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ABSTRACT 

The frozen domain (FD) approximation with fragment molecular orbital (FMO) method is efficient 

for partial geometry optimization of large systems. We implemented the FD formulation (FD and 

frozen domain dimer [FDD] methods) already proposed by Fedorov, D. G. et al. (J. Phys. Chem. 

Lett. 2011, 2 (4), 282–288.); proposed a variation of it, namely frozen domain and partial dimer 

(FDPD) method; and applied it to several protein-ligand complexes. The computational time for 

geometry optimization at the FDPD/HF/6-31G* level for the active site (six fragments) of the 

largest β2-adrenergic G protein-coupled receptor (440 residues) was almost half that of the 

conventional partial geometry optimization method. In the human estrogen receptor, the crystal 

structure was refined by FDPD geometry optimization of estradiol, surrounding hydrogen-bonded 

residues and a water molecule. The rather polarized ligand binding site of influenza virus 

neuraminidase was also optimized by FDPD optimization, which relaxed steric repulsion around 

the ligand in the crystal structure and optimized hydrogen bonding. For Serine-Threonine Kinase 

Pim1 and six inhibitors, the structures of the ligand binding site, Lys67, Glu121, Arg122, and 

benzofuranone ring and indole/azaindole ring of the ligand, were optimized at FDPD/HF/6-31G* 

and the ligand binding energy was estimated at the FMO-MP2/6-31G* level. As a result, the 

correlation coefficient between pIC50 and ligand binding energy was considerably improved as 

compared to results from both molecular mechanics- and quantum mechanics/molecular 

mechanics-optimized geometries. Thus, this approach is promising as a high-precision structure 

refinement method for structure-based drug discovery. 

 

1. Introduction  
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The fragment molecular orbital (FMO) method enables quantum chemical calculations of whole 

bio-macromolecules such as proteins and nucleic acids, yielding the energies and electron densities 

of whole molecules as well as interaction energies between fragments.1,2 The FMO calculations of 

protein complexes whose structures have been experimentally analyzed using X-ray 

crystallography, nuclear magnetic resonance, and cryo-electron microscopy allow quantitative 

analysis and physicochemical interpretation of intra- and intermolecular interactions within the 

complexes. These structural data are obtained from the Protein Data Bank,3 but these structures 

generally do not include the coordinates of hydrogen atoms, some structures are missing, and some 

structures contain unclear coordinates depending on the experimental resolution. Therefore, it is 

important to refine the experimental structure for precise calculations. Although the classical 

molecular mechanics (MM) method using molecular force fields is widely used for general 

molecular modeling, including geometry optimization, the obtained structures depend on the force 

field parameters and are not always sufficient to describe weak intermolecular interactions, such 

as hydrogen bonds, halogen bonds, and CH/π interactions. Geometry optimization at the quantum 

mechanical (QM) level is necessary for more precise structure creation, and several methods have 

been developed to calculate molecular structure relaxation using the FMO energy and its gradients, 

such as fully geometry optimization,4,5 partial geometry optimization (POpt),6,7 and FMO-based 

molecular dynamics (MD) methods, such as FMO-MD2,8,9 and the FMO-QM/MM-MD.10 These 

methods have only been applied to a few small proteins in biological systems and have not reached 

the level of practical use. The density-functional tight-binding combined with the FMO (FMO-

DFTB)11 can be used for whole molecule geometry optimization at low computational cost. 

However, the accuracy is at the semi-empirical level and there are issues to be solved in the 

geometry optimization of charged or polarized molecular systems.12 Therefore, MM energy 
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minimization is used as a standard preprocessing step for FMO calculations in practice, and 

QM/MM optimization using the ONIOM method is especially used for precise calculations.13,14 

Recently, a combination of classical molecular dynamics structural sampling and FMO energy 

calculations was used for energy analyses considering structural fluctuations in water.15–17 

As the accuracy of interaction analysis using FMO calculations increases, the reliability of the 

structures used becomes even more important. Experimental structural analysis data (e.g., X-ray 

crystal structures with a resolution of about 2 Å) may not always provide sufficiently precise 

structures around the ligand, especially for structure-based drug design (SBDD). Therefore, an 

approach that optimizes a portion of a large biomolecule is necessary to identify the coordinates 

of the ligand and its surrounding residues. Although MM calculations are the first choice for 

biomolecule optimization, there is an imbalance between the MM structures and FMO energies in 

the evaluation of hydrogen bonds. For example, there is excess charge transfer to the hydrated 

ligand in the MM structure in some cases,18 and the correlation of ligand binding predictions with 

experimental values, such as IC50, Ki, and KD, is only obtained after geometry optimization at the 

QM level in other cases.13,19 In the example of estrogen receptor (ER), the correlation with the 

experimental binding values was obtained by optimizing the hydrogen bond distance between the 

ligand and the hydrogen bonding Glu residue with QM and by appropriately representing the 

charge transfer between the ligand and the receptor19. The activity of serine-threonine kinase Pim1 

differs by up to 200-fold for six different chemical structures that only differ in the position of the 

nitrogen atom in the benzoimidazole ring. We applied several levels of geometry optimization to 

the complex structures of these compounds and Pim1, evaluated the FMO energy, and reproduced 

the activity using only QM geometry optimization of the hydrogen bond distance between the 
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ligand and the residue. Therefore, it is expected that geometry optimization of substructure around 

the ligand by the FMO method will be an effective approach for precise SBDD. 

The first proposal of partial geometry optimization with FMO was reported by Ishikawa et al., 

namely the partial energy gradient (PEG),20 wherein the total system was divided into two regions 

whether the target fragments included (R1) or not (R2), and the gradient was obtained by 

differentiating the sum of the total energy of R1 and the interaction energy between R1 and R2. This 

approach showed that the optimized geometries of prion protein with GN8 molecule and lopinavir 

with human immunodeficiency virus type 1 (HIV-1) protease by PEG were close to those by 

conventional method and that the ratios of the computational time of conventional method to that 

of PEG were around 0.15 for one step of optimization. However, the acceleration by PEG was 

limited because the electronic structure calculation was the same as conventional FMO. The time-

consuming steps of FMO calculation were monomer self-consistent charge (monomer-SCC) 

process and the following self-consistent field calculation for dimer pairs (dimer-SCF). Tsukamoto 

et al. implemented the approximation that dimer-SCF calculation of pair consisting of fixed 

fragments is converted to the dimer-electrostatic (dimer-es) calculation.7 This approximation is 

effective for the calculations of the total energy and gradients because the dimer-es term between 

fixed fragments does not contributed to the semi-analytic gradient of target fragment.4 

Meanwhile, Fedorov et al.6 proposed the frozen domain (FD) approximations wherein the 

system was separated by three domains: active, polarizable buffer and frozen. These approaches 

reduce the number of dimer-SCF pairs and the number of fragments updating the electronic 

structure on each optimization step by monomer-SCC. Frozen domain dimer (FDD) 

approximations succeeded in saving the computational cost of the entire FMO calculation for 

partial geometry optimization. Nakata and Fedorov21 implemented FD and FDD combined with 
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the polarizable continuum model (PCM) and the acceleration factor comparing FMO/FDD to full 

FMO was 38 and 12 for Trp-Cage (PDB: 1L2Y) with 161 water molecules and crambin (PDB: 

1CRN), respectively. FMO/FDD/PCM was also applied to the partial geometry optimization of 

the ligand and binding pocket of K-Ras (PDBID: 4Q03). 

In this study, we propose a novel approach based on the FD framework, namely “frozen domain 

and partial dimer (FDPD)” and implemented it with FD and FDD into ABINIT-MP program.2,22 

The accuracies of the methods were evaluated on chignolin and Trp-Cage comparing semi-analytic 

and numerical gradients. The methods were also applied to the complex of human ER ligand 

binding domain with 17β-estradiol, complex of N1 neuraminidase (NA) with oseltamivir 

carboxylate, the complex of β2-adrenergic G protein–coupled receptor with the ligand (β2AR; for 

benchmark only), and Pim1 kinase with six compounds. 

 

2. COMPUTATIONAL DETAILS  

2.1 Energy Definition 

In the FD framework, the total system was divided into the three domains (Figure 1): the active 

domain (L3), which included the fragments to be optimized; the buffer domain (L2) around L3 

fragments; and the FD (L1). The total FMO energy of the FD approach is: 

𝐸𝐸FMO/FD = �𝐸𝐸𝐼𝐼′
𝐼𝐼∈L1

 + � 𝐸𝐸𝐼𝐼′
𝐼𝐼∈(L2+L3)

 + � ∆𝐸𝐸𝐼𝐼𝐼𝐼
𝐼𝐼>𝐽𝐽

𝐼𝐼,𝐽𝐽∈(L2+L3)

 + �∆𝐸𝐸𝐼𝐼𝐼𝐼
𝐼𝐼∈L3
𝐽𝐽∈L1

 
(1) 

∆𝐸𝐸𝐼𝐼𝐼𝐼 = ∆𝐸𝐸𝐼𝐼𝐼𝐼′ + Tr(∆𝐃𝐃𝐼𝐼𝐼𝐼𝐕𝐕𝐼𝐼𝐼𝐼) (2) 

∆𝐸𝐸𝐼𝐼𝐼𝐼′ = 𝐸𝐸𝐼𝐼𝐼𝐼′ − 𝐸𝐸𝐼𝐼′ − 𝐸𝐸𝐽𝐽′ (3) 

where 𝐸𝐸𝐼𝐼′ and 𝐸𝐸𝐼𝐼𝐼𝐼′  are the internal monomer and dimer energies, respectively. ∆𝐃𝐃𝐼𝐼𝐼𝐼 and 𝐕𝐕𝐼𝐼𝐼𝐼 are the 

dimer density difference and electrostatic potential matrices, respectively. The electronic 
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structures of fragments in L1 were obtained once in the initial geometry and were unchanged 

during the preset cycle of optimization (keyword “OptDefrozenInterval” in ABINIT-MP). 

Therefore, the first term in Eq. (1) was constant and its gradient was zero. 

 

Figure 1. Schematic representation of dimer interactions contributed to energy and gradient in 
each method. (A) Full FMO optimization,4  (B) Partial geometry optimization implemented in 
2013 (POpt),6,7  Partial geometry optimization with (C) Frozen domain (FD), (D) Frozen domain 
and dimer (FDD), and (E) Frozen domain and partial dimer (FDPD) approximations.   

https://doi.org/10.26434/chemrxiv-2024-t9m7z ORCID: https://orcid.org/0000-0001-5357-8250 Content not peer-reviewed by ChemRxiv. License: CC BY-NC-ND 4.0

https://doi.org/10.26434/chemrxiv-2024-t9m7z
https://orcid.org/0000-0001-5357-8250
https://creativecommons.org/licenses/by-nc-nd/4.0/


 9 

 

Further approximation to speed up the calculation of energy and gradient (referred to as FDD) 

included neglecting the dimer energies between fragments in L2. The total FMO/FDD energy is 

as follows: 

𝐸𝐸FMO/FDD = �𝐸𝐸𝐼𝐼′
𝐼𝐼∈L1

 + � 𝐸𝐸𝐼𝐼′
𝐼𝐼∈(L2+L3)

 + � ∆𝐸𝐸𝐼𝐼𝐼𝐼
𝐼𝐼>𝐽𝐽

𝐼𝐼∈L3,𝐽𝐽∈(L2+L3)

 + � ∆𝐸𝐸𝐼𝐼𝐼𝐼
𝐼𝐼∈L3
𝐽𝐽∈L1

 
(4) 

However, the dimer interactions close to L3 fragments should not be neglected for optimization. 

The gradients of these interactions obtained by dimer-SCF calculation can be computed based on 

ref. 4. Consequently, we determined the total energy of new FDPD approach as: 

𝐸𝐸FMO/FDPD = � 𝐸𝐸𝐼𝐼′
𝐼𝐼∈L1

 + � 𝐸𝐸𝐼𝐼′
𝐼𝐼∈(L2+L3)

 + � ∆𝐸𝐸𝐼𝐼𝐼𝐼
𝐼𝐼>𝐽𝐽

𝐼𝐼∈L3,𝐽𝐽∈(L2+L3)

 + � ∆𝐸𝐸𝐼𝐼𝐼𝐼dimer-SCF

𝐼𝐼>𝐽𝐽
𝐼𝐼,𝐽𝐽∈L2

+ � ∆𝐸𝐸𝐼𝐼𝐼𝐼
𝐼𝐼∈L3
𝐽𝐽∈L1

  
(5) 

The gradients of initial geometry under the FDPD approach were the same as those in the FD 

approach because the gradients of dimer interactions in L2 based on dimer-es calculation were not 

included.4 

 

2.2 Domains for Target Systems 

In ABINIT-MP program,2,22 the thresholds of approximations to the two-electron electrostatic 

potential (“esp-aoc” and “esp-ptc”) and the threshold of dimer-es approximation are given in unit 

of the van der Waals (vdW) radius.23 For example, the default threshold value of dimer-es 

approximation (keyword “Ldimer”) is 2.0. This value means that threshold distance for dimer-es 

approximation was 2.0 times the sum of the vdW radii of the shortest contact atoms between 

monomers. We implemented new keyword “Lbuffer,” which is the threshold for specifying the L2 

domain. The default value of “Lbuffer” is 2.0, and it works the same way as “Ldimer” wherein the 
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threshold is 2.0 times the sum of the vdW radii of the shortest interatomic distance between the 

monomer in the L3 domain and another monomer. The domain definitions of target proteins are 

shown in Figure 1. 

Partial geometry optimizations were performed using the Broyden-Fletcher-Goldfarb-Shannon 

(BFGS) scheme.24 The thresholds of optimizations were 0.01 and 0.007 hartree/bohr for the 

maximum and root-mean-square (RMS) gradient values, respectively, and 0.02 and 0.014 bohr for 

the maximum and RMS displacements, respectively (these are default values in ABINIT-MP). 

 

2.3 Target Systems 

The calculation targets are shown in Figure 2, and the fragments in L3 domain are listed in Table 

1. Chignolin (PDBID: 1UAO) and Trp-Cage (PDBID: 1L2Y) were used for semi-analytic gradient 

validation, while the ER truncated model (89 fragments), ER (243 fragments, PDBID: 1ERE), N1 

neuraminidase (NA) (378 fragments, PDBID: 2HU4), and β2AR (441 fragments, PDBID: 2RH1) 

were utilized for speed benchmarking. The same ER and NA, as well as Pim1 (271 fragments, 

PDBID: 5VUC) were calculated as application targets. The ligands of the complex for ER, NA, 

β2AR, and Pim1 were 17β-estradiol, oseltamivir carboxylate, (S)-carazolol, and six 

benzofuranone-class inhibitors, respectively. The fragment IDs of the L3 region are listed in Table 

S1. In these calculations, molecular operating environment (MOE)  software25  (Chemical 

Computing Group) was used to model all structures, employing either the MMFF94x26 or 

Amber9927 or Amber10:EHT28,29 force field. Subsequently, geometries were optimized at the 

FMO-HF/6-31G* level in FD framework and the interaction energies were re-evaluated at the 

FMO-MP2/6-31G* level30,31 for the optimized structure using ABINIT-MP program.2,22 Details 

of these will be discussed in each section. The FMO calculation results of FMO-optimized 
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structures and the related data, such as X-ray and the modeling structure by MM and QM/MM 

methods, were registered in FMO database,32,33 and their entry IDs (FMODB IDs) are listed in 

Table S2.  

 

 

Figure 2.  Frozen domain regions of target systems. Red, green, and blue indicate L3, L2, and 
L1, respectively. (A) Chignolin, (B) Trp-Cage, (C) ER truncated model, (D) ER, (E) NA, (F) Pim1, 
and (G) β2AR.  
 

Table 1. Fragments in L3 and their residues or molecules for each protein (Figure 2). 

Protein Residue or molecule 

(A) Chignolin Glu5 

(B) Trp-Cage Tyr3 

(C) ER truncated model Glu353, Arg394, Phe404, His524, Water, Ligand 

(D) ER Glu353, Arg394, Phe404, His524, Water, Ligand 

(E) NA Arg118, Arg292, Tyr347, Arg371, Ligand 

(F) Pim1 Lys67, Glu121, Arg122, Ligand* 

(G) β2AR Asp113, Val114, Phe193, Ser203, Asn312, Ligand 
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* The ligands were split into two parts, with only one part set as the L3 region (see Figure 6c). 

 

3. RESULTS AND DISCUSSION 

3.1. Accuracy of Semi-Analytic Gradient 

Differences between semi-analytic and numerical gradients for Chignolin and Trp-Cage in each 

method are shown in Table 2. Those of FMO and POpt methods are also included for comparison. 

The accuracy of our FDPD was better than those of POpt and FDD and was quite similar to that 

of FD. Computational details for optimization and the total energies of optimized structures are 

summarized in Table S3. 

 

Table 2. Root-mean-square deviation (RMSD) and maximum difference between semi-analytic 
and numerical gradients for Chignolin and Trp-Cage. Serial numbers of optimized atoms were 45, 
46, 57, and 61–71 for Chignolin and 34–37 and 39–54 for Trp-Cage. 

Protein Basis set Method RMSD Max. error 

Chignolin 6-31G FMO 0.001727 0.005319 

  POpt 0.001857 0.005512 

  FD 0.001769 0.005190 

  FDPD 0.001760 0.005116 

  FDD 0.003183 0.013836 

 6-31G* FMO 0.001189 0.004585 

  POpt 0.001647 0.004001 

  FD 0.001280 0.004770 

  FDPD 0.001279 0.004821 

  FDD 0.003311 0.014548 

Trp-Cage 6-31G FMO 0.001076 0.002993 

  POpt 0.001641 0.004788 
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  FD 0.001222 0.003077 

  FDPD 0.001208 0.002202 

  FDD 0.002550 0.004337 

 

3.2 Performances of FD Approximations 

To investigate the acceleration, a comparison of the computational time for one optimization 

cycle in the POpt, FD, FDPD, and FDD methods was performed for proteins of different sizes. 

The target molecules were the ER truncated model,34 ER, NA, and β2AR (Figure 2). In addition to 

the ligand molecule, the residues to be optimized were set to the surrounding four residues and a 

water molecule for ER, the surrounding four residues for NA, and the five residues for β2AR, with 

1112, 1179, and 1117 atomic orbitals for the respective optimized regions. The system size 

significantly increased in POpt without the FD, whereas the increase was suppressed when the FD 

was applied, and the performance of FDD was increased 1.94 times compared to its POpt. 

Notably, β2AR exhibited a reduction in computation time across all three FD types when 

compared to NA despite having a higher total number of fragments. The number of fragments for 

each layer, dimer-SCF, and dimer-es across all targets is shown in Table S4. While the number of 

fragments in the L3 region was higher for β2AR than for NA (6 compared to 5 for β2AR), β2AR 

had fewer fragments in the L2 region (52 compared to 74 for NA). Consequently, the total number 

of dimer-SCF in regular FMO was similar for both (3217 for NA and 3213 for β2AR), but the 

numbers were 492 for NA and 333 for β2AR in FDPD, with a significant reduction observed in 

β2AR. The number of dimer-es in FDPD was higher for β2AR (2517 compared to 1766 for NA), 

but the total computation time was shorter for β2AR. These results suggest that the total number 

of dimer-SCF (which is dependent on the L2 region) had a more significant impact on the total 

computation time than the total number of fragments or the L3 region.  
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Figure 3. Computational time per cycle of frozen domain geometry optimization. Comparison 
between POPT and FD methods. Calculations were performed on 112 cores of a Xeon-based house 
server (Intel Xeon(R) Gold 6238R) owned by the research group, with 5 GB of memory per core 
and 4 CPUs allocated per fragment. 

 
3.3 Applications for Biomolecules 

The formation of intermolecular hydrogen bonds and CH/π bonds is important for the molecular 

recognition of biological systems. Specific hydrogen bonds are often formed in the ligand-binding 

pocket, especially in ligand recognition. Here, we optimized the hydrogen bond network by partial 

geometry optimization and validated the effectiveness of this approach for three important drug 

discovery targets: nuclear receptor, neuraminidase, and kinase, as examples of protein–ligand 

binding. 

3.3.1 Estrogen Receptor 

Initially, we applied three optimization methods (FD, FDD, and FDPD) to a complex of the 

human estrogen receptor (ER) α ligand binding domain, a member of nuclear receptor superfamily, 
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with 17β-estradiol (PDBID: 1ERE). X-ray crystallography and FMO calculations revealed that the 

ligand had two hydroxyl groups, the first forming a hydrogen bond network with Glu353, Arg394, 

and a crystal water, and the second forming a hydrogen bond with His524. Optimization of these 

hydrogen bond structures at the QM level was necessary to obtain a correlation between the 

calculated binding energy and the experimental relative binding affinity.19 However, the geometry 

optimization calculations at the HF/6-31G* level in 2005 could not handle large protein structures; 

therefore, a small model only consisting of the hydrogen bonding substructure (ligand, some amino 

acid residues, and crystal water was used).19 In the 2013  geometry optimization of protein 

substructure at the FMO-HF/6-31G* level, the model structure was truncated to the ligand and 87 

surrounding residues (truncated model).34 Finally, it was possible to perform partial geometry 

optimization using the entire protein-ligand complex model with the implementation of  FMO/FD 

calculations. Here, we validated the results of the FD optimization calculations, including 

comparison with previously calculated structures. We started with an initial structure in which the 

hydrogen direction of the -OH group, the donor of the hydrogen bond with His524, was reversed 

to confirm the efficacy of the FD geometry optimization. 

The important interatomic distances in the structures obtained using the three optimization 

methods are shown in Table 3. The optimized structures obtained using all methods are similar. 

The extremely short hydrogen bond distance between Glu353 and ligand (1.34 Å) observed in the 

initial structure, wherein the coordinates of the heavy atoms were fixed at the crystal structure, was 

corrected to around 1.6 Å by the geometry optimization. It was one of the shortest hydrogen bond 

distances, suggesting that the hydrogen bond was strong. Meanwhile, the other hydrogen bond 

distances formed with Arg394 and His524 were approximately 2.1 Å, indicating that they are 

moderate hydrogen bonds. Focusing on the O-H covalent bond distances of the hydroxy groups 
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involved in these hydrogen bond networks, the distance on the Glu353 side was 0.98 Å, which 

was longer than that of His524 (0.96 Å). This indicated that the weakly acidic proton of phenol 

was "slightly attracted" by the carboxy group of Glu. Furthermore, the fact that the hydrogen bond 

distance between the other hydroxy group and His524 (which was placed in the opposite direction 

in the initial structure) was properly optimized from 2.8 Å to 2.1 Å indicated that the partial 

geometry optimization was functioning properly.  

 

Figure 4. Molecular structure of the ligand and surrounding amino acids. Green, magenta, cyan, 
and atomic colors represent the initial, FD-, FDD-, and FDPD-optimized structures, respectively. 
The stick model indicates the atoms in the L3 region. The line model indicates the atoms in the L2 
and L1 regions. 

 

Table 3. Various interatomic distances in ER (Å).   

Geometry GLU353-ligand ARG394-ligand His524-ligand Ligand A-
OH* 

Ligand D-
OH* 

Initial#  1.349 2.250 2.803 1.000 0.948 
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POpt34, # 1.601 2.153 2.063 0.986 0.959 

FD 1.643 2.079 2.101 0.979 0.953 

FDPD 1.640 2.078 2.104 0.979 0.959 

FDD 1.607 2.029 2.168 0.986 0.964 

*Covalent O-H bond distance, #Truncated model was used. 

 

The inter-fragment interaction energy (IFIE) between the ligand and surrounding residues 

obtained from these optimized structures are shown in Table 4. The interaction energy values 

obtained by all methods were similar from the generally comparable structures. First, the IFIE 

between the ligand and His524 was significantly stabilized from +3.3 in the initial structure to 

around -14 kcal/mol with the formation of a hydrogen bond between them. The summation of IFIE 

(IFIE Sum) between the ligand and the residues, which corresponds to the binding energy, was 

also greatly stabilized by the formation of this hydrogen bond. The IFIE with Glu353 was 

approximately -34 kcal/mol, which was more energetically stable than that of His524. In these 

cases, the hydrogen bond distances corresponded to the strength of interaction energy, but in some 

cases, [such as Arg394 (about 6 kcal/mol) and His524] the interaction strengths were different 

even at comparable hydrogen bond distances. In other words, precise structure and quantitative 

energy evaluation are important to reveal the quantity and quality of intermolecular interactions. 

 

Table 4. Interaction energies between the ligand and its surrounding fragments in ER evaluated at 
the MP2/6-31G* level of theory (in kcal/mol). 

Geometry GLU353 ARG394 PHE404 His524 Water IFIE Sum 

Initial#   -33.2 -9.0 -5.1 3.3 -2.4 -86.5 

POpt -36.6 -4.5 -5.4 -15.3 -1.5 -107.7 

FD -34.2 -6.1 -5.5 -14.2 -1.3 -106.6 
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FDPD -34.0 -6.1 -5.5 -14.3 -1.3 -106.5 

FDD -34.9 -6.4 -5.6 -13.8 -1.6 -107.7 

#Truncated model was used. 

3.3.2 Influenza Virus Neuraminidase  

In the second example, partial geometry optimization was performed for the complex structure 

of influenza virus NA and the anti-influenza drug oseltamivir18,34,35; as oseltamivir carboxylate is 

a zwitterion, this is an example of geometry optimization of an intermolecular ion pair in a highly 

polarized ligand-binding pocket. The negatively charged carboxy groups formed ionic interactions 

with the surrounding basic residues, such as Arg371, Arg292, and Arg118, while the positively 

charged amino groups formed similar electrostatic interactions with the surrounding acidic 

residues, such as Glu119 and Asp151. However, only the residues on the above carboxy group 

side of the NA residues were considered as the optimized region. In the model of NA described in 

Section 3.2, we compared the crystal structure to the structures obtained from the FDPD 

optimization. Figure 5 illustrates the initial structure35 superimposed on the various optimized 

structures. Moreover, Table 5 presents the initial and the FDPD optimized structure, specifically 

the distance information between the ligand and the principal residues; the IFIE and PIEDA values 

before and after geometry optimization are shown in Table S5. Upon FDPD calculation, Arg118 

and Tyr347 were found to have shorter distances and stronger interaction than those of initial 

structure, while Arg371 had longer distances and weaker interaction. The distance between the 

hydrogen atom HH22 of Arg371 and the carboxy oxygen atom O1B of the ligand increased from 

1.7 Å to 1.8 Å, suggesting that the exchange repulsion (EX) value in the FMO calculation 

weakened and the structural repulsion was alleviated. The weakened EX value in the FMO 

calculation signifies that the structural repulsion was effectively eliminated. Thus, the ionic 

hydrogen bonding network was moderately optimized. 
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Table 5. Initial and FDPD optimized structure distance information between key ligand residues. 
Values in parentheses are those in the initial structures. 

Pocket residue Pocket atom Ligand atom Distance / Å IFIE / kcal/mol 

ARG118 HH11 O1B 2.408 (2.696) -15.7 (-12.3) 

ARG118 HH22 O1B 2.706 (2.980)  

ARG371 HH22 O1B 1.839 (1.702) -84.5 (-91.8) 

ARG371 HH11 O1A 1.803 (1.699)  

ARG292 HH12 O1A 2.118 (2.106) -39.3 (-40.2) 

ARG292 HH22 O1A 2.540 (2.563)  

TYR347 HH O1A 2.031 (2.083) -14.3 (-9.7) 
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Figure 5. NA ligand (G39) and surrounding residues. Green, magenta, cyan, and atom color 
represent initial structure, FD, FDD, and FDPD results, respectively. The stick model indicates the 
atoms in the L3 region; The line model indicates the atoms in the L2 and L1 regions. 

 

3.3.3 Predicting the Inhibitory Activity of Pim1 Kinase  

In the last example, we predicted inhibitory activity of Pim1 Kinase, comparing MM, QM/MM, 

and FMO-optimized structures. In a previous study13 that examined the prediction of inhibitory 

activity relationships for Pim1 kinase and its inhibitors that exhibited activity cliff based on FMO 

calculations. To determine if the different structures used in the FMO calculations affect the 

activity prediction, we compared FMO results for three different structures: X-ray crystal 

structures of each complex, and MM- or QM/MM-optimized structures based on modeling 

structures from a single template complex. The results showed that the modeling structure using 

the same template (Figures 2F and 6A) was suitable for predicting notable changes in activity 

values owing to slight structural differences, such as activity cliffs (Figure 6B).13,36 Furthermore, 

the QM/MM-optimized structures had the best correlation between experimental inhibitory 

activities and predicted inhibitor binding energies. Therefore, we compared the inhibitory activity 

relationship in the MM-, QM/MM-, and FMO-optimized structures using the template model to 

confirm the usefulness of the FMO-based geometry optimization developed in the present study, 

which treats the entire system with QM calculations. 
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Figure 6. Complex between Pim1 kinase and compound 1 (A). The stick model indicates the atoms 
in the L3 region; The line model indicates the atoms in the L2 and L1 regions. The FMO-optimized 
structure with FDPD is indicated by color for each element type. The FMO-optimized structures 
with FD and FDD are shown in magenta and cyan, respectively. The X-ray crystal structure is 
shown in green.  Benzofuranone-class Pim1 kinase inhibitors and its inhibitory activity values 
IC50

36 (B). Fragmentation of inhibitor (C).  

 

The flows of each geometry optimization using MM, QM/MM, and FMO methods are explained 

in Supplementary Information section 4. Note that each method has a different optimization region, 

Fragment (1)

Fragment (2)

compound 1
IC50 = 2 nM

compound 2
IC50 = 2 nM

compound 3
IC50 = 3 nM

 
   

compound 5
IC50 = 92 nM

compound 6
IC50 = 447 nM
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as shown in Figure S1; FMO optimization (Fig S1C) allows for a wider optimization region. The 

FMO geometry optimizations were performed by FD, FDPD, and FDD approaches, where each 

residue was treated as different fragments and the inhibitor was divided into two fragments, as 

shown in Figure 6C. 

Details of the FMO geometry optimization calculation with FD, FDPD, and FDD methods and 

the subsequent FMO-MP2/6-31G* single point calculation are shown in Supplementary 

Information section 4 and Tables S6–S10. Hydrogen bond distances, r1 and r2 (Figure S1) were 

increased by QM optimization: the distances of the QM/MM- and FMO-optimized geometries 

were prolonged on average by 0.1 and 0.2 Å when compared with those of the MM, respectively 

(Tables S7–S10). Although the difference in theoretical levels did not significantly affect the IFIE 

between the inhibitor and its hydrogen-bonding fragment of Pim1 (Glu121 and Lys67), the FMO 

geometry optimization moderated the interaction energies of the ES and EX components. In 

particular, the exchange repulsion was contained at approximately 10 kcal/mol. 

Subsequently, inhibitor binding energy between Pim1 kinase and each inhibitor was estimated 

using each modeling structure. Here, the inhibitor binding energy ΔEconpound X was a summation of 

IFIEs over Pim1 kinase with compound X (X = 1 ~ 6). Figure 7 shows the correlations between 

the experimental inhibitory activity (pIC50 = − log10 [IC50]) and referential inhibitor binding 

energy; the referential inhibitor binding energies in the cases of MM, QM/MM, and FMO 

geometry optimizations were the differences from a reference value of compound 1 with FMO 

geometry optimization at the FDPD/HF/6-31G* level. 

ΔΔ𝐸𝐸inhibitor = Δ𝐸𝐸compound 𝑋𝑋 –  Δ𝐸𝐸compound 𝟏𝟏;  X = 2–6. (6) 
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The results of the FMO geometry optimization at the FDPD level showed the best correlation 

with the experimental values (Figure 7C). Correlation coefficients R2 between pIC50 and 

ΔΔEinhibitor based on results of MM, QM/MM, and FDPD optimized geometries were 0.58, 0.67, 

and 0.81, respectively. The correlations improved by increasing the QM region for geometry 

optimization. The FDPD method can optimize more atoms at the QM level than the QM/MM 

method, and the entire molecular system can be treated in the QM level, thus improving the 

prediction of inhibitory activity significantly. 

 

Figure 7. Correlation between pIC50 and the referential inhibitor binding energies ΔΔEinhibitor using 
a reference value of compound 1 (ΔEcompound 1 = −473.8 kcal/mol); Geometry optimization methods 
are MM with Amber99 force field (A), QM/MM at HF/6-31G*:UFF level (B), and FMO with 
FDPD at HF/6-31G* level (C). 

 

4. CONCLUSIONS 

The FD framework for partially optimization (FD, FDD, and FDPD) was implemented into the 

ABINIT-MP program, and the accuracy of gradients and the computational time per optimization 

cycle was compared. The error of the gradients between analytical and numerical methods of 

FDPD was close to those at FMO and FD and were smaller than those at POpt and FDD. The 

average time of each optimization cycle for FDPD were slightly longer than those for FD. The FD 
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optimization successfully refined the initial crystal structure. In particular, examples of structural 

refinement of hydrogen bonding networks in the ligand-binding pockets of proteins were 

demonstrated using protein-ligand complexes, such as ER and NA. This helps improve structural 

uncertainties around the ligand in the crystal structure. Notably, these advancements were not 

achieved by truncating only the pocket region structure but performing all-electron calculations on 

the entire protein structure. 

The prediction of inhibitory activity of Pim1 kinase was demonstrated: geometry optimization of 

the active site using the FD framework depicted higher accuracy in correlation with pIC50, even 

more than that found using QM/MM method. These results suggest that this approach can be a 

highly accurate SBDD method. The practical application of this geometry optimization is expected 

to be the first step toward elucidating chemical reactions (especially enzymatic reaction 

mechanisms which are expected from quantum chemical calculations of biological systems) and 

this should be further explored in future research.  
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