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Abstract 

Recent advancements in machine learning have revolu onized polymer research, leading to the 
swi  integra on of diverse computa onal techniques for de novo molecular design. A crucial 
aspect of these processes is to expand the number of candidate polymer structures, as the 
currently known real polymer structures are very limited. In contrast, small molecule databases 
are vast, offering extensive opportuni es for the design of new molecules, such as drug discovery. 
In this study, we collected extensive small molecule compounds from GDB-17, GDB-13, and 
PubChem, and selected polymeriza on reac on pathways for eight types of polymers, including 
polyimide, polyolefin, polyester, polyamide, polyurethane, epoxy, polybenzimidazole (PBI), and 
vitrimer. These small molecule datasets and polymeriza on reac ons enabled us to generate 
hundreds of quadrillions of hypothe cal polymer structures. For each of the eight polymers, along 
with one promising copolymer, poly(imide-imine), we randomly generated over one million 
hypothe cal structures, except for PBI, for which we created 10,000 structures. Chemical space 
visualiza on using t-distributed stochas c neighbor embedding and synthe c accessibility scores 
were employed to assess the feasibility of synthesizing these new polymers. Customized 
feedforward neural network models predicted thermal, mechanical, and gas permea on 
proper es for both real and hypothe cal polymers. Results show that many hypothe cal 
polymers, especially polyimides, exhibit significant poten al, o en surpassing real polymers in 
performance, par cularly for high-temperature applica ons and gas separa on. Our findings 
highlight the immense poten al of large-scale hypothe cal polymer libraries for materials 
discovery and design. These libraries not only aid in iden fying promising polymer materials 
through high-throughput screening but also provide valuable datasets for training advanced 
machine learning models, such as large language models. This research also demonstrates the 
power of data-driven approaches in polymer science, paving the way for the development of next-
genera on polymeric materials with superior proper es for diverse industrial applica ons. 

1. Introduc on 

Polymeric materials are ubiquitous in our daily lives, found in everything from common synthe c 
plas cs like polystyrene to natural biopolymers such as DNA and proteins. Their excep onal 
chemical, physical, biological, and mechanical proper es enable a wide range of applica ons in 
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the biomedical, chemical, and materials science fields.1-5 A polymer typically consists of long 
chains of covalently bonded organic molecules, known as repea ng units. The chemical and 
molecular structures of these repea ng units dictate the proper es of these polymeric materials. 

The advancement of materials design has undergone three dis nct stages. The first stage involved 
tradi onal experimentally driven and trial-and-error methods, relying heavily on experience, 
intui on, and conceptual insights (domain knowledge). However, this approach has inherent 
limita ons. It provides access to only certain macroscopic proper es, with many others being 
difficult to measure. Addi onally, this method o en relies on serendipitous discoveries, lacks 
generalizability, and is extremely me-consuming, labor-intensive, and costly. In the second stage 
of materials design, advances in computa onal technologies have led to the dominance of 
modeling and simula on in the field. Computa onal methods, such as density func onal theory 
(DFT)6, 7 and molecular dynamics (MD)8, 9 have enabled rapid materials design through high-
throughput virtual screening. These methods are par cularly effec ve for predic ng material 
proper es when no analy cal formula exists. However, computer simula ons s ll face several 
challenges, including the high computa onal cost in terms of me and resources. 

With the expansion of materials databases and the advancement of data science and ar ficial 
intelligence (AI) techniques, we are entering a new era o en referred to as the “fourth paradigm 
of science”10 or the “fourth industrial revolu on.”11 This progress has ushered materials design 
into its third stage. Beyond experimental methods, theore cal approaches, and computer 
simula ons, data-driven materials design has emerged as the “fourth pillar” of scien fic research. 
Numerous breakthroughs and research efforts are now flourishing in the de novo design of 
organic molecules and polymers using data-driven methods.12-16 Successful polymer informa cs 
efforts have encompassed a variety of property predic ons, including polymers’ glass transi on 
temperatures17-30, electronic bandgap17, 31, dielectric constant32, and refrac ve index33. Rapidly 
predic ng these proper es enables researchers to iden fy op mal polymer structures with 
excep onal performance or those that meet specific requirements from a vast array of polymer 
candidates, thus facilita ng the development of high-performance polymers. 
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Figure 1. Comparison of real polymer and small molecule compound datasets and the role of 
polymeriza on reac ons in genera ng a large number of hypothe cal polymer structures. 

However, when researchers aim to develop high-performance polymer materials using a de novo 
design strategy, rapid predic ons of polymer proper es through machine learning (ML) and 
polymer informa cs are not the only requirements. A large number of candidate polymer 
structures are also needed for discovery and explora on. Unfortunately, the number of polymer 
structures in the real world is quite limited. As shown in Figure 1, the PolyInfo dataset34 currently 
includes about 18,000 experimentally synthesized polymer structures, with approximately 13,000 
of these being homopolymers. In stark contrast, there is a vast number of real and hypothe cal 
small molecule compounds. PubChem35, for instance, contains around 116 million real small 
compounds that can be purchased. Addi onally, hypothe cal small molecule compounds are 
abundant, with databases like GDB-1336 and GDB-1737 containing nearly 977 million and 166 
billion compounds, respec vely. To expand the open source data for polymer informa cs, Ma and 
Luo trained a genera ve model, based on the real polymer structures from PolyInfo, to generate 
∼1 million hypothe cal polymers, namely PI1M.38 The PI1M database spans a similar chemical 
space as PolyInfo but significantly populates regions where PolyInfo data are sparse.  

In addi on to genera ve models, various polymeriza on reac ons can serve as bridges between 
polymer structures and small molecule compounds. Through this approach, a large number of 
hypothe cal polymer structures with well-defined synthe c pathways can be generated based on 
these small molecule compounds. Using this strategy, Tao et al. generated 8 million hypothe cal 
polyimides and discovered many polyimides with a mul tude of outstanding thermal and 
mechanical proper es.39 By sourcing available diamine and dianhydride monomers from the 
PubChem database, they generated hypothe cal polyimides following a predefined 
polycondensa on reac on. To efficiently screen these compounds, they employed a ML method 
for high-throughput screening and evalua on. Ul mately, they iden fied several mul func onal 
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polyimides that outperformed exis ng real polyimides, and validated their proper es through all-
atom molecular dynamics simula ons and further experiments. Wang et al. generated 110 types 
of polyimide-derived polymer structures by combining 21 different diamine and dianhydride 
compounds, resul ng in a wide range of electrical and thermal proper es.40 They screened and 
synthesized 12 representa ve polymers, all derived from commercial precursors to facilitate 
large-scale produc on, and systema cally inves gated their structures and performance. By 
analyzing the experimental results alongside computa onal simula ons, they quan ta vely 
determined the impact of each structural unit on the electrical and thermal proper es of the 
resul ng polymers. This analysis revealed the key factors influencing capaci ve performance at 
elevated temperatures for these polymers. 

In addi on to polyimides, Kim et al. developed a genera ve model for synthe cally accessible 
polymer repea ng units using a rule-based polymeriza on reac on algorithm.41 With this system, 
they created a database called the Open Macromolecular Genome (OMG), which contains highly 
synthesizable virtual polymers. The OMG serves as an important resource for data-driven 
polymer research, but there is room for improvement in the defini on of rule sets. From the 
perspec ve of synthe c organic chemistry, the reac vity of a substrate is influenced by the steric 
and electronic effects of subs tuents at the reac on center. Addi onally, as highlighted in their 
work, the selec vity of the reac on is affected by coexis ng func onal groups in the reactant 
molecule. Therefore, it is necessary to develop reac on rules that account for these factors. Ohno 
et al. developed a virtual library generator for polymers that incorporates a comprehensive rule 
set for prac cally applied polymeriza on reac ons using a Python open-source library called 
Small Molecules into Polymers (SMiPoly).42 This generator implements 22 reac on rules, which 
include six chain polymeriza on reac ons and 16 step-growth polymeriza on reac ons. Overall, 
the system enables the synthesis of seven different types of polymers. Addi onally, Ferrari et al. 
used large language models and fine-tuned the polymeriza on models for both forward and 
backward predic on tasks, addressing both homo-polymers and co-polymers consis ng of up to 
two monomers. Their model predicts reactants, as well as reagents, solvents, and catalysts for 
each step of the retro-synthesis.43 

In this study, we selected eight popular and promising types of polymers—polyimide, polyolefin, 
polyester, polyamide, polyurethane, epoxy, polybenzimidazole (PBI), and vitrimers—along with 
one promising copolymer, poly(imide–imine) (PI-PIM). Hundreds of quadrillions of hypothe cal 
polymer structures can be generated based on small molecule compounds from the GDB-17, 
GDB-13, and PubChem datasets, and well-defined polymeriza on reac ons. For each type of 
polymer, we randomly generated 1 million hypothe cal structures, except for PBI, for which only 
10,000 hypothe cal structures were generated. The chemical space loca on of all generated 
polymers was obtained, and the synthe c accessibility (SA) score provides an es ma on of their 
synthesis difficulty. Then, ML methods are employed to predict various thermal and mechanical 
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proper es, as well as several types of gas permeabili es. The distribu on of predic on results 
reveals the dis nct characteris cs of different types of polymers. To demonstrate the poten al of 
the large number of hypothe cal polymer structures generated, we also iden fied the best real 
polymer provided by PolyInfo and compared it to hypothe cal polymer structures that 
outperformed it. These results showcase that many hypothe cal polymers, especially polyimides, 
exhibit significant poten al, o en surpassing real polymers in performance, par cularly for high-
temperature applica ons and gas separa ons. 

2. Results & Discussion 

2.1 Polymer Class 

The correlation between molecular structure and properties is pivotal for advancing polymer 
science and engineering. This research initiative has established a comprehensive database of 
polymer structures to support innovations in their application and development. The database 
encompasses a variety of polymer types, each selected for its unique properties that are essential 
for broad industrial applications. 

For example, polyimides are recognized for their thermal stability, derived from aromatic 
backbones and imide functionalities, making them suitable for high-temperature environments. 
Similarly, polyurethanes, with their segmented block copolymer structure, are crucial for 
automotive and construction applications. Additionally, PI-PIMs exhibit rehealability and 
recyclability enabled by dynamic imine bonds, while retaining the excellent mechanical and 
thermal properties of polyimide.44 These examples highlight how specific microstructural 
characteristics critically determine the functionalities of these polymers. 

Here, a large-scale library of polymer structures was generated by applying specific 
polymerization reactions. Guided by the fundamental principles of polymerization,45, 46 
condensation reactions were used to generate polyimides, polyamides, polyurethanes, 
polyesters, PBIs, and PI-PIMs via step-growth mechanisms that link monomers and facilitate the 
removal of small molecules. Ring-opening reactions were employed to produce epoxy and 
vitrimers, transforming cyclic monomers into network structures. Additionally, both single and 
dual monomer addition polymerizations were implemented for polyolefins, capturing a spectrum 
from simple linear polymers to complex copolymers. Monomers were selected based on the 
necessary functional groups for these polymerizations, ensuring that the dataset accurately 
reflects a diverse array of polymer structures and aligns with specific synthesis pathways, as 
depicted in Figure 2 and Table 1. 
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Figure 2. Examples of generated polymers from small molecule compounds for each polymer 
class—polyimide, polyolefin, polyester, polyamide, polyurethane, epoxy, polybenzimidazole, and 
vitrimers—along with their polymeriza on reac ons. For vitrimers, only the reac on between 
epoxides and carboxylic acids is used because these two func onal groups are common and 
abundant. 

Table 1. Selected polymer types and corresponding small molecule compounds used for synthesis. 

Polymer class Monomer class  
Polyimide polycarboxilic acid anhydride, polyamine 

 
Polyolefin vinylidene, cyclic olefin 

 
Polyester lactone, hydroxy carboxylic acid, polyol and thiol, carbon monoxide, 

poly carboxylic acid and acid halide, epoxide 
 

Polyamide lactam, amino acid, poly carboxylic acid and acid halide, polyamine 
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Polyurethane polyisocyanate, polyol and thiol 
 

Epoxy epoxide, polyamine 
 

PBI poly carboxylic acid and acid halide, 3,3’,4,4’-tetraaminodiphenyl 
 

Vitrimers epoxide, poly carboxylic acid and acid halide 
 

2.2 Small molecule compound datasets 

The small molecule compounds used to generate specific types of hypothe cal polymers based 
on the polymeriza on reac ons were selected from the GDB-17, GDB-13, and PubChem 
databases according to the func onal groups required. GDB-13 and GDB-17 are extensive 
datasets of hypothe cal small molecules. GDB-13 includes molecules containing up to 13 atoms 
of carbon, nitrogen, oxygen, sulfur, and chlorine, following rules for chemical stability and 
synthe c feasibility, comprising 977,468,314 structures.36 GDB-17 extends this enumera on to 
molecules with up to 17 atoms of carbon, nitrogen, oxygen, sulfur, and halogens, resul ng in a 
total of 166.4 billion molecules, with only 50 million structures publicly available.37 PubChem is 
an open chemistry database maintained by the Na onal Ins tutes of Health (NIH). PubChem 
contains a vast array of chemical data, including small molecules, nucleo des, carbohydrates, 
lipids, pep des, and chemically-modified macromolecules. It provides comprehensive 
informa on on chemical structures, iden fiers, chemical and physical proper es, biological 
ac vi es, patents, health, safety, and toxicity data.35 

GDB-17 and GDB-13 were chosen because they offer extensive coverage of chemical space, and 
PubChem was selected because it contains easily accessible real small compounds. Besides these 
three chosen datasets, there are many other small molecule datasets available for researchers, 
such as ChEMBL47, ZINC48, ChemSpider49, and DrugBank50. These datasets can also be used to 
generate hypothe cal polymer structures. The selected small molecules include amino acids, 
cyclic olefins, epoxides, hydroxy carboxylic acids, lactams, lactones, poly carboxylic acids and acid 
halides, polyamines, polycarboxylic acid anhydrides, polyisocyanates, polyols and thiols, and 
vinylidenes. Figure 2 illustrates the quan es of these small molecule compounds within the 
three small molecule datasets, respec vely (See Supplementary Table S1 for detailed counts and 
Supplementary Table S2, Table S3, and Table S4 for informa on about more func onal groups). 
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Figure 2 Quan es of small molecule compounds within the three datasets, including amino acids, 
cyclic olefins, epoxides, hydroxy carboxylic acids, lactams, lactones, poly carboxylic acids and acid 
halides, polyamines, polycarboxylic acid anhydrides, polyisocyanates, polyols and thiols, and 
vinylidenes. 

From Figure 2, it is evident that the GDB-13 database contains a significantly higher quan ty of 
cyclic olefins, polyamines, and vinylidene monomers compared to other compounds. Overall, 
GDB-13 appears to have the highest overall quan ty of small molecules, which is closely related 
to the fact that the GDB-13 dataset contains significantly more small molecules than the other 
two datasets. The GDB-17 dataset theore cally should include far more small molecules than 
GDB-13, but currently, only 50 million have been made publicly available. This also makes the 
distribu on of the GDB-17 dataset appear somewhat more balanced compared to GDB-13. The 
GDB-13 and GDB-17 datasets both have rela vely low quan es of poly carboxylic acids and acid 
halides. Furthermore, it is also important to note that there are some small molecules missing 
from the GDB-17 and GDB-13 datasets. GDB-13 does not include any polyisocyanates. 
Addi onally, GDB-17 lacks not only this type of small molecule but also polycarboxylic acid 
anhydrides. 

The PubChem database, however, shows a more balanced distribu on across different 
compounds. The balanced distribu on in the PubChem dataset is due to its source, as it collects 
a wide variety of small molecules that are both real and purchasable. This balanced distribu on 
is especially important given the absence of certain types of small molecules in the GDB-13 and 
GDB-17 datasets. However, we can observe that, similar to the previously men oned GDB-13 and 
GDB-17 datasets, the PubChem dataset also has rela vely low quan es of polycarboxylic acid 
anhydrides and polyisocyanates. 
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Table 2. Number of unique structures for each type of small molecule from the three datasets, 
GDB-13, GDB-17, and PubChem. 

 

Table 2 shows the total number of unique structures for each type of small molecule from the 
three datasets, represen ng the variety of molecules that are readily available for use. This 
distribu on of small molecules across these databases highlights their u lity in genera ng diverse 
hypothe cal polymer structures for further research. They can provide an enormous number of 
hypothe cal polymer structures. For example, polyimides, which can be generated from 
polycarboxylic acid anhydride and polyamine small molecule compounds, have 9,253 
polycarboxylic acid anhydrides and 207,640,913 polyamines are available. This means we can 
generate approximately 2 trillion hypothe cal polyimide structures. Similarly, polyolefins, which 
can be generated from vinylidene and cyclic olefin small molecule compounds, have 193,219,664 
vinylidenes and 207,640,913 cyclic olefins available. This allows for the genera on of around 120 
quadrillion hypothe cal polyolefin structures. However, for PBI, which can be generated from 
poly carboxylic acid and acid halide and 3,3’,4,4’-tetraaminodiphenyl, there are only 550,440 poly 
carboxylic acid and acid halide monomers available. As a result, the number of hypothe cal PBI 
structures that can be generated is rela vely limited. Table 3 shows the theore cal maximum 
number of hypothe cal structures generated for each polymer class using the three small 
molecule datasets previously described. 

Table 3. Theore cal maximum number of hypothe cal structures generated for each polymer 
class using three small molecule datasets, GDB-13, GDB-17, and PubChem. 

Polymer class Theore cal maximum number 
Polyimide 1,921,301,367,989 

 
Polyolefin 120,568,894,750,259,696 

 

Monomer class Count Monomer class Count 
Amino acid 
 

7,256,230 Poly carboxylic acid and acid 
halide 

550,440 

Cyclic olefin 
 

204,472,259 Polyamine 
 

207,640,913 

Epoxide 
 

14,825,849 Polycarboxilic acid anhydride 9,253 

Hydroxy carboxylic acid 
 

4,226,491 Polyisocyanate 17,631 

Lactam 11,626,974 
 

Polyol and thiol 14,676,768 

Lactone 13,266,515 Vinylidene 193,219,664 
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Polyester 18,136,241,831,465 
 

Polyamide 166,946,749,591,594 
 

Polyurethane 258,766,096,608 
 

Epoxy 3,078,452,822,360,137 
 

PBI 550,440  
 

Vitrimers 8,160,740,323,560 
 

These vast quan es of hypothe cal polymer structures have immense poten al for u liza on. 
Researchers can use high-throughput screening methods to iden fy promising polymer materials. 
Addi onally, they can be employed to train genera ve models or large language models, as these 
ML models require extensive polymer structure informa on for training data. Furthermore, since 
we also have the polymeriza on reac on pathways and small molecule informa on for these 
hypothe cal polymer structures, combining them with polymer informa cs offers even more 
possibili es for researchers. 

2.3 Genera on of hypothe cal polymer structures 

(a) (b)

 

Figure 3. (a) Chemical space visualiza on and (b) SA score distribu ons of the real polymer data 
set from PolyInfo and generated hypothe cal polyimide, polyolefin, polyester, polyamide, 
polyurethane, epoxy, PBI, PI-PIM, and vitrimers. 

Using the polymeriza on reac on pathways and small molecule datasets, we randomly selected 
small molecules and generated 1 million hypothe cal polymer structures for each type of polymer, 
except for PBI, for which we generated 10 thousand hypothe cal polymer structures. Figure 3(a) 
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illustrates the chemical space visualiza on of real polymers from the PolyInfo dataset along with 
all the hypothe cal polymers for each type of polymer as well as PI-PIM. T-distributed Stochas c 
Neighbor Embedding (TSNE) is a technique used for embedding high-dimensional data into two-
dimensional spaces.51 TSNE is a popular nonlinear dimensionality reduc on and data visualiza on 
method that preserves nonlinear similari es between data points. It works by first calcula ng the 
similarity between high-dimensional data points using a Gaussian distribu on, then calcula ng 
the similarity between data points in the low-dimensional space using a t-distribu on, and finally 
minimizing the difference between the high-dimensional and low-dimensional similari es. It is 
evident that the structures of each type of polymer are rela vely clustered in the chemical space, 
with each polymer type generally occupying a specific region. Addi onally, since PI-PIM is a 
copolymer that includes polyimide, its chemical space overlaps with that of polyimide. On the 
other hand, the real polymers in the PolyInfo dataset encompass many types, resul ng in a much 
more dispersed distribu on throughout the chemical space. 

Furthermore, we incorporated the SA score index to assess the feasibility of synthesizing these 
hypothe cal polymers. The SA score index is a method that characterizes the synthe c 
accessibility of molecules, assigning a score between 1 (easy to make) and 10 (very difficult to 
make). Figure 3(b) illustrates the SA score distribu ons of all the hypothe cal polymers for each 
type of polymer as well as PI-PIM. It can be seen that most of the hypothe cal polymer structures 
have SA scores ranging between 4 and 8. It is important to note that the calcula on of the SA 
score is highly related to the complexity of the small molecules. In this study, the use of a large 
number of small molecule compounds from GDB-13 and GDB-17 resulted in higher SA scores for 
the hypothe cal polymer structures. If the goal is to obtain more easily synthesizable hypothe cal 
polymer structures, using small molecule compounds solely from PubChem would be feasible. 

2.4 ML for high-throughput screening of real and hypothe cal polymer datasets 

We then implemented customized feedforward neural network (FNN) models, based on our 
previous benchmark study,52 to screen the real polymer dataset (PolyInfo) and all generated 
hypothe cal polymers, with a par cular focus on thermal, mechanical, and gas permea on 
proper es, based on our previous studies.39, 52-55 For thermal proper es, we predicted glass 
transi on temperature (Tg), mel ng temperature (Tm), and decomposi on temperature (Td). For 
mechanical proper es, we predicted Young's modulus (E), yield strength (𝜎  ), and breaking 
strength (𝜎 ). For gas permea on proper es, we focused on six gases: helium (He), hydrogen (H2), 
oxygen (O2), nitrogen (N2), carbon dioxide (CO2), and methane (CH4). 

The polymer structures were represented by polymer-simplified molecular input line entry 
system (p-SMILES) strings generated using RDKit.56 In this system, SMILES strings were used to 
define the structures of the repeat units, and a pair of asterisks ('*') was employed to indicate the 
two endpoints of the repeat unit, represen ng the polymeriza on points. For predic ng the three 
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thermal proper es, the Morgan Fingerprint with Frequency (MFF), which is efficient and robust 
in genera ng an interpretable molecular representa on of polymers,52, 53 was employed as the 
input to the FNN model. The dataset for Tg, Tm, and Td are detailed in Supplementary Figure S1, 
and the training results for Tg, Tm, and Td are detailed in Supplementary Figure S2. For mechanical 
proper es except 𝜎  and gas permea on proper es, models from our previous work were used 
for predic ons.54, 55 The dataset and training results for 𝜎  are detailed in Supplementary Figure 
S3. 

2.4.1 Thermal proper es 

Thermal proper es of polymers, such as Tg, Tm, and Td, are crucial for several reasons. These 
proper es determine the polymer's behavior and stability under different temperature 
condi ons, which directly impacts their mechanical performance, processing, and safety. Tg is a 
cri cal property that controls the phase transi on of polymers, thereby influencing their 
applica ons.57 Tm defines the processing condi ons, allowing for shaping and forming of the 
polymer. Td provides informa on on the polymer's thermal stability and safety, ensuring it does 
not degrade prematurely. Understanding these thermal proper es helps us in selec ng the 
appropriate polymers for various applica ons, op mizing manufacturing processes, and ensuring 
the material's performance and longevity. 
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T (℃)

523372
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567
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535

(a) (b) (c)
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Figure 4. Distribu ons of (a) Tg, (b) Tm, and (c) Td predic on results of real polymers from PolyInfo 
dataset and each kind of hypothe cal polymers. (d) The real polymer with the highest predicted 
Tg, Tm, and Td values in the PolyInfo dataset, and a hypothe cal polyimide with predicted Tg, Tm, 
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and Td values exceeding this performance, along with the small molecule compounds used for its 
synthesis. 

Figures 4 (a), (b), and (c) display the distribu on of Tg, Tm, and Td predic on values for real 
polymers from PolyInfo and for each type of generated hypothe cal polymers. It can be observed 
that for each type of polymer, the predicted values for the three thermal proper es are quite 
con nuous, with most displaying a near-Gaussian distribu on. This aligns with the distribu on of 
polymer property values in the real world. By comparing the predicted results across different 
types of polymers, it is evident that the predicted value range for polyimides is higher than for 
other types of polymers. A significant number of hypothe cal polyimide structures are distributed 
in the high-temperature region (>300°C). This observa on aligns with real-world knowledge that 
polyimides are high-performance engineering plas cs known for their excellent strength and 
s ffness, excep onal heat resistance, and chemical stability. Their a rac ve mechanical and 
thermal proper es are widely u lized in the aerospace, automo ve, and electronics industries.58-

63 Some polyimides can withstand temperatures of up to 400°C and maintain excellent 
mechanical proper es across a broad temperature range (-269°C to 400°C).39 

Figure 4 (d) displays the structure of the real polymer with the highest combined predicted values 
of Tg, Tm, and Td from the PolyInfo dataset (shown within the gray box), alongside the structure 
with the highest combined predicted values from all generated hypothe cal polymer structures. 
This top-performing structure comes from the 1 million hypothe cal polyimide structures. The 
radar chart compares their predicted performance, and on the far right, the small molecule 
compounds used to synthesize this hypothe cal polyimide structure are shown. It is evident that 
the predicted performance of this hypothe cal polyimide structure surpasses that of the real 
polymer in all aspects, showcasing the poten al of these hypothe cal polymer structures for 
high-temperature applica ons. 

2.4.2 Mechanical proper es 
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Figure 5. Distribu ons of (a) E, (b) 𝜎 , and (c) 𝜎  predic on results of real polymers from PolyInfo 
dataset and each kind of generated hypothe cal polymers. (d) The real polymer with the highest 
predicted E, 𝜎  , and 𝜎   values in the PolyInfo dataset, and a hypothe cal polyimide with 
predicted E, 𝜎  , and 𝜎   values exceeding this performance, along with the small molecule 
compounds used for its synthesis. 

Mechanical proper es are crucial because they determine how a polymer material responds to 
various forces and stresses, directly influencing its suitability for different applica ons. Key 
mechanical proper es, such as E, 𝜎  , and 𝜎  , provide insights into the material's s ffness, 
elas city, and overall durability. These proper es are essen al for ensuring the material can 
withstand mechanical loads without deforming or failing, making them vital for applica ons in 
construc on, automo ve, aerospace, and other industries where structural integrity and 
performance under stress are cri cal. Understanding and op mizing mechanical proper es 
enable the development of materials that meet specific performance requirements, enhancing 
safety, reliability, and func onality in their intended applica ons. 

Figures 5 (a), (b), and (c) display the distribu on of E, 𝜎  , and 𝜎   predic on values for real 
polymers from PolyInfo and for each type of generated hypothe cal polymers. The overall 
distribu on is similar to that of the thermal proper es, with each type of polymer exhibi ng a 
nearly normal distribu on. A detailed analysis of each polymer's performance reveals that 
polyimide con nues to demonstrate significant poten al, consistent with our previous findings. 
Addi onally, we observed that PI-PIM also shows promising results, par cularly in the predicted 
values for 𝜎 , and 𝜎 . PI-PIM is a class of polymers that combine the advantageous proper es of 
polyimides and imine-based polymers. These materials are known for their unique combina on 
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of thermal stability, mechanical strength, and chemical resistance, making them highly suitable 
for various advanced applica ons. Because of the dynamic nature of the imine bond, the resul ng 
PIM–PIs are malleable, rehealable, and recyclable. The mechanical and thermal proper es can be 
fine-tuned by varying the monomer structures. The study demonstrated that using more rigid 
monomer precursors, primarily determined by the amine moiety in the imide, resulted in be er 
mechanical performance.44 

Figure 5 (d) showcases two polymer structures: the real polymer from the PolyInfo dataset with 
the highest combined predicted values of E, 𝜎 , and 𝜎  (highlighted within the gray box), and the 
top-performing hypothe cal polymer structure from the 1 million generated hypothe cal 
polyimide structures. The radar chart compares the predicted performance of both polymers, 
while the far right of the figure presents the small molecule compounds used to synthesize the 
hypothe cal polyimide. This comparison clearly demonstrates that the hypothe cal polyimide 
structure outperforms the real polymer in all evaluated aspects, underscoring the significant 
poten al of these newly generated hypothe cal polymer structures. 

2.4.3 Gas permeability 

Polymer membranes offer a versa le, cost-effec ve, and easily processable solu on for various 
separa ons that play vital roles in addressing climate change (e.g., carbon capture) and enhancing 
resilience (e.g., water treatment). In gas separa ons, polymer membranes are extensively u lized 
in numerous industrial processes such as oxygen enrichment, biogas purifica on,64 and post-
combus on carbon capture.65 Carbon capture, in par cular, is gaining significant a en on as a 
means to reduce environmental emissions. Membrane technologies are advantageous for their 
high energy efficiency and opera onal simplicity, owing to their flexibility and scalability.66 Key 
separa ons in different combus on processes—CO2/N2 in post-combus on, CO2/H2 in pre-
combus on, and O2/N2 in oxy-combus on—are cri cal for environmental conserva on.55 

In membrane-based gas separa on, a gas mixture is typically driven through a membrane by 
applying pressure, and separa on is achieved due to differences in the permeabili es of the 
individual gases.67 The performance of these membrane processes is primarily determined by the 
membrane’s permeability for a specific gas species, denoted as 𝑃 , where 𝑖 specifies the type of 
gas. When evalua ng the performance of separa ng gas A from gas B, another crucial measure is 
the membrane's selec vity, α, defined as 𝛼 = 𝑃 /𝑃 . An ideal membrane for a par cular binary 
gas separa on would exhibit both high permeability and high selec vity. Enhancing gas 
permeability and selec vity in these membranes would lead to more efficient industrial processes 
by increasing throughput, reducing energy costs, and achieving a purer product.68, 69 However, 
there exists a well-known trade-off between permeability and selec vity for polymer gas 
separa on membranes, delineated by the Robeson upper bound.70 
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Figure 6. Visualiza on of predicted gas permeabili es for real polymers from PolyInfo and 
hypothe cal polymers, including polyimide, polyester, and polyamide. The data are visualized for 
the following separa ons: (a) O2/N2, (b) CO2/CH4, (c) CO2/N2, (d) H2/CO2. Dashed lines represent 
the updated 2008 values of the Robeson upper bound. Units of permeability are given in Barrers. 

It is important to note that not all types of polymers are suitable for gas separa on. Therefore, in 
this sec on, we considered only polyimide, polyester, polyamide, and real polymers from the 
PolyInfo dataset. The predicted permeabili es of these types of hypothe cal and real polymers 
are plo ed for O2/N2, CO2/CH4, CO2/N2, and H2/CO2 separa ons in Figure 6. We can see that in 
the predic ons for all four types of gas separa ons, different types of hypothe cal polymers 
exhibit varying performances across the different gas pairs. The predicted results for hypothe cal 
polyimides, polyesters, and polyamides include many structures that are closer to the Robeson 
upper bound compared to the real polymers from PolyInfo. In Figure 6 (a), numerous hypothe cal 
polyimides and polyamides even surpass the 2008 values of the Robeson upper bound. Similarly, 
in Figure 6 (b), some hypothe cal polyimides exceed the Robeson upper bound. This 
demonstrates that our generated hypothe cal polymer structures not only have significant 
poten al for developing high-performance materials in terms of thermal and mechanical 
proper es, but they also offer substan al benefits for applica ons such as gas separa ons. These 
polymer structures can greatly assist researchers in advancing the separa on technologies for 
natural gas processing, hydrogen produc on and purifica on, carbon capture and storage, biogas 
upgrading, etc. 

3. Conclusions and Outlook 
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In this study, we successfully demonstrated the genera on, analysis, and predic on of proper es 
for a vast array of hypothe cal polymer structures, leveraging advances in polymer informa cs 
and ML techniques. Hundreds of quadrillions of hypothe cal polymer structures can be 
generated using small compounds from the GDB-17, GDB-13, and PubChem datasets, combined 
with well-defined polymeriza on reac ons. We generated millions of hypothe cal polymer 
structures across various classes, including polyimides, polyolefins, polyesters, polyamides, 
polyurethanes, epoxies, PBIs, vitrimers, and PI-PIMs. TSNE plot shows that the structures of each 
polymer type are rela vely clustered in the chemical space, with each type generally occupying a 
specific region. 

Through the predic on of glass transi on temperature, mel ng temperature, and decomposi on 
temperature, we iden fied hypothe cal polyimide structures that surpass the highest-
performing real polymers, demonstra ng significant poten al for high-temperature applica ons. 
The predic on of Young's modulus, yield strength, and breaking strength revealed that 
hypothe cal polyimides and PI-PIMs exhibit superior mechanical performance compared to 
exis ng real polymers, indica ng their suitability for demanding applica ons requiring high 
strength and durability. The evalua on of gas permeabili es for separa ons such as O2/N2, 
CO2/CH4, CO2/N2, and H2/CO2 showed that many hypothe cal polyimides and polyamides 
approach or exceed the Robeson upper bound, highligh ng their poten al for efficient gas 
separa on technologies. 

The comprehensive analysis and high-throughput screening conducted in this study showcase the 
immense poten al of data-driven methods in polymer science. By iden fying high-performance 
hypothe cal polymers, we pave the way for future experimental valida on and the development 
of new materials with tailored proper es for specific applica ons. This research not only advances 
our understanding of polymer proper es but also provides a valuable open resource database for 
the scien fic community, fostering innova on in materials design and applica on. 

4. Computa onal Methods 

4.1 Hypothe cal polymer structure genera on 

The genera on of all types of hypothe cal polymer structures was implemented using Python 
and relevant toolkits. For polyimide, polyolefin, polyester, polyamide, and polyurethane, the 
hypothe cal polymer structures were generated using SMiPoly toolkit. For epoxy, PBI, vitrimer, 
and PI-PIM, the hypothe cal polymer structures were synthesized using RDKit toolkit. 

4.2 Machine learning model 

For the FNN model used for Tg, Tm and Td predic on, the MF with frequency was employed for 
polymer feature representa on. This method iden fies substructures within a circle of radius RM 
and assigns each substructure a numerical iden fier. In this study, the p-SMILES nota on of the 
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repeat unit for each sample was u lized, and the fingerprint algorithm was implemented in RDKit 
with 𝑅  set to 3. A total of 8,831 substructures were detected, but to reduce the dimensionality 
of the input vectors for the FNN model, only 1,176 prominent substructures shared by most 
polymers were retained. An ensemble model, which averages the predic ons of twelve FNN 
models, was used to achieve be er predic on performance. The Tg model was op mized through 
hyperparameter tuning to include four hidden layers with 256, 64, 2048, and 512 neurons, 
respec vely. The Tm model was op mized through hyperparameter tuning to include four hidden 
layers with 256, 32, 1024, and 1024 neurons, respec vely. The Td model was op mized through 
hyperparameter tuning to include four hidden layers with 32, 32, 512, and 256 neurons, 
respec vely. 

For predic ng E, 𝜎 , and 𝜎  predic on, the FNN model u lized the MF with frequency for feature 
representa on, with 𝑅   set to 3. Out of a total of 8,831 detected substructures, only 129 
prominent substructures shared by most polymers were retained to reduce the dimensionality of 
the input vectors. For each polymer, vectors were created where each bit represents the presence 
of a detected substructure. An ensemble model, averaging the predic ons of twelve FNN models, 
was employed to enhance predic on performance. Specifically, the model for E was op mized to 
include a single hidden layer with 40 neurons. The model for 𝜎   was op mized to have four 
hidden layers with 8, 8, 8, and 16 neurons, respec vely. The model for 𝜎  was op mized with four 
hidden layers containing 16, 512, 512, and 1024 neurons, respec vely. 

For predic ng gas permeabili es, the FNN model u lized the MF with frequency for feature 
representa on, with 𝑅   set to 3. From a total of 3,209 detected substructures, only 114 
prominent substructures shared by most polymers were retained to reduce the dimensionality of 
the input vectors. The models were op mized with five hidden layers containing 64, 64, 32, 16, 
and 8 nodes, respec vely. 

Data availability 

All generated hypothe cal polymer structures and their predicted proper es can be found in the 
GitHub repository: h ps://github.com/ytl0410/PolyUniverse, upon the publishing of this work. 
The dataset can be used freely for academic purposes. 
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