methods

had quite similar mechanisms and agreed well with the experimental data for gas phase

mole fractions. Exploration of the HPD region of the posterior further revealed that

adsorbed hydroxide and oxygen likely bind on facets other than Rhodium 111. The

demonstrated workflow addresses the issue of inaccuracies arising from the integration

of data from multiple sources by considering both experimental and computational un-

certainties, and further reveals information about the active site that would not have

been discovered without considering the posterior.

Keywords

Micro-Kinetic Modeling, Bayesian Parameter Optimization, Linear Scaling, Machine Learn-

ing, Uncertainty Quantification

1 Introduction

The significance of heterogeneous catalysis extends across fields such as energy production,1

carbon dioxide conversion,2,3 and the synthesis of numerous chemicals,4,5 underlining its

indispensable role in advancing sustainable and economically viable chemical processes.6,7

Accurate chemical models are important, especially in the context of catalyst screening and

discovery, where having an accurate model prior to synthesizing a new catalyst could save

time, money, and resources. Mean field microkinetic modeling (MKM) is a valuable tool to

quantitatively describe the reaction rates and intermediates’ thermodynamics of a process,
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as it is less computationally taxing compared to spatially-resolved methods like Kinetic

Monte Carlo.8,9 Therefore, MKM is often used for process design10 and theoretical catalyst

screening.11,12

To determine thermodynamics in MKM, Density Functional Theory (DFT) is a widely

acknowledged quantum mechanical approach to study the energy of intermediates in a model.

However, its computational expense for solid-state matter poses a challenge. Surrogates

such as linear scaling relationships (LSRs)13–15 and machine learning (ML) models16,17 are

developed to approximate the DFT results at much lower cost. LSRs connect the molecular

binding energy to the binding energy of the atom(s) in a molecule that are bonded to the

surface. They can be used to estimate the di↵erence in adsorption energy of a molecule

between two metal surfaces. In the context of MKM, LSRs help provide energy estimates

for intermediates on di↵erent surfaces, so the material search space can be expanded for

catalyst discovery. Previous studies show that LSRs can be applied in modeling many

commercially important systems such as synthesis gas conversion,18 oxygen reduction,19 etc.

However, LSRs are sometimes limited by the morphology of catalysts and the coverage of

the adsorbates, and they appear to fail on some alloy systems due to the site specificity

and lateral interactions.15 In addition, utilizing LSRs still requires conducting a few Density

Functional Theory (DFT) calculations on similar adsorption systems to establish the linear

relationship.

Given the limitation of LSRs, machine learning (ML) models have been developed to

estimate the molecular or atomic energy in a wider range of materials. There are various

ML models to help accelerate heterogeneous catalysis modeling.20 This includes ML-aided

potential energy surface construction,21,22 atomistic structure and potential estimation,23–25

and material designs (finding the optimal composition of materials).26,27 Both kinetics and

thermodynamics evaluations in MKM can substantially benefit from ML models. In this

study, ML-predicted thermodynamics are used. A neural network named GemNet-OC,28

developed under Open Catalyst Project (OCP),16 was picked to carry out the task. GemNet-
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OC has been demonstrated to have good accuracy for energy and force estimation, and has

been used in several works.29,30

DFT, LSRs, and ML models all have uncertainty associated with their predictions of

species properties, which can be propagated forward through a MKM to reveal the uncer-

tainty in quantities of interest such as turnover frequency, conversion, selectivity, etc. Previ-

ous studies have highlighted the importance of propagating energetic parameter uncertainties

to industrial operating conditions.30–32 Beyond simply determining a “most probable” mech-

anism, analyzing possible reaction pathways within a given uncertainty space can reveal

entirely di↵erent reaction pathways and active sites.33–36

Bayes theorem proposes a method for incorporating the prior uncertainties of a model

and the marginal probability of observed data as a means of generating a most probable

set of parameters. The process for obtaining these credible values is referred to as Bayesian

Parameter Estimation (BPE). BPE can also be used to generate the highest probability

density (HPD) region around the most likely parameters, which in essence is a probability

distribution that has been informed both by prior knowledge and experimental data. This

requires comprehensively exploring the parameter space within the model, which can be

di�cult for a complex system with a large number of parameters. Various methods can be

used to e�ciently explore the uncertainty space, including surrogate models like polynomial

chaos expansion,37 grid based approaches,38 and Monte Carlo simulation based methods.35

Monte Carlo methods are expensive, but they are applicable to almost any model, and can be

made more e�cient through sophisticated sampling methods.39 Markov Chain Monte Carlo

(MCMC) is particularly useful for model uncertainty quantification, because it implements

a probability based approach to sampling, where the “jump” to the next sampled point is

based on the relative probability of the previous point. BPE coupled with MCMC has been

used successfully for surface chemistry models already in several studies, proving that it is a

robust, albeit expensive, method for generating posteriors for catalytic systems.35,36

In this study, BPE was performed via MCMC sampling to reveal posterior uncertainties

4

https://doi.org/10.26434/chemrxiv-2024-rhn8l-v2 ORCID: https://orcid.org/0000-0003-3861-6030 Content not peer-reviewed by ChemRxiv. License: CC BY 4.0

https://doi.org/10.26434/chemrxiv-2024-rhn8l-v2
https://orcid.org/0000-0003-3861-6030
https://creativecommons.org/licenses/by/4.0/


in both the input species binding energies and the output molar flow rates. Quantifying the

uncertainties in models generated using di↵erent thermodynamic calculation method (DFT,

LSRs, and GemNet model) provided a more informed basis for comparing them than simply

analyzing the initial, unoptimized models.

This study establishes a workflow to optimize the model according to experimental and

computational uncertainties. Data from varied sources are often incorporated in MKMs to

reduce the number of DFT calculations or experimental values required, but this integration

can introduce inaccuracies and inconsistencies. The proposed workflow improves the coher-

ence of data calculated through di↵erent techniques, yielding results that align more closely

with experimental observations than simply amalgamating the data without modification.

The findings also illustrate that Bayesian Parameter Estimation (BPE) serves as a valuable

tool for pinpointing species with inaccurate thermodynamics, paving the way for subsequent

fine-tuning through DFT.

2 Methods

2.1 Microkinetic Model

The microkinetic model used was adapted from the original model developed by Mazeau

et al.12,40 Briefly, this model was constructed using the Reaction Mechanism Generator

(RMG),41 a Python-based tool for automatically constructing microkinetic models. For

details on both the original CPOX model and how RMG works, one can refer to the previ-

ously cited papers. The model has 19 gas-phase species, 13 adsorbates, and 80 elementary

reactions.

Following the adjustments of thermodynamic parameters according to DFT, LSRs, and

GemNet, the kinetics in the model were adjusted to account for the change in the activation

energies as the adsorbate enthalpies of formation were varied. A well-accepted method

for this is to use Brønsted-Evans-Polanyi (BEP) relations to linearly adjust the activation
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energy for a given reaction based on the enthalpy change of the reaction. Doing this after

the intermediates’ energies are estimated creates a dynamic MKM where changes in the

species’ thermodynamics have a realistic e↵ect on the activation energies. Unfortunately,

the data for BEP relationships is often scarce for catalytic reactions because it relies on

the calculation of multiple transition states, which can be a lengthy and expensive process

for surface systems. Instead, this study used the Blowers-Masel approximation (BMA) to

modify the reaction barriers,42 as shown in Equation 1 and 2 below. The derivation of

BMA parameters only needs the activation energy and reaction enthalpy of one reaction,

circumventing issues related to data sparsity. A previous study has successfully implemented

BMA in heterogeneous catalysis modeling.40

The model from Mazeau et al. was modified so that all of the surface reaction used

Blowers-Masel relationships for dynamically calculating the activation energy,42 instead of

using a static activation energy:

Ea =

8
>>>>>>>>><

>>>>>>>>>:

0 for �Hrxn < �4E0
a

�Hrxn for �Hrxn > 4E0
a

(w0+
�Hrxn

2 )(VP�2w0+�Hrxn)2

V 2
P
�4w2

0+�H2
rxn

otherwise

(1)

where

Vp = 2w0
w0 + E

0
a

w0 � E0
a

(2)

E
0
a is the intrinsic energy and equals the activation energy when �Hrxn = 0, and w0 is a

parameter that, in the original derivation, represents the average of the bond dissociation

energy of the broken bond and the bond being formed. Xu et al. showed that the activation

energy Ea is highly insensitive to w0, so the only parameter that needs to be derived is E0
a.

The parameters used in the BPE were the enthalpies of formation for each surface species.

Defining the relationship between the activation energy and the enthalpy of each reaction
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allowed the model to realistically change the kinetics of the microkinetic model. A complete

BPE analysis could in theory include all of the parameters in the model, including the Ea

and pre-exponential factor for each reaction. However, an analysis of this scale would be

both computationally expensive and not useful for the task at hand, namely comparing the

associated uncertainty for thermodynamic estimation methods.

2.2 Species Thermodynamics

2.2.1 Density Functional Theory Calculations

Density functional theory (DFT) calculations were performed in Quantum Espresso (QE)

version 7.043,44 with SG15 Optimized Norm-Conserving Vanderbilt (ONCV) pseudopoten-

tials45 for 13 species on Rh(111) and 2 species on Rh(211). A complete list of these species

and their prior uncertainties can be found in Table 1. The BEEF-vdW functional was used

for structure relaxations and uncertainty quantification.46 The molecular structures were

constructed with Atomic Simulation Environment (ASE).47 Equation of state48 was used to

determine the lattice constant of the Rh cell with a wave function kinetic energy cuto↵ of

60 Ry and a well-converged Monkhorst-Pack mesh of (15 ⇥ 15 ⇥ 15). The electron orbitals

were broadened using the Mazari-Vanderbilt smearing method with the value of 0.01 Ry. The

lattice constant was estimated as 3.85 Å, aligning well with the literature value.49 3⇥ 3⇥ 4

Rh(111) and Rh(211) slabs were made with vacuum of 17 Å. The bottom 2 layers were fixed,

and the top 2 layers in the slabs were relaxed by QE with a (5 ⇥ 5 ⇥ 1) k-point grid and

the same energy cuto↵ and smearing conditions as used for the lattice constant calculation.

The adsorbates’ gas-phase counterparts were relaxed in a gamma-centered 13⇥ 13⇥ 13 Å
3

cell until the forces fell below 0.01 eV/ Å. The functional, energy cuto↵, and the smearing

methods were the same as for the slab calculations.

The relaxed gas-phase molecules were then placed on the ontop, bridge, fcc and hcp sites

on the 111 surface and relaxed with the OCP calculator16 with the pre-trained GemNet-

OC-L-F28 model until the atomic forces were under 0.05 eV/ Å. All the unique sites on
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the 211 surfaces were identified by Pymatgen,50 and relaxed by the same OCP calculator.

The lowest energy structures were further relaxed with QE using the same settings as the

slab relaxation until the atomic forces were under 0.01 eV/ Å. The vibration analyses were

performed using ASE, and imaginary frequencies for physisorbed species were approximated

as 12 cm�1 as discussed in references 29 and 51. The Rh(211) slab and adsorbate DFT

calculations used the same settings as the Rh(111) surfaces.

The microkinetic models used the NASA 7-coe�cient polynomial parameterization to

describe heat of formation �H, entropy �S, and temperature-dependent heat capacity Cp

at low and high temperature ranges.52 The polynomial parameters can be determined from

heat of formation at 0 K and vibrational frequencies through partition functions. The routine

reported by Blondal et al. 53 was used in this study to generate the parameters. For the cases

where the first 2 frequencies are less than 100 cm�1, a 2D gas model was applied instead

of the harmonic oscillator approximation.54 To calculate heat of formation at 0 K of an

adsorbate, the energy of its gas-phase precursor is calculated and corrected to align with

Active Thermochemical Tables (ATcT),55 and the zero-point corrected adsorption energy

is added on top of the ATcT corrected energy of the gas-phase precursor. As reported by

Klippenstein et al.,56 a reference reaction should be used to reduce the error introduced by

di↵erent wave functions. Therefore, a similar hypothetical reaction shown in Eq. 3, was used

to describe the heat of formation of any species formed by a combination of H, C, N, and O.

aCH4(g) + bH2O(g) + cNH3(g) +

✓
d

2
� 2a� b� 3c

2

◆
H2(g) ��! CaObNcHd(g) (3)

The heat of formation of the hypothetical reaction Eq. 3 can be written as Eq. 4

�Hrxn,DFT(g) = E
CaObNcHd(g)
DFT � aE

CH4(g)
DFT � bE

H2O(g)
DFT � cE

NH3(g)
DFT �

✓
d

2
� 2a� b� 3c

2

◆
E

H2(g)
DFT

(4)

where E
species(g)
DFT is the zero-point-corrected energy of a species calculated by DFT, in this

case the BEEF-vdW functional. The heat of formation of species CaObNcHd corrected by
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ATcT reference values can be calculated using Eq. 5.

�fH
�,CaObNcHd(g)
0K,DFT = �Hrxn,DFT(g) + a�fH

�,CH4(g)
0K,ATcT + b�fH

�,H2O(g)
0K,ATcT+

c�fH
�,NH3(g)
0K,ATcT +

✓
d

2
� 2a� b� 3c

2

◆
�fH

�,H2(g)
0K,ATcT (5)

The heat of formation of the adsorbed CaObNcHd is then calculated by Eq. 6

�fH
CaObNcHd⇤
0K,DFT = �fH

�,CaObNcHd(g)
0K,DFT + �H

CaObNcHd⇤
0K,ads + �fH

�
ref,metal (6)

�fH
�
ref,metal = 0 for rhodium and platinum because they are not included in ATcT. �H

CaObNcHd⇤
0K,ads

is the adsorption energy of CaObNcHd⇤ which can be calculated through Eq. 7

�H
CaObNcHd⇤
0K,ads = E

CaObNcHd⇤
DFT � E

metal � E
CaObNcHd(g)
DFT (7)

E
CaObNcHd⇤
DFT is the zero-point corrected energy of the adsorbed CaObNcHd⇤ calculated by

DFT, Emetal is the metal slab energy, and E
CaObNcHd(g)
DFT is the zero-point corrected energy of

the gas-phase species calculated using DFT.

When these are all combined to determine �fH
CaObNcHd⇤
0K,DFT , the ECaObNcHd(g)

DFT terms in equa-

tions (4) and (7) cancel, eliminating errors that would have been introduced by calculating

the gas-phase molecule or radical with BEEF-vdW.

2.2.2 Linear Scaling Relations

The model for the catalytic partial oxidation of methane on Rh(111) from Mazeau et al.
12

was initially developed with RMG using linear scaling relations (LSR) to scale the species’

binding energies from Pt(111) data. The thermodynamics on Pt(111) were obtained using a

calculator di↵erent from the one used in this work,53 and the uncertainties were not reported.

To make the LSR-estimated thermodynamic data and uncertainties consistent with the DFT

calculations on Rh in this work, the species’ thermodynamic parameters on platinum were
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recalculated using the same workflow discussed in Section 2.2.1. The polynomial parameters

for each species were then modified to describe the thermodynamics based on the LSR

correction from Pt to Rh, using Equation 8:

Espec,Rh = Espec,P t +

✓
X �Xm

Xm

◆
(EA,Pt � EA,Rh) (8)

Where Espec is the binding energy of the specific species, and EA is the binding energy

of the adatom (C, H or O). X and Xm are the bond order and the total possible bond order

for the adatom (XC=4, XH=1, XO=2) on Pt(111). The four physisorbed species were not

scaled from Pt(111) to Rh(111) because traditional LSRs cannot be applied to those species.

Since the binding for each of these species is relatively weak (i.e. X=0), the values and

uncertainties were kept the same across all of the models used in this study.

2.2.3 Open Catalyst Project Neural Network Calculator

The relaxed slab and gas-phase molecules were prepared as described in Section 2.2.1. The

gas-phase molecules were placed on the Rh(111) and Rh(211) slabs, and the OCP calculator

with the GemNet-OC-L-F model28 was used in ASE to relax the structures16 until the forces

were below 0.01 eV/ Å. The vibrational analyses were performed in ASE with the same OCP

calculator. For the calculation of adsorbate heat of formation at 0 K, The OCP57 reported

di↵erent reference molecules to calculate the heats of formation of gas-phase molecules, so

the hypothetical equation was changed to Equation 9:

aCO(g) + (b� a)H2O(g) + (
d

2
� b+ a)H2(g) +

c

2
N2(g) ��! CaObNcHd(g) (9)

The workflow described in 2.2.1 was adjusted accordingly. To calculate the zero-point-

corrected energy of the gas phase reference molecules in Eq. 9, the atomic gas phase reference

energies were from the supplementary materials reported by Chanussot et al.,57 and the

zero point energies were taken from the experimental values reported in the Computational
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Chemistry Comparison and Benchmark Database(CCCBDB),58 specifically: CO (0.147 eV),

H2 (0.277 eV), and H2O (0.609 eV).

2.2.4 Binding Energy Calculation

As mention in Section 2.3, the parameters varied in the BPE analysis were the enthalpies of

formation of the adsorbates at 298 K. To aid comparison with literature values yet maintain

consistency across the models, the prior and posterior distributions reported in the results

are converted to binding energies using Eq. 10.

EBE = �fH
CaObNcHd⇤
0K � �fH

CaObNcHd(g)
0K,ATcT � �fH

�
ref,metal (10)

where �fH
CaObNcHd⇤
0K is the heat of formation at 0 K calculated by the aforementioned three

methods, �fH
CaObNcHd(g)
0K,ATcT is the heat of formation at 0K of the gas phase counterpart reported

in ATcT, �fH
�
ref,metal is 0. The binding energies calculated with DFT values are also detailed

in Table S2 of the supplementary materials.

2.3 Reactor Simulation

The resulting models with thermodynamics derived from DFT, LSR, and ML were loaded

into a simulated packed bed reactor in Cantera.59 This reactor was modeled after the experi-

mental setup used by Horn et al..60 Currently Cantera cannot solve the di↵erential algebraic

equations to simulate a packed bed reactor directly, so a series of 700 continuously stirred

tank reactors containing a set catalyst surface area were used to approximate the capillary

reactor used in the Horn experiments. The reactor had an inner diameter of 16.5 mm, and

a length of 70 mm. The catalyst foam occupied 10 mm of the total reactor length, start-

ing after a 10 mm inlet, and followed by a 50 mm outlet, both containing no catalyst. The

porosity of the catalyst was 0.81, and the surface area to volume ratio was 1.6⇥10�4 m2/m3.

The gas feed to the reactor was stoichiometric, meaning the ratio of the molar flow rate
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of CH4 to the molar flow rate of O2 was 0.5. Argon was used as an inert carrier gas, with

an Ar/O2 ratio of 79/21. The total feed flow rate was 4.7 slpm (0.208 mol/min).

The heat transfer for the reactor used by Horn et al. was actually quite complex, as

noted in reference 12. Including a fully resolved energy equation for this system would

have required assuming a heat transfer model, then iteratively solving the heat transfer

equation down the reactor to produce a wall temperature profile, and then resolving this

wall temperature with the energy generated within the reactor due to chemical reactions.

This iterative approach would have been prohibitively time-consuming for BPE using Monte

Carlo methods. Instead, the experimental temperature profile observed by Horn was imposed

on the Cantera reactor, and the energy equation was turned o↵ for the simulation.

2.4 Prior and Experimental Uncertainties

2.4.1 Prior Uncertainties

The posterior uncertainties for the surface species in the CPOX model were determined

using Bayesian Parameter Estimation (BPE), which is discussed later in Section 2.5. A

wrapper for the Cantera model was constructed that accepted the enthalpies of formation

(�fH
CaObNcHd⇤) for each of the 13 surface species in the model, along with the uncertainties

associated with the method used (DFT, LSR, ML) for that particular species. The model

outputs were the flowrates for gas-phase CH4, CO2, CO, O2, and H2. Only readings over

the catalyst bed were taken into account (10 mm to 20 mm), due to the lack of change in

the concentrations over the rest of the reactor.

Because BEEF-vdW is a Bayesian estimation based approach, the uncertainty can be

estimated with 2000 perturbations on the exchange-correlation functional.46 A Gaussian

distribution was constructed with the 2000 energy ensemble, and the 2� of this distribution

was used as the uncertainty for the DFT calculations. The DFT uncertainties were calcu-

lated for the gas-phase species used in the work function (Equation 3), the slabs, and the

asorbates. The uncertainties were then propagated through Eq. 7 to calculate the binding
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energy uncertainty. BEEF-vdW was trained using diverse datasets representing bonding in

both chemical and condensed matter systems, so the uncertainty of adsorption systems tends

to be overestimated. As such, a factor of 0.683, employed in prior studies,30,61 was used to

correct the binding energy uncertainty.

For this study, the uncertainty of the species’ entropy was not taken into account, al-

though it should be noted that this value is not zero.62–64 However, for this model, all of

the surface species are small molecules with relatively constrained motion across the surface,

so it was deemed reasonable to neglect. Thus, only the uncertainty in the species enthalpy

was considered. The enthalpic portion of the uncertainty was quantified by determining the

uncertainty in each species binding energy, and then using that as the uncertainty in the

heat of formation for each species. The uncertainty in the binding energy was supplied as

P (✓) to the DFT model. The average 2� error for species calculated using DFT was 0.299

eV.

For linear scaling the uncertainties were estimated as follows. There were two sources for

the uncertainty: the actual DFT measurements for atomic and species binding energies, and

the uncertainty of the linear scaling relations themselves. The values for the uncertainty in

the linear scaling trends were derived from the original Abild-Pedersen paper.13 This was

the sample standard deviation for the trend line residuals for CH, CH2, CH3, and OH. An

example of a linear scaling plot for CH3, along with its residuals, is shown in Figure 1.

The aggregate uncertainty was calculated by propagating the error through Equation 8

for the species enthalpy:

�(Espec,Rh) =

r
�2(Espec,P t) +RLSR +

Xm �X

Xm
(�2(EA,Rh) + �2(EA,Pt)) (11)

Where RLSR is the residual uncertainty mentioned for the bound atom and bond order

corresponding to each species. The average 2� error for species calculated using the LSR

model was 0.424 eV.
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Figure 1: The CH3 linear scaling relationship plot with data from Abild-Pedersen et al.
13

(top plot, black circles), along with the residuals for each metal (bottom plot, red crosses)
and their standard deviation.
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The uncertainty for the ML model was estimated using the MAE for the GemNet-OC-L-

F model reported in the OC20 dataset.16 To account for the underlying uncertainty in the

original DFT calculations used to train the model, the model MAE (0.239 eV) was added to

the DFT error for each species:

�(Espec) =

s✓r
⇡

2
MAEML

◆2

+ �(Espec,DFT )2 (12)

The factor of ⇡
2 was included to convert the MAE to a standard deviation, assuming all

of the model errors are normally distributed. The average 2� error for species calculated

using the ML model was 0.381 eV. The priors for all three models (DFT, LSR, ML) can be

found in Figure 4 and Table 1. The overall thermodynamic uncertainty workflows for the

DFT, LSR, and ML models are shown in Figure 2

2.4.2 Experimental Uncertainties

The error for the output molar flow rates were all taken to be 5% of the total molar flow

rate. Horn et al60 report uncertainties in the atom balances for H, C, and O, which gave

uncertainties between 1% and 13% for each atom. Unfortunately, there are no details for

specific uncertainties at each point in the reactor. Selection of 5% error for all species was

somewhat arbitrary, but a convergence study was performed using 10% and 2.5% error,

with negligible di↵erences between the models. Details of this study can be found in the

supplementary data.

2.4.3 Covariance Matrix Generation

Many parameter errors are correlated in surface chemistry models.32,65 To investigate the

e↵ect of accounting for the correlation between parameters, this study was conducted using

both the uncorrelated 2� prior uncertainties and a prior covariance matrix. Since BEEF-

vdW supplies an ensemble of 2000 values, an estimate of covariance can be obtained by

performing the calculations referenced in Equations 4 through 7 on each of the energies
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(a) DFT and ML workflows
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Figure 2: Uncertainty estimation and BPE workflows for (a) DFT and ML models, and (b)
LSR models.
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obtained in the 2000 energy ensemble. This results in 2000 values of �fH0K,ads for each

species. Equation 13 was used for each of the 169 pairs of species, resulting in a 13x13 grid

of values.

cov(x, y) =

Pn
i=1(xi � x̄)(yi � ȳ)

n� 1
(13)

Where x and y are the �fH0K,ads entries for each pair of species in the model, and

n corresponds to the ensemble of 2000 energies generated using the BEEF-vdW functional.

The LSR model used a similar method to calculate the covariance matrix, using the ensemble

of values generated for each species on platinum instead of rhodium. The residual error

from linear scaling (RLSR) in Equation 11 was not used as a single value in the uncertainty

calculations. Instead, each member of the 2000 member ensemble was run through the linear

scaling equation 2 million times, using a random sample from a normal distribution with

� = RLSR in place of the single value used for the residual error. The resulting ensembles

of binding energies for each species were then run through Equation 13 to generate the

covariance matrix.

2.5 Parameter Estimation and Uncertainty Quantification

Bayesian Parameter Estimation (BPE) requires prior knowledge of uncertainties for both

the model inputs and outputs, as can be seen in Bayes theorem (Equation 14):

P (✓|D) =
P (D|✓)P (✓)

P (D)
(14)

In this case ✓ represents a vector of the surface species enthalpies of formation (�fH
CaObNcHd⇤)

and D is the observed output flow rates for CH4, CO2, CO, O2, and H2. P (✓), or the prior,

represents the probability distribution of the species enthalpies of formation from Section

2.4.1 and P (D) represents the probability distribution of the experimental mole fractions

determined in Section 2.4.2. The likelihood P (D|✓) and the posterior P (✓|D) are both
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distributions themselves, and can be generated by creating successive samples of the prior

values and running them through the simulated reactor specified in Section 2.3. Sampling of

the posterior was performed using Markov Chain Monte Carlo (MCMC), an algorithm that

proposes random jumps in parameter space and either proceeds with the jump or does not

based on the probability of the jump destination. This algorithm was used to sample the

highest probability density (HPD) region of the posterior. MCMC sampling was performed

using the Zeus package,39 which used a modification of the MCMC algorithm known as

Ensemble Slice Sampling (ESS).66 This approach allowed MCMC chains to run in parallel,

and communicate information about all active chains (i.e. the ensemble) to determine the

direction of the next jump in parameter space. The Zeus package, as well as utilities for

inputting priors, experimental data, and other parameters necessary for BPE, are conve-

niently wrapped in the Parameter Estimation and Uncertainty Quantification for Science

and Engineering (PEUQSE) package,67 which was employed for this study. 52 independent

MCMC chains ran in parallel on 52 CPU cores, with an initial distribution spread of 0.25

and a filter coe�cient of 1.0.

For a well sampled system, the maximum of the a posteriori distribution (MAP), i.e. the

most likely values for a given parameter set, should fall within the HPD region. For Bayesian

parameter estimation, the MAP values and their corresponding HPD regions represent the

“feasable set” of values and their uncertainties when both the experimental data and prior

uncertainties are considered. The quality of sampling was quantified by examining the

autocorrelation time (ACT) for each chain, along with observations that the HPD region

and MAP were converged at stable values.

Most of the posterior distributions were deemed to be well-sampled within ⇠100,000 sam-

ples post burn in. The exception was the correlated DFT model, which required ⇠1,000,000

samples before the ACT assumed a stable value for all chains. The ACT plots for each model

are in the supplementary data.
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3 Results and Discussion

3.1 Thermodynamic Data

There are 13 adsorbates in the model, none of which are larger than C1. As mentioned in

Section 2.4.1, small molecules adsorbed on a surface generally have negligible contributions

from their rotational and translational modes, so the uncertainty in the entropy was not

considered. Consequently, only the uncertainties of species enthalpy were estimated and

considered in the reactor simulations. All the thermodynamic data estimated by the DFT,

LSR and ML models for each species can be found in the supplementary material.

Similar to the enthalpy for adsorbed CH2 in Figure 3a, the enthalpy obtained through

DFT, LSR, and ML are very close to the DFT uncertainty for most of the species in the

model. All the ML estimated enthalpies are within the uncertainty of the DFT data. How-

ever, the enthalpy of CH3* estimated by LSR is outside of the DFT uncertainties as shown in

3c. The the largest enthalpy of formation di↵erence between ML and DFT is 27 kJ/mol for

CO* (Figure 3b), while largest enthalpy disagreement between LSR and DFT is 34 kJ/mol

for CH3* (Figure 3c). The thermodynamic comparison for the rest of the species in the

model can be found in the supplementary material.

Figure 4 and table 1 compare the binding energy and the uncertainty of each species

estimated by the three methods. For the physisorbed species (CO2*, CH4*, H2*, and H2O*)

the DFT values are used for all three models. The convention recommended by Ruscic 68 for

thermochemical uncertainties is used in Figure 4 and throughout this paper, i.e. reporting

the 2� values as the uncertainties, since they encompass approximately 95% of a normal dis-

tribution. These uncertainties were used as the prior distribution in the Bayesian Parameter

Estimation (BPE), as described in Section 2.5. The largest binding energy disagreement

estimated by LSR and ML compared to DFT is about 30 kJ/mol among all the species

in the model, so using the LSR and ML models to generate the thermodynamic data in

micro-kinetic modeling is reasonably reliable compared to DFT results for small molecules,
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(a) CH2*

(b) CO*

(c) CH3*

Figure 3: Heat capacity, enthalpy, and entropy comparison for three species estimated
through DFT (blue), LSR (orange), and ML (green), the blue band represents the un-
certainty of the DFT method
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Figure 4: The binding energy and uncertainty of each species estimated by DFT, LSR and
ML methods. The 2� values of the prior distribution are used as the error bars in black
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Table 1: Prior values of binding energy and 2� uncertainties for all surface species in the
DFT, LSR, and ML models.

Species DFT Prior (eV) LSR Prior (eV) ML Prior (eV)

H* -2.53 ± 0.13 -2.53 ± 0.19 -2.65 ± 0.33
CO2* -0.95 ± 0.25 -0.95 ± 0.25 -0.95 ± 0.25
CO* -1.90 ± 0.29 -1.82 ± 0.54 -1.62 ± 0.42
CH4* -0.10 ± 0.16 -0.10 ± 0.16 -0.10 ± 0.16

O* (111) -4.77 ± 0.33 -4.77 ± 0.61 -4.70 ± 0.45
O* (211) -4.73 ± 0.50 -4.73 ± 0.61 -4.74 ± 0.58
CH2* -3.91 ± 0.26 -4.02 ± 0.53 -4.01 ± 0.40
CH3* -1.64 ± 0.30 -1.99 ± 0.41 -1.58 ± 0.42
CH* -6.29 ± 0.38 -6.46 ± 0.67 -6.40 ± 0.49
C* -6.95 ± 0.42 -6.95 ± 0.87 -7.03 ± 0.51
H2* -0.041 ± 0.095 -0.041 ± 0.095 -0.041 ± 0.095

OH* (111) -2.73 ± 0.30 -2.51 ± 0.46 -2.59 ± 0.42
OH* (211) -3.08 ± 0.52 -3.05 ± 0.49 -3.03 ± 0.60

H2O* -0.19 ± 0.26 -0.19 ± 0.26 -0.19 ± 0.26
CHO* -2.71 ± 0.33 -2.76 ± 0.44 -2.43 ± 0.44

considering the relative uncertainties inherent in DFT.

3.2 Optimized Thermodynamics

The prior and posterior probability densities for each of the species used in the model can

be found in Figure 5, along with the MAP values for the species binding energies.

On the whole, the posteriors for all of the species are symmetric, with the exception of

OH*, O*, CO and CH3. It is quite surprising that these species are the only ones with asym-

metric posteriors, which are quite common in similar studies35,36,69 due to the complex and

nonlinear dependence of reaction rates on the species enthalpies. For some species, the lack

of skewness and kurtosis in the posterior can be explained by examining the sensitivities of

the species within the model. In general, physisorbed hydrogen (H2*) and methane (CH4*),

along with adsorbed carbon (C*), methylidine (CH*), and formyl (CHO*) have little e↵ect

on the outlet molar flow rates or model observables. Figure 6 shows the first order sensitiv-

ities of the methane conversion to all of the species in the model. The sensitivity plots for a
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Figure 5: Prior distribution (blue shaded area), posterior distribution (pink shaded area)
and the MAP value (red vertical line) for every adsorbed species in the model.
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number of other observables (CO/CO2 selectivity, O2 conversion, etc.) can be found in the

supplementary material, but overall a lack of sensitivity to these species was observed for all

benchmarks used. Since the model is insensitive to these species, their posterior distributions

are very similar to their prior distributions.

Figure 6: Sensitivity plot of CH4 conversion to the binding energy of each species

There is a trend in the CH3* posteriors to have a slightly stronger binding energy than

predicted a priori for all three models. Prior studies with �-Al2O3 supported rhodium

nanoparticles show evidence that 1) the active sites are on the metal surface for this mech-

anism, not the support,70,71 and 2) CH4 conversion both with and without gas-phase O2 in-

creases with decreasing particle size, which indicates that the active sites are likely edge/step

sites. The lower coordination of the step sites means that species will likely bind more tightly

to them.

The opposite trend is observed for CO*, with the posteriors showing a slightly weaker

binding energy than the priors. It is possible that this is due to coverage dependence not

being included in the microkinetic model. Higher oxygen coverage at earlier times in the

reactor would limit the rate of formation of CO and the adsorption of CH4. Since the model

was optimized only with respect to the species binding energies, the CO binding energy may
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have been weakened to account for this. Nevertheless, the di↵erences in both the CO and

CH3 species was slight for the DFT model, indicating that the initial DFT calculations were

at least close to the values predicted by the model.

The posterior distributions of OH* and O* for the initial model using Rh(111) showed

much stronger binding energies than the priors supplied. Given that OH* binds stronger

(more negative binding energy) on the Rh 211 facet than 111 as reported by Yang et al.,72

the possibility of these species having an alternative binding site was considered. As such,

the DFT, LSR, and OCP models were updated with calculations for these species on their

corresponding lowest energy binding site on Rh(211). Figure 7 shows a comparison of the

priors and posteriors using both the Rh(111) and Rh(211) binding energies for these species.

(a) OH* on Rh(111) (b) O* on Rh(111)

(c) OH* on Rh(211) (d) O* on Rh(211)

Figure 7: The comparisons of the prior and posterior distributions for OH* (left) and O*
(right) on rhodium 111 (top) and 211 (bottom) sites. The prior distributions are shown in
blue, the posterior distributions are shown in red.
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The calculations for OH* show a dramatic shift in the posterior when the 211 site is

considered, with the MAP value changing by approximately 0.4 eV between the 111 and 211

posteriors in the DFT model. The shift for O* was less dramatic, changing by only 0.11 eV.

Literature values show a less dramatic shift as well for oxygen,13,73 which is likely due to its

hollow binding site on both 211 and 111, versus OH which prefers the 211 step edge.51 The

binding energy values optimized through BPE closely align with those reported for the 211

site on rhodium by Abild-Pedersen et al., although given the priors, it could be said that the

actual lowest energy site may have an even stronger binding energy, such as a defect site.

Further study is required to validate this claim, but the simple result of this work shows

that both O* and OH* prefer a lower energy site than initially predicted in the 111 model,

which is a useful result.

It should be noted that the prior and posterior values for the binding energies shown in

this paper have been calculated using the method described in Section 2.2.4, which uses the

enthalpy of formation at 0 K from the ATCT for the gas phase precursor. This was done

so that the priors and posteriors for all three methods could be compared using the same

gas phase reference, but this method does mean the binding energies reported will be o↵set

from values reported from other sources. Typically, DFT-calculated electronic energies are

used in equation 10. Using the latter method, the DFT binding energy for O* on Rh(111)

is -4.96 eV and on Rh(211) it is -4.90 eV. This is quite close to reported literature values

of -4.87 eV74 and -4.90 eV.13 Similarly, the calculated binding energies for OH* on Rh(111)

and Rh(211) are -2.87 eV and -3.22 eV respectively, with literature values of -2.87 eV74

and -3.26 eV.13 All species binding energies calculated using the DFT calculated electronic

energy can be found in the supplementary material.

It is noteworthy that the (BPE) performed using the Rh(211) DFT, LSR, and OCP model

values show very similar posteriors, despite the di↵erences in their priors. This convergence

signifies a high level of confidence in the optimized value.
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3.3 Simulated Responses

The sampling of the HPD was used to generate the posterior distribution for the gas phase

species profiles within the catalyst bed, as seen in Figure 8. All three thermodynamic

estimation methods converged on very similar profiles, with the main di↵erence between

them being the posterior uncertainties.

The initial model generated using LSRs is quite close to the experimental profiles com-

pared to the DFT and OCP models. This may be due to how the original model from Mazeau

et al.
12 was constructed. Reaction Mechanism Generator uses linear scaling relations, which

may have led to selecting rate rules, reaction trees, and thermodynamic trees that generate

more accurate results with thermodynamics generated from linear scaling relations.

The initial DFT and ML models are both quite similar, which is likely due to the closeness

of their prior parameter values. The largest di↵erence between the two is the magnitude of

their uncertainties, which may be overestimated for the ML model, as stated in section 2.4.1.

Nevertheless, it is remarkable how close the solutions for the DFT and the ML model are.

The pathways of three optimized models can be found in the supplementary data. All

the pathways were the same with almost identical conversion rates. This further confirmed

that the optimized models converged on similar mechanisms.

3.4 Covariance

All of the runs mentioned in the preceding sections used uncorrelated uncertainties for all of

the mechanisms analyzed. This is not reflective of the true system, especially for the case of

linear scaling relations, where species share a very clear linear correlation with other species

bound through the same atom. The covariance matrices for the DFT and LSR mechanisms

were constructed using the BEEF-vdW ensembles mentioned previously. As described in

Section 2.4.3, each of the equations in Section 2.2.1 were applied for all 2000 rows of the

ensemble calculations, and then the covariance was calculated for each species from the

resulting 2000 heats of formation. The resulting prior and posterior covariance matrices
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Figure 8: Gas phase flow rates observed in the unoptimized model (green marker), the
optimized model (orange marker), and the experimental data reported by Horn et al.60 The
shaded regions are the 2� (95% confidence) intervals for the uncertainty in the experimental
data (light blue region), the MAP model (light orange region) and the initial model prior to
BPE (light green region).
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can be found in the supplementary data. The OCP model could not be supplied with a

covariance matrix.

For the LSR model, the posteriors were all very similar to the uncorrelated case, with

MAP values all falling within ±0.1 eV for each model parameter. The DFT model showed

more significant deviations when correlated priors were used. Detailed contour plots for all of

the DFT and LSR models are in the supplementary data. The di↵erences between the prior

and posterior were quantified using the Kullback-Leibler (KL) divergence test.75 Comparing

the relative KL divergences gives a quantitative measure of the information gained from the

experimental data.

Figure 9 shows a comparison between the information gained from using covariance for

the DFT model (Figure 9a) and the LSR model (Figure 9b). There are two clear trends

that can be seen. First, between both the DFT and the LSR model, when covariance is

considered, the KL divergence statistic decreases. Since we are only using the 1D probability

distributions to calculate the KL divergence statistic, this is expected. Including covariance

constrains the parameter posteriors. This is illustrated in Figures 10 and 11.

(a) (b)

Figure 9: comparison between the KL divergence statistics for (a) the DFT models and (b)
the LSR models. Blue bars are the KL divergence statistic for the models with no covariance
in the prior. Orange are the statistics for the models including covariance.

While it is more drastic in the DFT case, it is clear that the inclusion of covariance

restricts where the posterior can be located. This reduces the search space, which means
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(a) (b)

Figure 10: Contour plots for carbon bound species in the DFT models (a) without covariance
and (b) with covariance. On the diagonal are the prior distribution (blue) and the posterior
distribution (pink). Decreasing contours show a 20% decrease in probability.

(a) (b)

Figure 11: Contour plots for carbon bound species in the LSR models (a) without covariance
and (b) with covariance. On the diagonal are the prior distribution (blue) and the posterior
distribution (pink). Decreasing contours show a 20% decrease in probability.
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that overall there is less information to be gained from the experimental data to inform the

posterior.

The second trend between the two is best shown when examining the DFT model. Some

species overall have a higher KL divergence statistic when covariance is considered. CH4*,

CH2*, CH*, C*, H2*, H2O* and CHO* all show a larger degree of information gain. The

physisorbed species are all correlated inherently in the BEEF-vdW functional, and the species

bound through carbon have strong correlations with each other. Thus, even if certain species

gain less information on their own because they are not as consequential to the model, they

can gain information from other more important species that they are strongly correlated

with. For the physisorbed species, this key species is likely CO2. For species bound through

carbon, this may be CH3 and CH2. This trend is not seen in the LSR model, where only

H2O exhibits a larger KL divergence statistic when covariance is considered. The LSR prior

parameters generated simulation data that are incredibly close to the optimized model, so

it is likely that including covariance had little e↵ect in general.

The remainder of the posterior distributions for the models including covariance can be

found in the supplementary data. Overall, the inclusion of covariance did not change the

conclusions about the LSR and DFT models concerning the alternative binding sites for O*

and OH*. Indeed, the posterior distributions for O* and OH* had slightly stronger MAP

binding energies using correlated priors than was predicted by the uncorrelated models.

Supplying a covariance matrix for the OCP data, if it were possible, would likely not have

changed the answers significantly.

3.5 Conclusions

The first goal of this study was to analyze the uncertainty inherent in di↵erent thermody-

namic estimation methods for adsorbed species. It is clear that the ML model is on par

with the LSR and DFT models, with the additional benefit that the thermodynamics did

not require any expensive DFT calculations up front, which cannot be said for the other
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two models. Knowing the uncertainty of the predictions from a calculator before using it

to screen thousands of catalysts is vital for any method. Given the large shifts from the

prior values to the MAP values for all 3 models, the apparent increase in uncertainty for the

OCP calculator is made up for by its speed compared to DFT and universality compared

to LSRs. Further, for the system at hand, we showed that while supplying covariance data

was useful for having slightly more accurate posteriors, it did not significantly change the

final MAP values or the optimized models. This is encouraging, as the data necessary to

determine covariance are not always available, especially when dealing with mechanisms that

use data from a variety of sources, for example those generated by the Reaction Mechanism

Generator.

The secondary goal was to validate that BPE used in conjunction with tools like the

OCP calculator could be useful for catalyst screening. The finding that OH and O likely

have stronger binding energies than the values reported on Rh(111) shows how informed

optimization can improve a microkinetic model that was initially constructed from chemi-

cal intuition or automated construction methods. Coupling uncertainties calculated using

BPE with rapid screening methods would allow for a more informed exploration of complex

chemical spaces, as opposed to using the baseline values from surrogate models like linear

scaling relations and the OCP calculator.

Finally, It should be noted that Monte Carlo methods are a taxing way to optimize

a model and quantify error. While this study does show the computational e�ciency of

using a Machine Learning calculator to replace DFT, exploring the uncertainty space of

the resulting model was costly. Specifically, the chain length required for convergence on

each model (approximately one million points) took 52 CPU cores approximately 3 days of

computing time. In light of this, it would be impractical to run BPE for every point within a

screening study. It is more important to apply it to experimental data that are well known,

and then using the error bars obtained to extrapolate to di↵erent systems.

The exploration of the HPD region would be required regardless of the thermodynamic
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calculation method used, so it is worth mentioning how well each method compares when

examining the raw time needed to get the initial estimates. The cost of the DFT calculations

on Rhodium was about 1500 GPU hours and 10600 CPU hours, and the cost of the DFT

calculations on Platinum for LSR fitting was about the 1200 GPU hours and 8000 CPU

hours. In comparison, the expense of the OCP calculations can be essentially neglected,

as they can give a structure and energy in minutes with minimal resources. Considering

the convergence of BPE to a similar optimized model across all three estimation methods,

using ML-aided estimation is considerably more e�cient. While some species will require

DFT calibration, initiating from ML estimates serves as a valuable starting point, o↵ering

substantial time and computational resource savings.
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