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Abstract

Electrolytes in many lithium ion batteries decompose at the low potentials near the

anode. The decomposition products form a layer termed the solid electrolyte inter-

phase (SEI). The composition and growth of the SEI layer significantly affect both the

capacity fade and safety of lithium ion batteries. However, SEI formation and growth

kinetics are not well understood. In this work, we present an extension of the Re-

action Mechanism Generator (RMG) software to automatically generate mechanisms
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for SEI formation. We extend RMG’s solvation correction formulation to account for

kinetic solvent effects and demonstrate the accuracy of this technique. We calculate

thermochemical parameters for 252 species and rate coefficients for 69 reactions, most

with associated solvation corrections. This and additional quantum chemistry data are

used to extend RMG’s thermodynamic group additivity and solute parameter estima-

tion schemes to handle lithiated species and add 14 new reaction families to RMG.

RMG is additionally extended to simulate electrocatalytic systems. Lastly we demon-

strate RMG on the decomposition of acetonitrile and ethylene carbonate near a Li(110)

anode. While this framework does not yet resolve individual ions, as appropriate ther-

mochemistry estimators are not available, and thus, cannot yet resolve more complex

electrochemical pathways, it is able to generate reasonable pathways for SEI formation

that agree with important components and intermediates in literature.

Introduction

In many lithium ion batteries, the electrolyte reduces at low potentials near the surface of the

anode. While decomposition of the electrolyte is generally undesirable, these decomposition

products can form a protective solid electrolyte interphase (SEI) between the anode and

electrolyte. This SEI in some cases is selectively permeable protecting the electrolyte from

the anode while allowing lithium ions to pass through. The composition and growth of

the SEI layer have very significant impacts on the capacity fade and safety of lithium ion

batteries. However, the kinetics of SEI formation and growth are not well understood.1,2

Much prior work has examined the thermodynamic and/or kinetic barriers to possible

liquid and surface reaction pathways.3–14 However, as far as the authors are aware, the only

detailed chemical kinetic mechanism in literature to date is the recent mechanism proposed

for formation of an SEI from ethylene carbonate in Spotte-Smith et al. 2022.15 That mecha-

nism contains 62 species and 900 reactions, with most wells and transition states determined

by running optimizations at the ωB97X-V/def2-TZVPPD/SMD level of theory in ethylene
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carbonate. All 345 of their associated transition states were identified using the single-ended

growing string method.16 However, the dataset generation and filtering procedure used to

generate that mechanism is computationally expensive and electrolyte specific.6,15 They have

also done mechanism work on diglyme as an Mg-ion battery electrolyte, however, as far as

we are aware the associated mechanisms were not released in full.12

Development and use of kinetic mechanisms is far more developed in gas phase kinet-

ics.17,18 While many gas phase mechanisms are still developed using tedious manual processes,

modern tools for automatic mechanism generation such as the Reaction Mechanism Gener-

ator (RMG) software are commonly used.19–22 RMG generates kinetic mechanisms starting

from an initial set of species based on simulations at a set of given reaction conditions.

Species are divided into a set of core species that the algorithm has determined are impor-

tant and a set of edge species that may be important. Upon each iteration, core species are

reacted using templates from a database of reaction families to generate new edge species

and edge reactions whose associated thermodynamic and kinetic properties are estimated.

The time-dependence of core species are then simulated and fluxes through edge reactions to

edge species are calculated during the simulation. If the flux to an edge species becomes high

enough, the species is added to the core along with any reactions now only involving core

species. This iterative procedure continues until the simulations terminate without adding

species to the core or causing species to react.19–22

RMG has proven to be effective for generating gas phase kinetics mechanisms containing

species composed of carbon, hydrogen, and oxygen.17,23–26 It can also now handle nitrogen,

sulfur, and halogen chemistries.27–30 Additional schemes have been developed within RMG

to handle liquid phase systems31–34 and gas-solid catalytic systems.35–38 However, no such

scheme exists for ionic, electrochemical, or liquid phase catalytic systems. In this work, we

extend RMG to lithium-based liquid phase electrocatalytic systems and present test cases

related to the radically driven formation of the SEI in lithium ion batteries.
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Theory/Development

Species Definition

In any chemical kinetic system it is important to define which configurations of molecules

constitute distinct chemical species to be tracked in simulations. This definition also con-

trols which chemical interactions constitute chemical reactions within the system. For ev-

ery species, RMG needs to reliably estimate thermochemistry,21 represent resonance struc-

tures,39 and define families for all relevant reactions.21 Lone ions, with net charges, represent

a particular challenge in this respect because currently there are no general high accuracy

thermochemistry estimators available for ions. Furthermore, ionic resonance structure gen-

eration has not been well studied in this context and solvation correction predictions for

lone ions are more challenging than neutral species. Until such capabilities are available, we

define all reaction templates such that all reactant and product species are either neutral or

Li+. However, it is worth noting that once RMG is extended to handle arbitrary charged

species, that will seamlessly integrate with the work done here.

Gas Phase Quantum Chemistry

We approach liquid phase chemistry by calculating thermochemical and kinetic properties

in the gas phase and then correcting them to arbitrary solvents.

We ran most electronic structure calculations at the CCSD(T)-F12/cc-pVDZ-F12//ωB97X-

D3/def2-TZVP level, with 1-D hindered rotors at the B3LYP/6-311++G(d,p) level. Molpro

was used for the single-point energy calculation, QChem for the optimization and frequency

calculations, and Gaussian 16 for the rotor scans. Due to the computational expense, hin-

dered rotor calculations were omitted for a few large species and transition states. Some

Transition states (TSs) were identified at the B3LYP/6-311++G(d,p) level rather than

ωB97X-D3/def2-TZVP. In these cases we attempted to refine using ωB97X-D3/def2-TZVP,

however, if the refining optimization did not converge the associated reactions were computed
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at the CCSD(T)-F12/cc-pvdz-F12//B3LYP/6-311++G(d,p) level. Hindered rotor scans are

not strictly necessary for accurate calculations at typical SEI temperatures, but they provide

additional protection against guessing an incorrect lowest energy geometry.

To facilitate this effort to automatically generate mechanisms for SEI formation, we

added a small set of lithium based species to RMG’s reference data set and fit a new set of

atom energy corrections (AECs) and bond additivity corrections (BACs) for the CCSD(T)-

F12/cc-pvdz-F12//ωB97X-D3/def2-TZVP level of theory that included lithium. We were

unable to find appropriate reference data that included Li-N or Li-C bonds, so the BACs

do not include those bonds. Similarly computed BACs on non-ionic species achieve mean

absolute errors (MAE) of ∼ 0.7 kcal/mol against experiments.40

Transition states were identified manually using bond scans at the B3LYP/6-311++G(d,p)

level. The remaining quantum chemistry calculations were done using a version of the Auto-

matic Rate Calculator (ARC) modified to handle lithium species.41 ARC generates a large

number of conformers using RDKit that is dependent on the number of heavy atoms in the

molecule.42 All of these possible conformers are optimized using the MMFF94 forcefield or

if the molecule contains lithium the UFF forcefield. The geometries of the ten unique low-

est energy conformers where refined at ωB97X-D3/def2-TZVP and the conformer with the

lowest energy including zero-point energy (ZPE) at that level of theory was used in subse-

quent calculations. If a lower energy conformer is found during 1-D hindered rotor scans of

wells or transition states, ARC automatically switches to that conformer. Internal reaction

coordinate (IRC) calculations were run for every transition state and transition states were

confirmed by analysis of the imaginary frequency and either using the IRC or, in cases where

the IRC was inconclusive, by manually matching against the bond scans. Arkane43 was used

within ARC to run the statistical mechanical computations, transition state theory, and en-

ergy corrections. Submerged barrier reaction calculations assume equilibrium between the
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bimolecular reactants and the van der Waals well, allowing calculation from

k =
kBT

h

QTS

QR

e−
(ETS−ER)

RT (1)

where R and TS denote the reactant and TS states and E denotes the energy, Q denotes the

partition function and T the temperature, which should be a good assumption in solvent.44,45

Solvation Corrections

RMG’s solvation corrections are based on the Abraham and Mintz linear solvation energy

relationships

log10(K(298 K)) = c+ eE + sS + aA+ bB + lL (2)

∆Gsolv = −RT ln(K) (3)

∆Hsolv(298 K)

1 kJ/mol
= c′ + e′E + s′S + a′A+ b′B + l′L (4)

whereK is the gas-liquid partition coefficient, ∆Gsolv is the solvation free energy, R is the gas

constant, T is the temperature, ∆Hsolv is the enthalpy of solvation, c, e, s, a, b, l, c
′, e′, s′, a′, b′, l′

are solvent specific parameters and E, S,A,B, L are solute specific parameters.31–34,46–49 This

approach allows RMG to be applied to any arbitrary solvent, provided that the solvent-

specific parameters are known. In order to fit these parameters, we need to compute ∆Gsolv

and ∆Hsolv. While SMD50–52 is popular, in our hands the recent versions of COSMO-RS53–55

are even more accurate, at least for non-ionic species.34 For our purposes, we compute

solvation free energies based on the optimized gas phase geometries, running energy and

COSMO-RS calculations at the COSMO-RS/BP86/TZVPD-FINE level.

To fit solvent parameters we took the intersection of the set of experimental solute

parameters from Chung et al. 202234 and COSMO-RS’s internal database. For each of

those solutes we computed ∆Gsolv and ∆Hsolv in the solvent of choice and then linearly

regressed the solvent parameters through Equations 2 and 4. To fit solute parameters for
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both species and transition states, we took experimental solvent parameters for 24 more

accurate polar solvents from the RMG-database. We then computed the ∆Gsolv for the so-

lute in each selected solvent and linearly regressed the solute parameters against Equation 2.

Mean absolute fitting errors for the solute parameters for non-lithiated species were typically

< 0.25 kcal/mol, singly lithiated species were ∼ 0.5 kcal/mol, doubly lithiated species were

typically 2− 3 kcal/mol and Li+ was 1.78 kcal/mol.

The transition state solvation corrections were implemented for a given rate coefficient

kgas(T ) = A

(
T

1 K

)n

e−
Ea
RT (5)

by first computing

∆SsolvTS(298 K) =
∆HsolvTS(298 K)−∆GsolvTS(298 K)

298 K
(6)

then computing

∆∆Hsolv = ∆HsolvTS(298 K)−∆HsolvReactants(298 K) (7)

∆∆Ssolv = ∆SsolvTS(298 K)−∆SsolvReactants(298 K) (8)

and then correcting using

ksolv(T ) = kgas(T )e
∆∆Ssolv

R
−∆∆Hsolv

RT = A

(
T

1 K

)n

e
∆∆Ssolv

R
−∆∆Hsolv+Ea

RT (9)

whereA, n and Ea are modified Arrhenius parameters, TS denotes properties of the transition

state and Reactants denotes properties of the reactants, ∆∆ denotes the difference in the

solvation correction for the associated property between the transition state and reactants,

kgas denotes that gas phase rate coefficient and ksolv denotes the rate coefficient in solvent.
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Thermochemistry Estimation

In total, the thermochemical and solute parameters of 247 species were added to RMG’s

thermochemistry and solute libraries. We additionally linearly regressed 12 new lithium

groups for both RMG’s thermochemistry group additivity scheme and for RMG’s group

additivity scheme for solute parameters from the calculated data. The groups include lithium

bonded to S, O, N and C. These enable RMG to estimate the thermochemistry of arbitrary

solvated lithiated species.

The linear free energy relationships used by RMG to correct the Pt(111) adsorption

thermochemical contributions to other metallic surfaces do not extend to non-d-block metals

and could not be used for lithium. We first generated a small thermochemistry dataset for

surface species. We used Pynta56 to automate the associated quantum chemical calculations

and to compute the enthalpy and entropy of reactions at 298 K on Li(110) in the harmonic

limit, for a set of reactions designed to include only 7 target adsorbates and gas phase species.

All periodic surface DFT calculations in this work were run on a 3×3×4 slab, freezing the

bottom two layers, with a (3×3×1) k-point grid using the BEEF-vdW57 functional with

PBE-KJPAW pseudo-potentials and a kinetic energy cutoff of 50 Ry as implemented in

Quantum Espresso. Decomposing the overall enthalpies and entropies of reaction evaluated

with periodic DFT gives a simple linear system of equations for the individual enthalpies and

entropies of formation at 298 K. Substituting in values for the gas phase species properties

from high accuracy calculations in this work or literature30,58–60 gives a trivial system of

equations for the enthalpies and entropies of formation at 298 K for the target adsorbates.

This approach is similar to that used in Blondal et al. 36 Heat capacity information for these

species was taken from the values in the RMG-database for the same adsorbate on Pt(111).

We then used the thermochemistry of those adsorbates and data from the Pt(111) adsorption

groups to develop a new set of 10 lithium metal adsorption groups, including groups with

surface bonds to C, N, O, F, and H. This allows RMG to estimate the thermochemistry of

all such species adsorbed on Li(110).
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Prediction of the solvation free energy of adsorbed species is not well studied. At present,

we treat the solvation and adsorption corrections largely independently. For an adsorbed

species we replace the bonds to surface atoms with bonds to hydrogen atoms and calculate

the solute parameters. This approximates the solute parameters of adsorbed species as those

of the desorbed hydrogenated species. We do not correct for solvent interactions with empty

sites on the metal surface.

Kinetics

69 calculated reactions were added to RMG’s reaction libraries and 14 new reaction families

shown in Table 1 were developed and trained.61 Of these new families, the 7 non-surface and

non-electrochemical families were developed to handle common direct reactions with lithium

and reactions unique to lithiated species. Except for R Addition MultipleBond Disprop

they were trained on reactions calculated using ARC.28 For R Addition MultipleBond Disprop,

which was confirmed in scans to be barrierless, we scanned the path of the reaction and then

calculated frequencies and energies at each point allowing us to compute the rate coefficients

using canonical variational transition state theory (CVTST) at the same level of theory. The

surface reactions associated with new families were developed based on literature. The car-

bonate reaction families9,62 assume sticking coefficients of 0.2. Surface Lithium Addition

uses the parameters for the analogous H+ ion reaction in Hansen et al. 2014.63 Additionally

5 surface reactions (not associated with new families) were computed at the same level of

theory as the adsorbed species thermochemistry calculated earlier, using Pynta and Harmon-

ically Forced Saddle Point searching (HFSP) to automate the rate coefficient computation.56

The 12 liquid phase electrochemical reactions are concerted reactions with an association

step and an electrochemical step. The rate coefficients for the electrochemical steps were

first computed with Marcus theory using the four-point method with a geometric mean as

advocated for in López-Estrada et al. 64 We first compute Gibbs free energies Gcgn, Gngn,

Gcgc and Gngc, where agb denotes calculating using the geometry of a and the charge of b
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Table 1: Added reaction families. Within the templates, red R denotes any atom, black X
denotes a surface site and green X denotes a halogen. The graphics are intended to illustrate
the reaction type and are not always as general as the actual template; they also omit vacant
surface sites and electrons. All electrochemical families draw their electrons from the metal
surface at a distance specified in the simulation parameters.

Family Reactions Template

1,2 Elimination LiR 13

1,2 Intra Elimination LiR 5

Li Abstraction 4

Li Addition MultipleBond 5

Li NO Ring Opening 6

Li NO Substitution 20

R Addition MultipleBond Disprop 2

Surface Carbonate 2F Decomposition 1

Surface Carbonate CO Decomposition 1

Surface Carbonate Decomposition 1

Surface Carbonate F CO Decomposition 1

Surface Lithium Addition∗ 1

Cation Addition Multiple Bond∗ 7

Cation R Recombination∗ 5

∗Electrochemical families
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and c denotes the charged geometry/state and n denotes the neutral geometry/state, in gas

phase with no hindered rotors. We are then able to estimate λi needed for Marcus theory

using the recommended geometric mean64

λi(T ) =
√
(Gcgn(T )−Gngn(T ))(Gngc(T )−Gcgc(T )) (10)

where λi is the internal reorganization energy. We fit the temperature dependence of λi to

a third order polynomial

λi(T ) = a1 + a2T + a3T
2 + a4T

3 (11)

and are then able to compute λo assuming that the distance from the electron source is large

compared to the radius of the molecule

λo = Na
e(Nep −Ner)

2

8πϵ0r
(
1

n2
− 1

ϵ
) (12)

where λo is the outer reorganization energy, e is the fundamental charge, Na is Avogadro’s

number, Nep is the number of electrons in the products, Ner is the number of electrons in the

reactants, ϵ0 is the vacuum permittivity, r is the molecular radius (computed from McGowan

volumes), n is the solvent index of refraction and ϵ is the relative permittivity of the solvent.

We can then use Marcus theory to compute the Gibbs free energy of the transition state

using

∆G‡ =
(∆G0 + λo + λi)

2

4(λo + λi)
(13)

where ∆G0 is the Gibbs free energy of reaction (computed from Gcgc and Gngn) and ∆G‡ is

the Gibbs free energy of the transition state. We then are able to compute the rate coefficient

using transition state theory

k(T ) = κ(d)
kBT

h
e−

∆G‡
RT (14)

where d is the distance from the electrode. We adopt the approach from Spotte-Smith et al.
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assuming that κ(d) = e−1.2x1010d where d is in meters.6 This gives the rate coefficient for the

electrochemical step. For a sequence

Li+ + A+ e− ↔1 Li+ − A+ e− ↔2 LiA (15)

we compute the overall rate coefficient assuming the first step rapidly equilibrates and has

a much smaller barrier than the electrochemical step giving us

k12 = K1k2 (16)

.where K1 is the equilibrium constant for step (1), k2 is the Marcus theory rate coefficient

for the electrochemical step and k12 is the overall rate coefficient.

In addition to the above reactions, we include in the associated reaction library the

electrochemical reaction

Li+ + e− −−→ Li (17)

assuming a fast 1 ns timescale at 0 V and a symmetry factor of β = 0.5 based on the lower

bound on solvent reorganization time for water used in Hansen et al. 2014.63 It should be

noted our results are not sensitive to this value as most lithiated species are formed through

electrochemical reactions with Li+ rather than reaction with Li.

Kinetic Solvent Effects

We implemented a system within RMG to account for the kinetic solvent effect in the

new families. Here, we define the transition state Abraham solute parameters as a sum of

contributions from the reactant, product and reaction center

PTS = (1− x)PR + xPP +∆Prxncenter (18)
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where P is an arbitrary Abraham parameter, PTS denotes the parameter of the transition

state, PR denotes the reactant parameter, PP denotes the product parameter, x is a measure

of how different the transition state is from the reactants, and ∆Prxncenter is a correction

associated with the solvation of the reaction center of the transition state. We are assuming

here based on the Hammond-Leffer postulate65 that the closer the transition state is to the

reactant or products the more the solute properties will be similar. We measure x based on

the uncorrected activation barrier as

x =
|Ea|

|Ea|+ |GP − Ea −GR|
(19)

where Ea is the uncorrected activation barrier, GP is the Gibbs free energy of the solvated

product and GR is the Gibbs free energy of the solvated reactant. With these in place we can

calculate ∆Prxncenter for any reaction we have solvation data for. Within RMG’s automatic

tree generation (ATG) framework61 at each node in the tree we average ∆Prxncenter for every

parameter. When a new reaction is estimated we take these parameters from where the gas

phase kinetics were estimated in the tree and compute the transition state parameters using

Equations 18 and 19. As described before in Equations 5-9 the transition state parameters

can be used to correct for the kinetic solvent effect. Figure 1 shows a histogram of errors with

and without this solvation correction in a 50:50 ethylene carbonate and dimethyl carbonate

solvent at 298 K for the Li NO Substitution family (19 reactions). The mean absolute

errors in ln(k) for the uncorrected and corrected cases are 10.24 and 5.03 respectively. In

this case the corrections represent a two order of magnitude improvement in accuracy at 298

K.

Forbidden Structures

When running RMG it is important to ensure that we do not generate species and reac-

tions that are unphysical, or unimportant species that we are unable to estimate important
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Figure 1: Histogram of leave-one-out errors against the solvent corrected training reactions
for Li NO Substitution for no solvent correction and solvent correction using estimated
transition state solute parameters. The mean absolute errors in ln(k) for the uncorrected
and corrected cases are 10.24 and 5.03 respectively.

properties for. The new forbidden structures added to RMG are listed in Table 2. Since

the surface species framework treats Lithium atoms distinctly from surface sites allowing

Lithium to plate within the model is not feasible as it will result in sites being improperly

blocked. In particular, since in this work we simulate at fixed Li+ concentration, plating of

Li+ would be a null reaction as it should not affect any concentrations in the simulation.

Lithium dimerization is also forbidden. We have also forbidden physically adsorbed species

in general as such structures are often not stable on lithium.9,62 Additionally, we found in

scans at the B3LYP/6-311++G(d,p) level that the carbonate groups with the radical on

the center carbon do not participate in bimolecular radical reactions the same way radicals

usually do. We had significant difficulties in identifying transition states for these reactions;

however, based on scans we believe that they at least have significantly higher barriers than

is typical for similar reactions. For this reason we have forbidden these reactions. We have

also forbidden species with lithium ionically bonded to a carbon that is also bonded to a

more electronegative atom. While these structures can be optimized, the resulting structure
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Table 2: Added non-trivial forbidden structures. Within the templates, Orange !CH denotes
any atom that is not a carbon or hydrogen atom and black X denotes a surface site.

Name Forbidden Reason Forbidden Template

LiX Globally
Lithium plating on the
surface should not re-
move reactive sites

Li-Li Globally
Disallow lithium
dimer formation

VDW When X = Li
Most species tend to
only chemisorb to Li
metal surfaces.

CO3
Bimolecular reactions
involving the radical
site

These radical sites
were found to be
much harder to inter-
act with in scans than
is typical.

LiCONSFCl Globally

These structures tend
to either not optimize
or most of the nega-
tive charge resides on
the !CH atom.

commonly results in the lithium atom being much closer to the electronegative atom and

most of the negative charge not being on the carbon so the optimized structure does not

seem to be the target species. For now, as these structures are high in energy we choose to

forbid them.

Simulations

Before this work, RMG was mostly limited to constant temperature and pressure gas-phase

batch reactors, constant temperature and volume liquid-phase batch reactors, and constant

temperature and volume gas-phase catalytic systems. RMG also did not support electro-

chemical reactions. To enable simulation of electrochemical reactions and liquid phase cat-
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alytic systems we first upgraded the ReactionMechanismSimulator.jl (RMS),66,67 a Julia

software for general reaction mechanism simulation, to handle electrochemical reactions us-

ing the framework of Hansen et al. 201463 and to simulate liquid phase catalytic systems.

We then developed a framework that enabled us to easily integrate any RMS reactor con-

figurations into RMG allowing us to run RMG on liquid phase electrocatalytic systems such

as the SEI.

The SEI involves highly complex phase behavior and transport that are difficult to resolve

in a kinetic model. In this work we considered two very simple scenarios. In the first

scenario we targeted initial SEI formation simulating the liquid near the anode as a constant

temperature, volume, and potential liquid phase at 298 K, 0 V relative to the anode and

with a 0 nm distance from the anode (for Marcus theory evaluations) and the anode as a

constant temperature, area, and potential surface phase with a 1× 105 m−1 surface area to

liquid volume ratio. In the second scenario we targeted SEI growth simulating a constant

temperature, volume, and potential liquid phase alone at 298 K, 0.3 V potential relative to

the anode, and a 1 nm distance from the anode. While in the first scenario we used viscosity

parameters associated with the electrolyte, for the SEI growth scenario we fixed the viscosity

at 5×107 Pa·s, resembling that of a polymer, to better represent transport limitations within

the SEI. In all liquid phases we simulated with the electrolyte fixed at its pure component

concentration and Li+ fixed at 15 mol/m3, a typical concentration in a battery, and with the

solvent concentration fixed. These constant concentration conditions ensure our electrolyte

and Li+ do not deplete. Initially systems have bare surfaces and start with only the liquid

solvent and dissolved Li+ at nonzero concentrations.

For species selection within RMG we utilized the branching algorithm22 and simulated

the SEI formation scenario only out to short timescales dependent on the electrolyte while

all SEI growth scenarios were simulated out to 1000 s. For this demonstration we limited

the number of C, N, and O atoms as appropriate to prevent extensive polymerization.
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Results

Acetonitrile Decomposition on Lithium

We first considered acetonitrile (ACN) a commonly studied electrolyte.68–70 Experiment-

based solvent and viscosity parameters for ACN were drawn from the RMG-database. For

the SEI formation scenario study we simulated out to 1000 s and RMG converged at 94

species.

A flux diagram of the mechanism simulated at the SEI formation conditions at 1 second

is presented in Figure 2. In this model ACN primarily reacts with Li+ to form the rad-

ical with SMILES [Li]N=[C]C which mostly terminates via radical recombination to form

[Li]N=C(C)C(C)=N[Li], but can also react further with Li+ and ACN to polymerize. The

surface is predicted to be mostly covered by dissociative adsorption products of ACN and

adsorbed [Li]N=[C]C. In general, however the mechanism predicts ACN will not appreciably

decompose at these conditions. The lack of liquid phase decomposition is in good agreement

with literature.68–70 However, ACN is expected to decompose on the metal surface.68 The

lack of surface decomposition in the model is likely because currently the adsorbates must

desorb into ACN as neutral species and because we have only implemented one electrochem-

ical reaction family on the surface.

Ethylene Carbonate Decomposition on Lithium

For our second electrolyte we examined ethylene carbonate (EC), perhaps the most common

lithium ion battery electrolyte component, which unlike ACN is known to decompose in the

liquid phase. Solvent parameters for ethylene carbonate were computed using the methods

described in the Solvation Corrections section and viscosity parameters were drawn from

those available in the RMG-database for diethyl carbonate. For EC we ran the SEI forma-

tion simulation out to only 1 µs due to high reactivity at those conditions. We ran RMG

until there were 75 core species, when the fluxes in the mechanism were converged for our

17

https://doi.org/10.26434/chemrxiv-2024-plzrv ORCID: https://orcid.org/0000-0002-4624-2852 Content not peer-reviewed by ChemRxiv. License: CC BY-NC-ND 4.0

https://doi.org/10.26434/chemrxiv-2024-plzrv
https://orcid.org/0000-0002-4624-2852
https://creativecommons.org/licenses/by-nc-nd/4.0/


F
ig
u
re

2:
F
lu
x
d
ia
gr
am

fo
r
th
e
ge
n
er
at
ed

ac
et
on

it
ri
le

m
ec
h
an

is
m

fo
r
th
e
S
E
I
fo
rm

at
io
n
co
n
d
it
io
n
at

1
se
co
n
d
.
L
ar
ge
r
ye
ll
ow

er
ar
ro
w
s
d
en
ot
e
la
rg
er

fl
u
x
es

w
h
il
e
sm

al
le
r
p
u
rp
le
r
ar
ro
w
s
d
en
ot
e
sm

al
le
r
fl
u
x
es
.

L
ar
ge
r
ci
rc
le
s
ar
ou

n
d
sp
ec
ie
s
d
en
ot
e
h
ig
h
er

co
n
ce
n
tr
at
io
n
sp
ec
ie
s
w
h
il
e
sm

al
le
r
ci
rc
le
s
an

d
n
o
ci
rc
le
s
d
en
ot
e
lo
w
er

co
n
ce
n
tr
at
io
n
sp
ec
ie
s.

18

https://doi.org/10.26434/chemrxiv-2024-plzrv ORCID: https://orcid.org/0000-0002-4624-2852 Content not peer-reviewed by ChemRxiv. License: CC BY-NC-ND 4.0

https://doi.org/10.26434/chemrxiv-2024-plzrv
https://orcid.org/0000-0002-4624-2852
https://creativecommons.org/licenses/by-nc-nd/4.0/


Figure 3: Flux diagram for the SEI growth scenario for ethylene carbonate at 10 seconds.
Larger yellower arrows denote larger fluxes while smaller purpler arrows denote smaller fluxes.
Larger circles around species denote higher concentration species while smaller circles and
no circles denote lower concentration species.
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scenarios. Interestingly, despite the significant differences in viscosity the two scenarios result

in largely the same pathways. Viscosity changes affect diffusion limitations for bimolecular

reactions and can strongly affect competition between bimolecular and unimolecular reac-

tions. However, in this case it seems that the high flux pathways do not involve significant

competition between bimolecular and unimolecular pathways. Additionally, in the SEI for-

mation scenario we do not predict much chemistry happening on the surface relative to the

liquid phase, with the surface being primarily covered with CO3.

A flux diagram showing the highest fluxes in this mechanism simulated at the SEI growth

scenario study conditions at 10 s is available in Figure 3. The pathways in this flux diagram

are similar to those in the SEI formation scenario, although the time scales at which chemistry

occurs are drastically different between the two cases. The SEI growth scenario predicts a

volumetric current draw for the SEI growth chemistry of 3× 106 A/m3.

Within Figure 3 we see major intermediates: [Li]O[C]1OCCO1 and

[Li]OC(=O)OC[CH2], and major products: [Li]OC(=O)OCCOC(=O)O[Li] (LEDC),

[Li]OC(=O)OCCCCOC(=O)O[Li] (LBDC) and C2H4. All of these intermediates and

products are expected based available experimental data, literature and the Spotte-Smith

mechanism1,15,71 except for LBDC. Apart from the reaction that produces LBDC all of the

high flux (yellow arrow) pathways are in the Spotte-Smith mechanism.

RMG produces LBDC from the reaction

2 [Li]OC(−−O)OC[CH2] −−→ [Li]OC(−−O)OCCCCOC(−−O)O[Li] (20)

which is a very fast radical recombination generated by RMG and verified to be barrierless

by scanning along the reaction bond with DFT. This reaction competes directly with

2 [Li]OC(−−O)OC[CH2] −−→ [Li]OC(−−O)OCCOC(−−O)O[Li] + C2H4 (21)

a R Addition MultipleBond Disprop reaction which is included in both mechanisms and
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noted as an important path in Spotte-Smith et al. 2022. Their approach likely misses the

paths to LBDC because the mechanism was developed based on searching for paths be-

tween sets of starting materials and experimentally expected products using Kinetic Monte

Carlo, and LBDC is not an expected product.15 We are not aware of any studies of the

R Addition MultipleBond Disprop reactions. Upon further examination we discovered these

reactions were barrierless so we calculated two cases with CVTST at CCSD(T)-F12/cc-pvdz-

F12//ωB97X-D3/def2-TZVP level as mentioned earlier. One of these reactions was

[Li]OC(−−O)OC[CH2] + C[CH2] −−→ C−−C + [Li]OC(−−O)OCC (22)

which we considered a good surrogate for the reaction in Equation 21. Using the associated

rate coefficient for that reaction implies that the two competing reactions have fast rate coeffi-

cients that are within a factor of 2 of each other at 298 K and become nearly indistinguishable

when diffusion limitations are accounted for. Recombination reactions are well studied and

very fast making it difficult to argue currently that the R Addition MultipleBond Disprop

reaction should be appreciably faster than the recombination reaction. While LBDC has not

been observed experimentally, that does not preclude it from being an intermediate in this

process.

More generally, RMG is able to produce some radical pathways that are similar to the

more complex electrochemical steps in the Spotte-Smith mechanism, such as those that

lead to Li2CO3 and [Li]OCCOC(=O)O[Li] (DLEMC). However, without including charged

species it is not easy to represent these faster electrochemical pathways.

Discussion

Overall, we have built a solid framework that enables automatic generation of lithium-

based electrocatalytic mechanisms in RMG. As far as the authors are aware this is the

first automatic mechanism generation framework for electrocatalytic systems. It is worth
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contrasting our framework conceptually with that used in Spotte-Smith et al. 2022 and

Spotte-Smith et al. 2023.12,15

The Spotte-Smith approach starts by manual construction of a large database of thermo-

chemistry in the desired solvent of all species that might be important in connecting overall

reactants to expected overall products. Then all possible reactions within a 2D graph rep-

resentation are generated between all species in the dataset and filtered based on a range

of different criteria. Kinetic Monte Carlo (KMC) simulations are then run with constant

forward rate coefficients and important reaction sequences are traced backwards from the

selected desired products and compiled together to a set of reactions/species considered im-

portant. Then a manually selected subset of the associated transition states are searched

for using AutoTS and single-ended growing string methods enabling computation of the

associated rate coefficients.

In contrast, RMG only takes in the initial species and reaction conditions. Reactions

are generated as needed using specific templates for known important reaction classes

from the RMG-database. Thermochemistry and kinetics are estimated using using RMG-

database libraries and estimators. RMG iteratively runs simulations of identified impor-

tant species/reactions broadly following the flux to identify additional important species

and reactions until convergence where it outputs a chemical mechanism. In practice, these

mechanisms are often refined to accuracy iteratively using sensitivity and flux analyses to

identify important reactions and quantum chemistry calculations to integrate with the RMG-

database to improve libraries and estimators and add new reaction families.17

Our approach, at least in principle, is significantly easier, more automated, faster, and

much more computationally efficient. Additionally, RMG does not require any assumptions

about the final products and is in a broad sense able to apply knowledge learned within

its databases from one application to improve performance on other applications. How-

ever, RMG is heavily reliant on the accuracy of its estimators and comprehensiveness of its

templates. The Spotte-Smith approach instead uses quantum chemistry calculations for all
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involved species and identified reactions. While very computationally expensive this allows

them to mostly circumvent a number of important limitations in our approach. While we

have developed machine learning approaches and workflows that are able to automate much

of the data integration20,61,72 and we have made a very significant push that looks quite

promising in this work, many additional calculations are still needed. The most glaring area

of need is the ability to estimate the thermochemistry of lone ions in solution. Many very

important more complex electrochemical reaction sequences cannot be accurately approxi-

mated as neutral concerted reactions as done in this work. The next most glaring area of

need is development of a much more comprehensive enumeration of important templates for

electrochemical systems and training data for the associated kinetics estimators.

Based on literature and calculated errors, the workflow presented for computing parame-

ters accumulates mean absolute errors (MAE) of approximately ∼ 0.8 kcal/mol in the energy

calculations, ∼ 0.5 kcal/mol from the COSMO-RS solvation correction,34 and ∼ 0.5 kcal/mol

from solute parameter fitting for singly lithiated species. This gives us results that are sol-

vent agnostic with a total MAE of only ∼ 1.8 kcal/mol in theory. However, in order to get

to that number we have to assume that the COSMO-RS errors in the solvation free energy

of lithiated species are similar to those of the organic species examined in Chung et al. 2022.

We are also ignoring multi-lithiated species that have significantly higher fitting errors that

might put the number closer to ∼ 4 kcal/mol. Additionally, fitting errors on the only lone

ion calculated, Li+, while less than some multi-lithiated species were 1.78 kcal/mol. It is

clear that fitting errors are significant contributors to error in this workflow, suggesting that

we may be able to improve our accuracy on lithiated species and ions significantly by fitting

a more complex solvation correction model.

These electrocatalytic systems have many important reactions between highly reactive

species that have diffusion limitations. It may be beneficial to move beyond RMG’s current

diffusion limitation models to one that properly accounts for how species reactivity interacts

with diffusion limitations.73
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Conclusions

We have presented and demonstrated an extension of the Reaction Mechanism Generator

software for automatic generation of chemical kinetic mechanisms in lithium based electro-

catalytic systems. Furthermore, we have presented a framework for calculating the thermo-

chemistry and kinetics of the involved species and reactions accounting for species solvation

free energy and kinetic solvent effects. We demonstrate these contributions by modeling

the decomposition of acetonitrile and ethylene carbonate electrolytes near a lithium anode

during SEI formation and growth. We hope to extend this framework in the future to handle

general charged species and more complex electrochemical reactions.
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