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Abstract 

The emulation of intelligence across diverse domains of the human brain has spurred 

the development of neural network based artificial intelligence. The computation of the 

DNA-based neural network has recently emerged as a focal point of research due to its 

versatility, scalability, energy efficiency and potentially other huge benefits and 

implications, as compared to electronic computation. Despite notable advancements, 

the development of the current DNA neural networks, based on the complementary 

pairing of DNA nucleobases, is restricted by the lack of reusability of the DNA 

computing materials, one of key bottlenecks impeding their progression towards neural 

network learning and evolution. As a result, even the state-of-the-art DNA neural 

network computations are limited to one-time use currently. Here we report the design 

of an unprecedented, reusable DNA based non-complementary perceptron (NCP) 

strategy that implements thresholding and weighted summation functions like neurons 

and the corresponding neural networks capable of 4-bit molecular pattern recognition. 

To facilitate the scaling-up of the non-complementary circuits, a modulated concept 

employing “tagging” domains is also coined. We demonstrate that non-complementary 

“winner-take-all” circuit can be rationally constructed with a non-complementary 

annihilator strand. Such NCP based neural network architecture is capable of 4-bit 

pattern recognition, evidenced by its success in playing the “I Spy” game. Most 

importantly, when removable input strands (lipid-oligonucleotide conjugates) are 

utilized, this NCP-based pattern recognition neural network shows high fidelity in 

multiple-cycle computing. This suggests a reusable DNA based NCP computation 

strategy as a potential conceptual breakthrough for the design of next-generation DNA 

computers.  
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Introduction 

 

The neural network, serving as the foundational structure of human intelligence, has 

been acknowledged as a potent computational paradigm for attaining artificial 

intelligence (AI). The past few years have witnessed the explosive advancement of 

electronic AI programs, evidenced by the emergence of AlphaGo, AlphaFold, ChatGPT, 

Sora, and many others, that have global and disruptive impact in corresponding fields. 

All these deep neural networks based models have demonstrated their capability of 

surpassing human intelligence in specific domains. Albeit great progress has been made 

in electronic computers, the out-of-memory approach for information processing 

suffers from high energy consumption, catastrophic forgetting, and low learning 

efficiency(1). To advance computing architecture designs with lower energy 

consumption, neuromorphic computing has emerged as an area of intensive 

investigations(2). The logic behind neuromorphic computing is to realize artificial 

intelligence by mimicking the structure and function of the human brain neural network. 

However, the lack of efficient hardware to implement neuron-like behaviors impedes 

the further development of neuromorphic computing(3).  

 

As the core of the “central dogma of molecular biology”, DNA defines the form, 

longevity, and evolution of life. The combinations of A/T/C/G four nucleotides in the 

long DNA chains encode unlimited genetic information, which produces countless 

organisms on Earth. Generally, DNA message is processed through the perfect 

"Watson–Crick" pairing (A–T and G–C), which guarantees fidelity of storage, reading, 

and replication of genetic information. This naturally evolved biological computation 

principle has been employed to construct artificial, DNA-based computing systems that 

can mimic human brain functions to some extent(4-8). Since the concept of DNA-based 

neural network was introduced approximately a decade ago, tremendous progress has 

been made in the algorithm, advancing the scalability, versatility and precision in 

molecular information processing(8-10). Benefited from the fast-developing automated 

synthesis of oligonucleotide(11, 12), DNA computing has gradually emerged as a 
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powerful and practical strategy for “smart” diagnosis and therapy(13-17).  

 

Although these DNA computers could possess neural network-like functions, various 

questions remain to be overcome. For instance, once the input strand being used in 

computing, the DNA “hardware” is non-recoverable as the computing process causes 

destructive change to the DNA architectures, preventing its reuse for further input 

information processing. This deficiency severely restricts current DNA-based neural 

networks from mimicking human brain neural networks that can handle nearly infinite 

number of input messages (Figure 1a). While multiple input information processing is 

the most basic demand of neural network learning, which reserves the potential of 

molecular AI, the availability, and in particular reusability, of the DNA computing 

“hardware” is a major bottleneck that hinders the DNA based AI from rapid 

advancement(18).  Although the DNA program could be regenerated by muting input 

strands or introduction of the “regenerator” module(19, 20), these systems require 

complicated sequence design, increased strand length, and accurate control of strand 

equivalent, which go against the scaling up of the circuits and substantiate the 

importance of the recovery and reuse of the DNA “hardware”. Until now, no reusable 

DNA-based neural network has been reported. In fact, the issue of DNA “hardware” 

reusability has become an outstanding challenge that limits the expedited development 

of the DNA neural network based biological computing(18). 

 

Recently, a non-complementary computation strategy was reported as an alternative 

approach for DNA computing by purposely introducing “defects” to the complementary 

double strands of DNA(21). This strategy outperforms complementary DNA 

computation for its accelerated computing speed, simplified gating framework, 

capability of computing with continuously changing variables, while still keeping its 

excellent biological system compatibility, which makes non-complementary 

computation a highly attractive computing principle for the design of the next-

generation biological computers. Moreover, this computation approach is based on 

thermodynamic control of information flow, which is based on chemical equilibrium 
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shifting of the strand-displacement reactions. As the chemical equilibrium of a 

reversible reaction is governed by the concentrations of the reactants, this non-

complementary computation system could recover to the initial state if the input strands 

are cleared. Therefore, we hypothesize that non-complementary computation reserves 

great potential in achieving reusable DNA-based neural network computing (Figure 

1b).  

 

In this work, we demonstrate that the thresholding and weighting functions of neurons 

could be mimicked by a non-complementary DNA-based perceptron (NCP). Moreover, 

to scaling up the non-complementary circuit, a “tagging” domain is introduced into the 

non-complementary strands. Wiring of multiple non-complementary gates generates 

“winner-take-all” neural network, which further supports a 4-bit pattern-recognition 

neural network that can play an “I Spy” game with human. Delicately, using lipid-

oligonucleotide conjugates (LOCs) as removable input, this DNA-based neural network 

becomes reusable, potentially offering a universal approach to achieve reusable DNA 

computation, which can be further applied in molecular neural network learning. With 

aforementioned advantages, we believe that our design may substantially accelerate the 

development of DNA-computing based molecular artificial intelligence. 

 

Results 

 

Although how neural network generates human intelligence is not totally understood, 

it is widely accepted that neural network processes information through an in-memory 

computing strategy(22). The core thought of neuromorphic computing is mimicking the 

structure and function of neurons, the basic building blocks of neural network. Neurons 

receive information at their dendrites, transmit the information through their axons, and 

release the information at their axon termini (Figure S1). Only when the weighted sum 

of the input information exceeds the neuron’s threshold, the neuron will be fired to 

generate an output. It has been reported that this linear threshold gating function could 

be mimicked by DNA circuit utilizing the “seesaw” gate motif(9). In this work, we 
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proposed that a similar information-processing task could also be performed by a non-

complementary DNA-based perceptron (NCP) (Figure 2a). This perceptron contains 

two parts: a non-complementary duplex for weighting function and a single strand for 

thresholding function. The non-complementary duplex is formed by a weighting strand 

for binding with input strand and an output strand to transmit the information of the 

input strand. The relative concentration of the duplex controls the concentration of the 

output strand, which finally determines the weighting of the input strand. The 

thresholding strand is capable of capturing the input strand before the input strand 

interacting with the duplex. To avoid the problem that the thresholding strand may 

compete with the weighting strand to bind with the output strand, a thresholding strand 

with the same sequence as the weighting strand is employed. Given that the input strand 

will preferentially hybridize with the single strand, only when the concentration of the 

input strand is larger than that of the thresholding strand, it can interact with the duplex 

to release the output strand from the perceptron.  

 

To illustrate this concept, an NCP with three mismatches was constructed (NCP1, 

Figure 2b and Table S1). For simplicity, here we directly adopted the same strand 

sequences of the non-complementary “YES” gate reported in the previous work(21). 

The output information was read through fluorescence resonance energy transfer 

(FRET). Both the weighting strand and the thresholding strand were labeled with BHQ2 

at their 3’ end, while the output strand was labeled with Cy3 at its 5’ end. With this 

setting, the Cy3 fluorescence would be turned on when the output strand is excreted out 

from the perceptron. We measured the fluorescence output signals with different 

concentrations of the input strand (Figure 2c). When there is a lack of the thresholding 

strand, the addition of the input strand will directly turn on the Cy3 fluorescence, 

indicating the release of the output strand. When the thresholding strand is employed 

(0.7 µM), the concentration of the input strand should be large enough (> 0.7 µM) to 

initiate the release of the output strand. The observed profiles of fluorescence intensity 

are highly consistent with those predicted by NUPACK(23) (Figure S2), indicating that 

NCP is highly designable. 
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Another key function of neurons is the weighted summation of input value(9). In NCP, 

the weighted summation function could be constructed with different weighting strands 

associated with different input strands. For example, to construct an NCP capable of 

processing two inputs (I1 and I2), we can introduce two weighting strands, forming two 

sets of non-complementary duplexes (i.e. W1:O and W2:O in NCP2, Figure 2d). The 

weighting value is dependent on the relative concentration of the duplex with respect 

to the two duplexes. To illustrate this concept, we studied the computing performance 

of NCP2 under different weighting parameters for I1 and I2 (Table S2). As anticipated 

by NUPACK, the normalized concentrations of the released output strand should 

approximate the weighted sum of the values of I1 and I2 (Figure S3). We then 

experimentally tested the weighted summation performance of NCP2, where the output 

values were read through the fluorescence labeled on the output strand (Table S2). As 

expected, the contribution of an input to the output value depends on the corresponding 

weighting value, and the output signal is the sum of the contributions from different 

inputs (Figure 2e). Since the output is based on the chemical equilibrium shift of the 

non-complementary strand-displacement reaction, the output value does not linearly 

depend on the weighting values. Nevertheless, these results indicate that NCP can 

selectively respond to the input strand that is “remembered” through the relatively high 

weighting value, demonstrating the capability of NCP in mimicking the function of 

neuron. 

 

However, in non-complementary hybridization, a strand with a specific sequence can 

hybridize with many other strands having different sequences at a similar affinity(21). 

As a result, scaling up non-complementary computation significantly amplifies the 

challenge of sequence design to prevent non-specific hybridization. To address this 

problem, a tagging domain is introduced to simplify the sequence design (Figure 3). 

This tagging domain could complementarily hybridize with the corresponding tagging 

domains of the upstream or downstream associating strands. With the help of the 

tagging domains, one non-complementary hybridization pattern could be used for the 
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construction of different NCPs (Figure 3a). This design is supported by NUPACK 

simulation. For example, four strands with the same 15-nt non-complementary 

hybridization pattern (W:O) and two pairs of 3-nt tagging domain (TW3:TO3 and TW4:TO4) 

could self-sort into two duplexes (WTW3:OTO3 and WTW4:OTO4), selectively producing 

the desired NCP3 and NCP4, respectively (Figure 3b). Furthermore, by carefully 

selecting the sequences of tagging domains, several NCPs could be easily constructed 

with one non-complementary hybridization pattern (Figures 3c and 3d). Like the 

original version (Figure 2d), the weighted summation function for different input 

strands could also be constructed with corresponding weighting strands (NCP5, Figure 

4a and Table S3). As the introduction of the tagging domain enhances the binding 

affinity of the strands, the tagging domains should also be added to the upstream and 

downstream strands to balance the hybridization energy change, ensuring the 

equilibrium shift of non-complementary strand-displacement reactions. For the 

simplicity of description, the tagging domains designated to bind with the upstream or 

downstream strands are denoted as TXiu and TXid, respectively, where "X" represents the 

function of the strand and "i" represents the identity number of the NCPs (i = 1, 2, …, 

n). To illustrate the input pattern processing function of NCP with tagging domains, we 

simulated the output performance of NCP5 with varied weighting parameters (Figure 

4b). As anticipated, the normalized concentrations of the released output strand 

approximate the weighted sum of the input values, illustrating the capability of the NCP 

in processing 2-bit input information. To further explore the capability of NCP in 

processing more complicated input pattern, we then studied the output performance of 

NCP5 with four kinds of weighting strands (W15, W25, W35, and W45) in processing 4-

bit input information (TdI1, TdI2, TdI3, and TdI4) through NUPACK simulation (Figure 

4c and Table S5). The memories of the different input patterns of the NCPs are 

generated by setting high concentration values of the corresponding weighting strands 

and low concentration values of other weighting strands. For example, the 

concentrations of the W15, W25, W35 and W45 strands are set at 0.9, 0.9, 0.1 and 0.1 µM, 

respectively, for the writing of the “TdI1 and TdI2” memory. Meanwhile, the 

concentration of the output strand (O5) is fixed at 2 µM. With this setting, the addition 
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of TdI1 or TdI2 strands will lead to a greater amount of the O5 strand being released as 

compared to that of TdI3 or TdI4, resulting in higher weighting values of TdI1 and TdI2 

than those of TdI3 and TdI4. Similarly, other NCP memories can be readily edited by 

changing the relative concentrations of the weighting strands (Figure 4c). Moreover, 

another NCP that can also process the same set of input information can be easily 

constructed with another pair of tagging domains (TW6:TO6) (NCP6, Figure S4), 

demonstrating the versatility of this “tagging” strategy in scaling up of NCP 

construction. 

 

Furthermore, based on this tagging strategy, non-complementary “winner-take-all” 

neural network could be constructed. “Winner-take-all” neural network is an important 

computing principle in decision making, machine learning, and cognitive modeling. In 

the classic work of Qian et al., this “winner-take-all” neural network is realized based 

on an “annihilator” gate(8). The fundamental role of an "annihilator" gate is to 

concurrently hybridize with two distinct input strands to be compared when both input 

strands are presented in the solution. Inspired by their work, we proposed that similar 

annihilating function could also be realized based on non-complementary hybridization 

with a hairpin structure (A5A6, Figure S5). When two strands (O5 and O6) are 

simultaneously presented, they will concurrently hybridize with A5A6. Concretely, 

A5A6 is composed of two domains (TA5uA and TA6uA), which are designed for the 

hybridization with two distinct strands (O5 and O6), respectively (Figure 5a). This 

procedure could efficiently amplify the concentration difference between the two 

strands through a subtraction way (Figure 5a). For example, the direct comparison 

between the normalized concentrations of O5 and O6 shows a large area with subtle 

values (Figure 5b, top), which can result in a large decision margin. In contrast, when 

half of the O5 and O6 strands are annihilated, the fuzzy area is notably decreased, 

resulting in substantially increased concentration contrast (Figure 5b, bottom). The 

reporting gate for O5 or O6 is a non-complementary duplex consisting of a receipting 

strand (Ai, i = 5 or 6) and a reporting strand (Ri, i = 5 or 6) (Figure 5a). The structure 

of Ai is similar to that of the corresponding domain of A5A6. An additional 3-nt tag 
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domain (TAi, i = 5 or 6) is appended to its 3’ end to establish the connection with the 

corresponding reporting strand (Ri, i = 5 or 6). Accordingly, the structure of Ri strand is 

composed by two parts, one is a 15-nt domain non-complementarily (“R” domain) 

hybridizes with the A domain of Ai strand, another is a 3-nt domain (TRi, i = 5 or 6) 

complementarily hybridizing with the TAi domain of Ai strand. By labeling BHQ2 

quencher at Ai’s 5’ end and Cy fluorophore at Ri’s 3’ end (Cy3 at R5 and Cy5 at R6), the 

release of the two reporting strands could be simultaneously detected through FRET. 

As a proof-of-concept, a non-complementary “winner-take-all” system capable of 

processing the output strand information of NCP5 and NCP6 was designed, as shown in 

Figure 5c and Table S7. The secondary structure of A5A6 strand could be predicted by 

NUPACK. Such result indicates that A5A6 strand could stably form a hairpin-like 

structure through 9 G-C base pairing under our experimental conditions (1 M NaCl, 25 

oC) (Figure 5d). To experimentally verify this design of non-complementary “winner-

take-all” neural network, we prepared and implemented this program with different 

concentration patterns of O5 and O6 (Figure 5e). As expected, when the concentration 

of O5 is larger than that of O6 (the pink cells), the normalized signal of R5 (Cy3 

fluorescence) is higher than that of R6 (Cy5 fluorescence). Conversely, the normalized 

signal of R6 is higher than that of R5 (the blue cells). The decision margin is 0.95 < 

R5/R6 < 1.1 (the white cells on the diagonal). These results are in consistent with those 

predicted by NUPACK (Figure S6), further demonstrating that non-complementary 

neural network is highly predictable. It should be noted that if A5A6 strand is not 

employed, the “winner-take-all” computing function would have system errors (Figure 

S7). Therefore, the “annihilator” strand is necessary to construct the “winner-take-all” 

neural network based on non-complementary strands. 

 

A fundamental function of neural networks is pattern recognition(8-10). With the 

abovementioned framework, a 4-bit pattern-recognition non-complementary neural 

network can be constructed by wiring NCP5 and NCP6 with the “winner-take-all” neural 

network (Figures 6a and S8). In this neural network, the input information is firstly 

parallelly processed by the NCPs to yield weighted summations. Then the weighted 
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summations are subject to pairwise annihilation to amply the difference between the 

summations. Finally, the annihilated result is reported by the reporting gates. As 

illustrated above, different molecular pattern could be remembered by different NCPs 

through the regulation of the corresponding weighting strands (Figures 4 and S4). We 

then encoded the input pattern “TdI1 and TdI2” into Pattern 1 and “TdI1 and TdI4” into 

Pattern 2. Through the assignment of the meanings to the input strands, an “I Spy” game 

can be played between human and the non-complementary neural network (Figure 6a). 

For instance, let TdI1, TdI2, TdI3, and TdI4 represent “Spherical”, “Red”, “Corticate”, and 

“Yellow”, respectively. Correspondingly, the recorded Pattern 1 and 2 mean “Apple” 

and “Lemon”, respectively. The neural network could guess the object we refer to by 

offering it some “clues”. For example, when the input pattern is “TdI1 and TdI2”, which 

means “Spherical” and “Red”, the computing solution can give a higher R5 signal than 

R6, telling the answer “Apple” (Figure S9). We then experimentally tested this “I Spy” 

game (Figure 6b and Table S8). The normalized fluorescence results showed a great 

correlation of R5 and R6 with the corresponding input Pattern 1 and 2, substantiating a 

similar pattern-recognition function to the previously reported complementary DNA-

based neural network(8). Taken together, these results demonstrate the successful 

realization of 4-bit molecular pattern-recognition based on non-complementary 

computation. 

 

As mentioned above, in biocomputing, neurons can repetitively and reversibly switch 

between the resting state and the firing state (Figure S1). An ideal DNA-based 

perceptron should also be reusable to accommodate multiple batches of input, which is 

technically challenging based on the current state-of-the-art design of complementary 

DNA computation. For example, in the classic works by Qian et al.(8, 9), fuel strands 

are employed to drive the strand-displacement reactions. When resetting the computing 

system to the initial state, these fuel strands could compete with initial gating strands to 

form inactive duplexes, excluding the processing of another batch of input (Figure 

S10a). On the contrary, non-complementary computation uses thermodynamic control 

of strand-displacement reactions. Therefore, once the input strand is removed from the 
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reaction, the system would return to its initial state (Figure S10b). Thus, the removal 

of the input strands would facilitate the recovery and the reuse of the non-

complementary DNA-based neural networks. There are two strategies to clear input 

strands from the computing system. One strategy is muting the input strands with their 

complementary strands(19, 24, 25). This strategy requires precise control of equivalent, 

otherwise the error in equivalent would be enhanced during cycling. Another strategy 

is to remove the input strands from the computing system(26-28). This strategy is more 

like the way employed by neurons, which has been employed in some previous studies 

to achieve reusable DNA circuits(26-28). In fact, as early as in 1998, a “sticker-based 

model” has been proposed to reuse DNA computer by removing input strands(29). 

However, these works need special devices that are not easily available(26, 28, 29) or 

based on special responsive sequences,(27) preventing these strategies from wide 

spread development and applications.  

 

We reason that if the input strand is largely different from the DNA hardware in polarity, 

we can remove the input strand through reversed phase chromatography. Lipid 

conjugation is a widely used modification method for oligonucleotides, which could 

dramatically increase the hydrophobicity of oligonucleotides(30). Therefore, we 

proposed an input-computing-chromatography-recovery process to achieve the reusing 

of non-complementary-DNA-based computation system with lipid-oligonucleotide 

conjugates (LOCs) as the removable input strands (Figure 7a). To efficiently synthesize 

a series of LOCs with different sequences, we employed the recently-developed P(V) 

chemistry to achieve automated synthesis, eliminating the need for preparation of 

activated lipid phosphorous intermediates(12) (Figures S14-S32). To check whether 

the introduction of lipid will influence the validity of logic judgement or not, we 

implemented non-complementary “YES”, “NOT”, “AND”, and “OR” gates with LOCs 

as the input (Table S9). All of the gates functioned correctly, indicating that the lipid 

modification does not alter the gating performance of DNA strands (Figure S11). After 

computing, the input strand should be de-hybridized from the Input:Weighting duplexes 

to make the DNA hardware available for separation. With the help of NUPACK 
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simulation, we realized that the hybridization of non-complementary DNA strands is 

highly Na+-dependent (Figure S12). The hybridization extent of a non-complementary 

DNA gate significantly decreases with the decrease in Na+ concentration. Therefore, 

the de-hybridization and separation of LOC inputs from the DNA hardware could be 

achieved through a standard Sep-Pak® chromatography (please refer to the 

Supplementary Information for further details). To demonstrate this method, the 

chromatography process for removing the LOC input of an NCP was monitored 

employing a Cy5-labeled LOC input and a Cy3-labeled output strand through the 

fluorescence signals of the collected fractions (Figure 7b). As analyzed from the 

fluorescence signals, the recovery efficiency of the DNA hardware increases with ACN 

concentration. However, the leaking of LOCs would also increase with ACN 

concentration (Figure 7c). Therefore, 20% ACN, which could achieve ~80% recovery 

of the DNA hardware and negligible leaking of LOC input, was chosen as the eluent 

for recycling of the computing system. It is worth noting that although not all DNA 

hardware are recovered, the computing performance would not be compromised, since 

the non-complementary DNA gating is dependent on the relative concentration of the 

DNA hardware strands. Theoretically, with 80% recovery, the gating performance could 

be well maintained for at least 20 cycles (Figure 7d). Experimentally, we conducted 

three cycles of NCP firing to preliminarily demonstrate the feasibility of the recycling 

(Figure 7e). Inspired by these results, we further implemented the reusing of the non-

complementary 4-bit pattern-recognition neural network (Figure 6) with lipid-modified 

TdI1, TdI2, and TdI4 as the removable input strands (Figure 7f and Figure S13). This 

process could be likened to a repeated “I Spy” game between human and the non-

complementary neural network. We tested two different playing scenarios: same clues 

in different cycles and different clues in different cycles. In the first scenario, with the 

molecular clues “Spherical” and “Red”, the neural network consistently provided the 

correct answer “Apple” for at least three cycles (R5/R6 > 1.1, Figure S13). Similarly, 

in the second scenario, the computing solution consistently provided the correct answer 

across different batches of clues (Cycle 1, Cycle 3, Cycle 4, and Cycle 5), and correctly 

recognized the unclear clue “Spherical” (Cycle 2) (0.95 < R5/R6 < 1.1, Figure 7f). These 
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results demonstrate the high fidelity of this reusing approach for DNA-based neural 

networks. To the best of our knowledge, this is the first time that reusable DNA-based 

neural network is achieved. 

 

Discussion 

 

In the pursuit of artificial neural networks to mimic, or even surpass human intelligence, 

numerous approaches have been proposed (1, 2, 18, 31-34). As of now, only electronic-

based computation has achieved widespread success. However, although the success, 

the electronic computations are not energy efficient and has significantly exacerbated 

the energy crisis. In contrast, biological neural networks can process information at 

similar efficiency with energy consumption orders of magnitude less than that of the 

electronic computers(1). To this end, neuromorphic computing is emerging as an 

appealing alternative approach for information processing. However, efficient hardware 

to construct neuromorphic computers at a macroscopic level is still substantially 

lacking, primarily due to difficulties in interconnectivity between chips(1). Instead, at 

the molecular level, interconnectivity between computing units becomes less 

challenging. Particularly in DNA-based computation, multiple interconnections can be 

easily achieved through sequence design. Although significant progress has been made 

in algorithms(8-10), DNA-based neural network computing systems are still limited to 

one-time use, significantly impeding the further development of neural network 

learning(18). 

 

From the perspective of reusability, non-complementary DNA-based computation 

becomes more favorable than traditional complementary DNA-based computation due 

to its thermodynamic-controlled nature(21) (Figure S10). This nature ensures 

computing fidelity after recycling, even with a relatively noticeable loss of DNA 

hardware (Figure 7d). Our work elucidates, for the first time, that non-complementary 

computation can process information in a microscopic neuromorphic manner. This 

microscopic neuromorphic manner is proved by the 4-bit pattern-recognition and the 
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high-fidelity multi-cycle computing capability of the non-complementary neural 

networks (Figures 6 and 7). Although a huge challenge in sequence design for the 

construction of more complicated non-complementary neural networks still exists, our 

results strongly support this expectation: reusable DNA-based neural network could be 

achieved through non-complementary computation with removable input strands. 

Taken together, these results demonstrate a novel neuromorphic computing system that 

is attractive for achieving practical artificial intelligence at the molecular level. 

 

Conclusions 

  In this work, we hypothesized that reusable DNA-based neural network could be 

realized based on non-complementary computation. To achieve this goal, we introduced 

the concept of non-complementary DNA-based perceptron (NCP), which could be used 

to build non-complementary DNA-based neural network. To simplify the sequence 

design and scale up the non-complementary neural network, a tagging strategy is further 

introduced. Based on these frameworks, non-complementary “winner-take-all” and 4-

bit pattern-recognition neural networks were successfully constructed. Most 

importantly, we established a recycling process for non-complementary DNA 

computing systems using lipid-oligonucleotide conjugates (LOCs) as the removal input 

strands and Sep-Pak® chromatography. These studies demonstrate that reusing of 

DNA-based neural network like biological neural network is possible. We expect that 

such reusable DNA-based neural networks may be further applied in neural network 

learning, which can pave the way for more powerful and intelligent DNA computers. 
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Figure 1. Biological neural network and its non-complementary-DNA-based 

computation mimic. (a) Biological neural network could be reused once the input 

signal is removed. (b) Non-complementary-DNA-based artificial neural network could 

be reused once the input strand is removed. 
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Figure 2. Construction of the non-complementary-DNA-based perceptron (NCP). 

(a) Schematic illustration of the input-output process of an NCP. (b) Strand sequences 

of a typical NCP. The double strand with 3 mismatches could interact with the input 

strand to produce a double strand with 2 mismatches and release the output strand, 

which procedure would turn on the fluorescence labeled on the output strand. (c) 

Thresholding function of the NCP. (d) Schematic illustration of an NCP executing the 

weighted summation function for two input strands (I1 and I2). (e) Weighted summation 

performance of NCP2 with different weighting values for I1 and I2. 
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Figure 3. Scaling up the construction of NCP with the tagging strategy. (a) 

Schematic illustration and the sequences of two NCPs (NCP3 and NCP4) formed 

through self-sorting of four strands with two pairs of tagging domains (TW3:TO3 and 

TW4:TO4, respectively) and one non-complementary sequence pattern (W:O). (b) 

Simulated equilibrium concentration of the desired NCP duplexes (WTW3:OTO3 and 

WTW4:OTO4) and the undesired duplexes (WTW4:OTO3 and WTW3:OTO4), which 

indicates the high formation specificity of NCP3 and NCP4. (c) Schematic illustration 

of 12 NCPs’ formation with 12 pairs of tagging domains and one non-complementary 

sequence pattern. (d) 12 NCPs can form through 12 pairs of tagging domains and one 

non-complementary sequence pattern at high specificity. 
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Figure 4. Construction of an NCP utilizing the tagging strategy for weighted 

summation of 2-bit or 4-bit input information. (a) Schematic illustration of an NCP 

with tagging domains for weighted summation of 2-bit input information (TdI1 and TdI2). 

(b) Simulated weighted summation performance of the NCP with different weighting 

values for TdI1 and TdI2. (c) Schematic illustration and simulated weighted summation 

performance of an NCP with tagging domains processing 4-bit input information (TdI1, 

TdI2, TdI3, and TdI4). The weighting values are set by regulating the concentrations of 

the corresponding weighting strands. Data are predicted by NUPACK. 
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Figure 5. Non-complementary DNA computation-based winner-take-all neural 

network. (a) Schematic illustration of the strand-displacement reactions in non-

complementary-DNA-based winner-take-all neural network. With the help of the 

annihilator strand (A5A6), the concentration difference between two strands (O5 and O6) 

could be amplified through a subtraction way. (b) Normalized O5/O6 concentration ratio 

with no (top) or 50% (bottom) strand annihilating operation. (c) Sequences of a non-

complementary-DNA-based winner-take-all neural network processing the O5 and O6 

strands. (d) Simulated secondary structure of A5A6 strand. (e) Two-species winner-take-

all behavior of the non-complementary DNA neural network in (c). The decision margin 

is 0.95 < R5/R6 < 1.1. 
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Figure 6. An “I Spy” game based on the 4-bit pattern-recognition non-

complementary-DNA-based neural network. (a) Schematic illustration of the non-

complementary DNA-based “I Spy” game. (b) Experimental implementation of the 

game with different molecular clues. The results demonstrate that this neural network 

could recognize input patterns similar to its pattern memories. The decision margin is 

0.95 < R5/R6 < 1.1. 
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Figure 7. Reusing of the non-complementary-DNA-based neural network. (a) 

Schematic illustration of the process for reusing of non-complementary DNA-based 

computation system through chromatography separation. (b) Schematic illustration of 

the NCP reusing with LOC as the removable input strand. (c) Chromatography 

recoveries of the DNA hardware and the LOC input strand with different concentrations 

of ACN as the eluent. (d) Simulated firing performance of the NCP at a recovery level 

of 80% and constant input concentration. (e) Experimental results of NCP1 reusing is 

consistent with the simulated results. (f) Schematic illustration and experimental 

implementation of the repeated “I Spy” game with different input clues. The decision 

margin is 0.95 < R5/R6 < 1.1. 
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