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Abstract 

Molecular docking, the task of predicting the binding structures between a protein and a small 

molecule ligand, plays a significant role in structural-based drug discovery. In recent years, 

numerous deep learning-based methods for molecular docking have emerged. State-of-the-art 

approaches such as DiffDock formulate the docking problem using diffusion generative models, 

exhibiting superior performance than traditional docking algorithms. However, despite the strong 

performance of these deep learning-based docking methods in predicting binding poses, they often 

lack a well-defined scoring function. This limitation poses challenges in effectively distinguishing 

between the strong and weak inhibitors during virtual screening. To address this limitation, we 

introduce FeatureDock, a transformer-based deep learning framework, which can accurately 

predict the protein-ligand binding poses as well as achieve a strong scoring power for virtual 

screening. FeatureDock extracts chemical features from local environments within protein 

structures and utilizes a Transformer encoder to predict probability density envelopes indicating 

where ligands are most likely to bind in the protein pocket. We also designed a scoring function, 

which encodes the predicted probability density envelope, to optimize and score the ligand poses. 

In addition, the attention mechanism in FeatureDock’s Transformer further enhances the model’s 

interpretability by providing the attention weights of each chemical feature from the protein 

structures in predicting the binding probabilities. When applied to virtual screening, we 

demonstrated that FeatureDock outperforms DiffDock, Smina and AutoDock Vina in 

distinguishing strong inhibitors from weak ones for both Cyclin-Dependent Kinase 2 (CDK2, an 

inactivated form) and Angiotensin-converting enzyme (ACE). The performance was assessed 

using Kullback–Leibler (KL) divergence and area under receiver operating characteristic (AUC) 

evaluation metrics. We also demonstrate that FeatureDock can accurately predict the binding poses, 

achieving an average RMSD of 2.4 Å when compared to CDK2-ligand co-crystal structures.  We 

anticipate that our FeatureDock holds promise to be widely applied in virtual screening to assist in 

drug design. FeatureDock is available at https://github.com/xuhuihuang/featuredock. 
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1. Introduction 

Drug discovery is a complicated, costly, and time-consuming task that typically takes 

pharmaceutical companies over a decade and billions of dollars to bring a novel drug to market1, 

2. The high-throughput screening (HTS) methods take considerable amount of time to evaluate a 

compound library that typically contains millions of compounds3. Considering the number of 

currently available compounds being ~108 in small molecule libraries such as PubChem4, 5, ZINC6, 

7 and ChEMBL8, numerous in silico methods evolved to virtually screen potential compounds 

against the target to alleviate the heavy duty in HTS. 

In the computer-aided and rational drug design, docking-based methods9-12 provide powerful tools 

for predicting the positions, orientations, and conformations of ligand binding. One of the critical 

principles of traditional docking methods is to design an accurate scoring function that can be 

applied to score and explore the optimal ligand binding poses. For example, DOCK13-15 and 

AutoDock16 used physics-based scoring functions consisting of terms for van der Waals (vdW) 

interactions, electrostatic energy, hydrogen bonding interactions, etc. These physics-based scoring 

functions consider inter- and intra-molecular chemical interactions, but they are often 

computationally expensive and suffer from the inaccurate descriptions of polarization, solvation 

and the entropy of protein and ligand17, 18. Empirical scoring functions can address the above 

limitations of physics-based scoring functions by fitting parameters to the experimental binding 

affinities using pre-selected descriptors19, 20. For example, AutoDock Vina21 utilizes a fully 

empirical scoring function, represented as vdW-like potential, hydrophobic interactions, 

conformational entropy, etc. Smina22 designed a user-friendly software interface to support custom 

scoring functions based on AutoDock Vina. Other derivatives of AutoDock Vina further improved 

the scoring function of AutoDock Vina for specific systems, e.g., AutoDock VinaXB23 that deals 

with halogen bonds and Vina-Carb24 that deals with carbohydrate systems.  

The aforementioned docking methods employ genetic algorithms (GA)13, 14, 16 or Monte-Carlo 

(MC) annealing21, 23-27, combined with gradient-based optimization, to sample and refine the ligand 

binding poses. More recent studies have integrated deep learning models to optimize ligand poses 

in one-stage28-30, significantly speeding up the docking process. For example,  EquiBind30 and 

TankBind29 adopted E(3)-equivariant graph neural networks (E(3)-GNN) to effectively represent 

both the protein and ligand structures. They then utilized a graph matching network (GMN) to 

predict the accurate rigid SE(3) transformation for the ligand docking. Additionally, a fine-tuning 

model was included to optimize torsion angles of rotatable bonds, enabling flexible docking. 

Unlike EquiBind and TankBind, which treated the docking task as a regression problem, 

DiffDock28 took a different approach by harnessing diffusion-based generative models. 

Specifically, it leveraged a denoising diffusion process to generate ligand conformations and 

binding poses from the initial ligand structure with randomized torsional angles and mean-

removed 3D coordinates. DiffDock included a supervised model to classify whether the generated 

poses are close to the ground truth based on the model prediction called confidence score. 

The scoring functions of docking methods are often inadequate in virtual screening, particularly 

when distinguishing strong binders from weak binders. This is because the scoring functions of 

docking methods often exhibit weak or no correlation between docking scores and binding 
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affinities31, 32.  This is evidenced by the low Pearson correlation coefficients (Rc) between docking 

scores and binding affinities for several commonly used docking software evaluated on the CASF-

2016 dataset32. For example, AutoDock Vina, GOLD33, MOE34 and Glide35, 36 achieved Rc of 0.604, 

[0.416, 0.617], [0.405, 0.591] and [0.467, 0.513] respectively, where the range indicates that more 

than one scoring function are evaluated in the software. As a result, these docking scoring functions 

may result in high false positives when selecting true inhibitors by considering the highest-scored 

compounds as inhibitors from a compound library.  

Recently, several machine-learning based scoring functions12, 32, 37 have engaged more 

comprehensive descriptors and more advanced neural network architectures to predict 

experimental binding affinities (e.g., Kd values), thus improving the scoring power. However, 

these machine learning methods were designed to re-score the docked pose, which could not apply 

to the scenario without 3D protein-ligand structures. For example, 3D CNN models like Atomic 

Convolutional Neural Networks (ACNN)38  and KDEEP
39 treated protein-ligand complex as atom 

property tensors. Furthermore, distance-aware graph neural networks (GNN) like PotentialNet40 

utilized the more efficient graph representation to encode Euclidean symmetries in structures. 

In this study, we introduce a physicochemical feature-based deep-learning approach, FeatureDock, 

to score and pose small-molecular ligands binding to proteins. In FeatureDock, the potential 

binding pockets are firstly discretized into grid points, embedded using 3D-invariant FEATURE41 

representations. These representations have been shown sufficiently descriptive to extract the local 

chemical environment for protein-RNA binding42. Then, the state-of-the-art Transformer 

encoder43 is adopted to predict probability density envelopes, formed by grid points in the binding 

pockets with high probabilities for ligands to occupy. The attention mechanism in Transformer 

further helps explain and visualize the importance of input features by extracting the attention 

weights. Using the probability density envelopes, we design a novel scoring function combined 

with a position optimization algorithm to screen and pose ligands in binding pockets. To 

demonstrate the performance of FeatureDock, we have applied it to select strong inhibitors from 

bioassay datasets8 for two different protein systems: an inactivated form of Cyclin-Dependent 

Kinase 2 (CDK2) and Angiotensin-converting enzyme (ACE). We show that our scoring function 

exhibits a superior ability to differentiate between strong and weak inhibitors compared to 

DiffDock28, Smina22 and AutoDock Vina21, as evaluated through the KL divergence and AUC 

evaluation. Notably, our model can accurately retrieve the binding poses of top-predicted ligands 

after the optimization process based on our scoring function. These binding poses closely 

approximate their native structures in cocrystal configurations, demonstrating a high level of 

proximity for CDK2. 
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Figure 1. FeatureDock Pipeline. (A) Collect protein-ligand complexes from PDBBind v2020 refined set. 

(B) Extract and featurize protein local environments around grid points in the ligand-binding pocket and 

then label the grid points as either binding or non-binding with the ligand. (C) Train the Transformer 

Encoder to predict the ligand-binding probability of each grid point. (D) Predict the probability density 

envelope for the query space in apo proteins using the trained model. (E) Apply the predicted probability 

density envelope to virtual screening and pose prediction. 

2. Methods 

We outline the pipeline for our FeatureDock framework in Fig 1. Initially, the ligand-binding 

pockets of protein complexes in the PDBBind v2020 refined set44 are discretized into grid points, 

embedded using 3D-invariant FEATURE representations (Fig 1A-B). We then train a Transformer 

encoder model as shown in Fig 1C. After training, our model predicts the binding probabilities of 

grid points in the query pockets of a given apo protein structure, forming probability density 

envelopes (Fig 1D). Using these probability density envelopes, we designed a scoring function 

combined with a position optimization algorithm to predict and score the binding poses (Fig 1E). 

We will describe these steps in detail below:  

2.1. Dataset curation 

Protein representation and data labeling: The training dataset was curated from the PDBBind 

v2020 refined set44 (Fig 1A), comprising 5,316 high-quality protein-ligand complex structures that 

have been cleaned, fixed, and properly protonated from raw structures deposited in RCSB PDB45. 

Notably, ligands in the refined set are all non-covalently binding to the proteins. We extracted the 

convex hull formed by protein residues within 6Å around each ligand. This space was discretized 

to grid points spaced by 1 Å. The grid points too close to (< 1Å) or too far away from (> 6Å) the 
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protein atoms were removed to reduce the dataset size because ligand atoms are less likely to show 

up in these regions. 

Protein-ligand conformations are unstructured data compared to image tensors, thus requiring 

delicate data preprocessing before being fed into neural networks. Having a good protein 

representation is one of the determining factors to make sure that the model learns meaningful 

information. In our previous work focused on predicting protein-RNA interactions42, FEATURE 

vectors41 have been proven descriptive enough to capture protein local environments. Within each 

spheric shell, FEATURE vectors encode 80 physicochemical properties (Table S1) across various 

hierarchies, including atomic level, residue-level, and secondary structural level information. 

Since FEATURE vectors are invariant to translational, rotational and permutational changes of 

protein structures, there is no requirement of dataset augmentation to make models robust against 

these operations. Furthermore, we will show that fine-tuning of the model on a specific protein 

family is not necessary because the model trained on various proteins has the generalization ability 

to predict novel structures, as shown in the Results section 3.1. 

By default, the local environment surrounding each grid point was characterized by 6 concentric 

shells (Fig 1B). Centered at each grid point, these shells were defined with a width of 1.25 Å each, 

capturing properties in a local environment up to a radius of 7.5 Å. FEATURE vectors, were then 

applied to these concentric shells with the 80 pre-defined physicochemical properties. This 

featurization resulted in a 6x80 tensor for each grid point. Grid points were assigned with labels 

related to the protein-ligand binding properties. Here we chose a categorical label, which tells 

whether there is a ligand heavy atom within 1.5 Å of the grid point (Fig 1B). 

After extracting features from existing protein-ligand cocrystal structures and curating a labeled 

dataset for supervised learning, the Transformer encoder can be trained (Fig 1C) and then applied 

to predict which space is more likely occupied by ligands in a data-driven manner for novel apo 

structures (Fig 1D). Later, the predicted probability density envelope formed by the grid points 

and probabilities will be used in the scoring function during virtual screening (Fig 1E). 

Dataset split: To avoid trivial queries and predictions during the model validation, we split the 

whole curated dataset (containing 4,515 structures after pre-processing) into 

training/validation/test set based on their sequence similarities. Structures were clustered to 1,326 

structure clans (Fig S1) based on 90% MMseq246 protein sequence similarity fetched from RCSB 

PDB45. 10% of the protein clusters were randomly selected as the validation set and the remaining 

were used for training. This split method guarantees that homogeneous structures exist in either 

the training or validation dataset but not both. By adopting this dataset split strategy, the evaluation 

metrics of the validation set can better reflect the model performance and avoid overfitting. During 

the validating of model generality (the leave-out models), models were trained on the dataset after 

leaving out one certain type of protein (e.g., CDK2) and its homogeneous structures (sequence 

identity >= 90%) to mimic the scenario of applying the trained model to predict novel protein 

structures. After validating that our model could achieve good performance on predicting novel 

structures, we trained full models with all structure clusters and used the full-model predictions in 

the model application of virtual screening and pose prediction. 
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Data resampling for mitigating class imbalance: In this section, we discuss the class imbalance 

in available training protein complex structures. One source of imbalance comes from the fact that 

some protein families are better studied than others, leading to the structure abundance difference. 

For example, ACE proteases have <10 structures in the PDBBind refined dataset, CDK2 and 

CDK2/Cyclin have ~20 structures, while many other proteins have only one single structure (Fig 

S1). Another source comes from the fact that grid points with negative labels (non-binding regions) 

are more abundant than those with positive labels (binding regions) because we selected a 

relatively large pocket compared to the regions that the ligand occupy in the step of dataset curation.  

We adopted two data resampling strategies to address the class imbalance issue. The first is to 

sample each protein cluster uniformly instead of sample each protein structure uniformly. The 

model can therefore have better generalization capability by sampling local environments from 

rare protein clusters more frequently. The second is to balance the abundance of different labels 

by under-sampling negative datapoints and over-sampling positive datapoints. 

2.2. Neural network architectures 

FeatureDock used the Transformer encoder (Fig 1C) to predict the ligand binding probabilities of 

grid points because it consistently outperformed Feed Forward Neural Network and ResNet across 

various model sizes. To elucidate that Transformer encoders could achieve better performance, we 

compared different neural network architectures at different model sizes, and evaluated their 

performances by the loss, area under ROC (AUC), F1 Score and Matthews correlation coefficient 

(MCC) on the validation set. 

Transformer encoder 

Transformer43 was first proposed in 2018 for natural language processing (NLP) tasks. It pioneered 

the use of attention mechanism to capture the temporal correlations in token sequences, enabling 

the efficient parallel computing compared to traditional recurrent neural networks, long short-term 

memory (LSTM)47, etc. The success of Transformer has also inspired significant advancements in 

the field of computer vision (CV). Various transformer-based models, e.g., vision transformer 

(ViT)48 and swin transformer49, have been developed, outperforming most of traditional CNNs in 

image classification tasks. Compared to convolutional operations that capture local spatial 

correlation, the attention mechanism in Transformer calculates all-to-all correlations among the 

input features. Transformer has also gained its popularity in the drug discovery field. For example, 

Transformer has been adopted to encode protein sequences and generate SMILES of potential 

drugs, or to study drug-target interactions (DTI)50. 

We leveraged the Transformer encoder to predict the ligand-binding probability of each grid point 

based on the physicochemical properties of its local environment. Specifically, we conceptualized 

each physicochemical property as analogous to a word (Fig 2). Values of the same property in 

different concentric spheritic shells (total of 6 shells) were aggregated into a single word 

(consisting of 6 characters in each word). The class token48, 51 was concatenated with the 80 

properties to form an 81-word sentence 𝒉𝟎 for the classification purpose. The 81-word sentence 

was additionally encoded with positional embeddings and fed to the encoder blocks. The final 

embedding of the class token can be viewed as the representation of the grid point after propagating 
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information of input properties. It was then fed into the Softmax layer which outputs the binding 

probability. 

Here we denote the input of each encoder block (Fig S3 and Eq. 1) as  𝒉𝒊 ∈ ℝ𝒍×𝒅 and the output 

as 𝒉𝒊+𝟏 ∈ ℝ𝒍×𝒅, which will then serve as the input of the next block. 𝑙 is the sequence length (𝑙 =

81), and 𝑑 is the dimension of each word (i.e., chemical property) in the sequence. In each block, 

the input 𝒉𝒊  is projected to the query ( 𝑸 ), key ( 𝑲 ), value (𝑽 ) matrices, parameterized by 

𝑾𝑸, 𝑾𝑲, 𝑾𝑽 ∈ ℝ𝒅×𝒅′
 . The attention mechanism utilizes 𝑸 , 𝑲  ∈ ℝ𝒍×𝒅′

  to calculate a word-to-

word weight matrix 𝑺 ∈ ℝ𝒍×𝒍, where 𝑺(𝑗, 𝑘) represents the weight of word 𝑘 contributing to word 

𝑗. The updated hidden state 𝒉𝒊+𝟏
′ ∈ ℝ𝒍×𝒅′

 (𝑑′ is the dimension of the hidden state) is a weighted 

combination of the value matrix 𝑽, given the attention weight matrix 𝑺. The final output of the 

block 𝒉𝒊+𝟏 will be calculated using 𝒉𝒊+𝟏
′  and 𝒉𝒊 via residual connection. The attention weight from 

physicochemical properties to the class token can be used to further enhance model interpretability 

by visualizing contributing weights (see Fig 4 for examples). In implementation, we utilized multi-

head attention that projects the queries, keys and values ℎ times parallelly, and concatenated their 

outputs (see Fig S3 for details). When calculating the contribution of features to ligand binding, 

we extracted and averaged the weight matrices of attention heads in the final encoder block. 

 

Figure 2. Transformer encoder architecture. 

Benchmark Model 1: Feed Forward Neural Network (FNN) 

Feed forward neural network (FNN) is a stack of fully connected layers with different number of 

neurons. Each layer performs a linear combination of input features followed by a nonlinear 

activation function performed on each feature. At the end of the neural network, a Softmax layer 

 𝑸, 𝑲, 𝑽 = 𝒉𝒊𝑾𝑸, 𝒉𝒊𝑾𝑲, 𝒉𝒊𝑾𝑽 

𝑺 =  𝑆𝑜𝑓𝑡𝑚𝑎𝑥(
𝑸𝑲𝑻

√𝑑𝑘

) 

𝒉𝒊+𝟏
′ = 𝑺𝑽 

𝒉𝒊+𝟏 = 𝑓(𝒉𝒊+𝟏
′ ) + 𝒉𝒊 

 

 

(1) 
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is applied to provide the probabilities of assigning each input data to different categories. In our 

scenario (Fig S2A), the 6x80 input features corresponding to each grid point are serialized as a 

480-dimensional vector 𝒉𝟎, which is then passed into FNN.  

Benchmark Model 2: ResNet 

Convolutional neural networks (CNNs) use convolutional operations to capture localized patterns 

in images and have exhibited robustness in image classification tasks. For example, pioneering 

CNN architectures like AlexNet52 achieved a prominent top-1 accuracy of 63.3% and showed a 

much lower top-5 error rate by at least 10% compared to the other models in 2012 ImageNet 

contest. Subsequently, in 2014, ResNet53 was introduced, revolutionizing CNNs by introducing 

residual connections. The residual connection enables the identity mapping across different 

convolutional blocks, significantly enhancing the robustness of larger deep learning models. 

Furthermore, residual connections alleviated the gradient vanishing/explosion issue that otherwise 

may occur in standard neural network models. 

As shown in Fig S2B, the 6x80 features were reshaped to a 1x6x80 tensor 𝒉𝟎 and fed into ResNet 

blocks. In each ResNet block, the input state 𝒉𝒊 ∈ ℝ1x6x80   was filtered by the 1x2x80 

convolutional kernels and converted to the hidden state 𝒉𝒊+𝟏with the same dimension. This kernel 

shape can capture spatial correlation among properties in two adjacent concentric shells and allows 

the information from outer shells to pass to inner shells when more residual blocks are added on. 

2.3. Hyperparameters and fine-tuning 

We used cross-entropy loss as the objective function of our models. The training hyperparameters 

are summarized in Table S2. The learning rate was set as 0.01, with a decay factor of 0.5 when the 

validation loss reached a plateau, and the minimum threshold was 10-6. The optimizing method 

was AdamW optimizer54 with betas (0.9, 0.999). To better reflect the true model capacity, no 

weight decay was applied during model capacity testing and architecture selection procedures. The 

best model was recorded based on the validation loss to avoid overfitting. We trained each model 

by 5 random above-mentioned training/validation splits to get validation statistics and select the 

best model architecture with the most suitable capacity. 

The default training epochs was set to 30 in the leave-out model training and 50 in the full model 

training. The default batch size was 5000, which meant sampling 5 structures from each structure 

cluster and sampling 1000 class-balanced datapoints from each structure. Benefitted from this 

dynamic resampling process, the model tended to iterate over different structures of each structure 

cluster as the training went on. The models were trained on NVIDIA A100 SXM4 80GB. 

2.4. Scoring functions and virtual screening 

We encoded the grid-point coordinates 𝒑  together with ligand coordinates 𝒒  in our scoring 

function (Eq. 2). 𝒑 has the shape of (𝑁, 3), where 𝑁 represents the number of grid points. 𝑷(𝒑) 

represents the predicted probabilities of the grid points. 𝒒 has the shape of (𝑀, 3), where 𝑀 means 

the number of heavy atoms in the given compound. 𝑻 is the transformation matrix that incorporates 

translational and rotational operations in the three-dimensional Euclidean space. The scoring 

function rewards compound poses that can occupy space of higher predicted probability. In the 
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following equations, 𝒑𝒊  represents the coordinate of the 𝑖 th grid point, and 𝒒𝒋  represents the 

coordinate of 𝑗th ligand heavy atom. 

 
Scoring Function=

𝟏

|𝒒|
𝜮𝒒𝒋

𝟏

|𝑵𝒑(𝑻𝒒𝒋)|
𝜮𝒑𝒊∈𝑵𝒑(𝑻𝒒𝒋)𝑷(𝒑𝒊)𝒆−‖𝒑𝒊−𝑻𝒒𝒋‖

𝟐

 
(2) 

 
Objective Function= −

𝟏

|𝒒|
𝜮𝒒𝒋

𝟏

|𝒑|
𝜮𝒑𝒊

𝑷(𝒑𝒊)𝒆−‖𝒑𝒊−𝑻𝒒𝒋‖
𝟐

 
(3) 

The binding position of any compound can be optimized by L-BFGS-B to minimize the objective 

function (Eq. 3). It is worth noting that the objective function considers distance-weighted 

probabilities of all grid points given a certain probability cutoff, while the scoring function rescales 

the objective function by only considering the neighboring (<= 1.5 Å) grid points 𝑵𝒑(𝑻𝒒𝒋). We 

used 𝑝𝑟𝑜𝑏𝑎𝑏𝑖𝑙𝑖𝑡𝑦_𝑐𝑢𝑡𝑜𝑓𝑓 = 0.50 in the objective function to allow a larger compound explorable 

region and used a different probability cutoff to re-score the optimized poses for different protein 

systems. During scoring, we suggest using the best probability cutoff evaluated on AUC when the 

bioassay results are available for the query protein. Please refer to Results section 3.3 for the details 

of the above-mentioned optimization and scoring method in selecting strong inhibitors from 

compound libraries for inactive CDK2 and ACE. When the bioassay results are unavailable, it is 

suggested to choose the probability cutoff based on the pocket properties, which will be further 

elaborated in the Discussion section. 

To predict binding poses using the probability density envelope, we first generated up to 20 

conformers for each compound using RDKit (with pairwise RMSDs between these conformations 

are larger than 1Å after molecular alignment). useExpTorsionAnglePrefs and useBasicKnowledge 

were enabled during sampling, and the generated conformers were further optimized by the 

MMFF55 force field. Each ligand conformer was initialized by 500 random rotations. An utmost 

of 10,000 optimization results per compound were finally clustered by DBSCAN56, 57 method 

based on their RMSDs to reduce the number of aligned poses. The proposed clusters were sorted 

by the average score of cluster members. The purposes of massive initial samplings followed by a 

clustering process are to avoid potential local minima during L-BFGS-B optimization, and to 

reduce the number of proposed binding poses. We combined sampling and clustering of three 

different random seeds to make the top-proposed clusters more robust. 

2.5. Preparation of query structures and compound libraries 

Compound libraries used in virtual screening were fetched from the CHEMBL8 database. The 

compounds with IC50 less than 10 nM are considered as strong inhibitors and those with IC50 values 

greater than 10 µM are considered as weak inhibitors. To mimic a blind virtual screening, we 

further removed compounds that share > 95% fingerprint Tanimoto similarity with ligands in the 

PDBBind cocrystal structures to curate compound libraries different from native ligands used in 

training. This setting helps validate the model’s ability to select novel compounds that are different 

from existing ligands from a pre-selected drug-like compound library. 

An inactive form of CDK2 
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The cleaned apo structure of 1B38 was used as the reference protein structure of CDK2 during 

virtual screening. The query space (Fig S6A) used in our method is formed by grid points within 

5 Å away from native ligands of 11 pre-aligned CDK2 structures. 

We filtered compounds with molecular weight greater than 400 Da from CHEMBL301 which 

consists of CDK2 bioassay results with IC50 values. Compounds in CHEMBL301 with bioassay 

descriptions explicitly reporting to be tested on CDK2/Cyclins are removed because they bind to 

a different protein conformation caused by cyclin activation. The above filtering rules result in a 

147-compound virtual screening library for the CDK2. The molecular property distributions of 

strong inhibitors and weak inhibitors in this library are similar (Fig S6B). 

ACE 

The cleaned apo structure of 3BKL was used as the reference protein structure of ACE. The query 

space (Fig S7A) used is formed by grid points within 5 Å away from native ligands of 4 pre-

aligned ACE structures that share a similar scaffold (2OC2, 3BKK, 3BKL and 6F9U), but it is 

large enough to cover all 7 native ACE ligands in the cocrystal structure dataset. 

We filtered compounds with molecular weight greater than 400 Da and less than 600 Da from 

CHEMBL1808 which consists of ACE bioassay results with IC50 values. We further used the 

following criteria to filter out compounds less likely to be drugs and make the compound properties 

match in the meanwhile (Fig S7B): logP <= 5, number of hydrogen donors <= 5, number of 

hydrogen acceptors <= 10, number of rotatable bonds <= 5. The above filtering rules result in a 

94-compound virtual screening compound library. 

2.6. Parameters used in the benchmark docking programs 

Protein structures were prepared using AutoDockTools1.5.7 for Smina and AutoDock Vina. The 

query box of inactive CDK2 has the size of 18 Å x16 Å x16 Å, centered at [1.38, 26.15, 9.40]58 

(Fig S4). The query box of ACE has the size of 18 Å x22 Å x24 Å, centered at [43, 45, 44]. These 

two docking boxes are large enough to cover all ligands from cocrystal structures in the curated 

dataset. sdf files of compounds are generated from SMILES using RDKit. pdbqt files used in 

docking softwares were converted from sdf files using openbabel59. The parameters used in Smina 

and in AutoDock Vina are exhaustiveness = 8, num_modes = 20. 

The default parameters of DiffDock were used to generate compound conformations and positions 

during the virtual screening:  inference_steps = 20, samples_per_complex = 40, batch_size = 10 

actual_steps = 18, no_final_step_noise = True. 

3. Results 

3.1. Model training and selection 

We chose Transformer encoders in our FeatureDock, as it outperforms other neural network 

architectures, including FNN and ResNet (see details of these architecture in Methods section 2.2). 

The model performance was evaluated by cross-entropy loss, area under ROC (AUC), F1 Score 

and Matthews correlation coefficient (MCC) on the validation set. Transformer encoder 

consistently achieved the lowest loss across all tested model capacities (Fig 3A and Table S3) 
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compared to FNN and ResNet. Especially, the validation loss saturated at the Transformer model 

with 20 encoder blocks (500k parameters, loss=0.269, see Table S4), indicating that the model 

with 500k parameters is large enough to fit the dataset.  Additionally, the standard deviations of 

Transformer models are notably smaller than those of FNN and ResNet. 

We further show that the fine-tuning on a specific protein family was not necessary in our 

framework.  This is supported by the evidence that CDK2 leave-out model further optimized on 

kinase proteins did not show significant performance improvement over the general model (Table 

S5) when testing on the CDK2 dataset. 

Prediction of probability density envelopes for the ligand binding: We first demonstrate the 

performance of FeatureDock on CDK2 by training a model excluding CDK2 and its 90% 

homogeneous structures. FeatureDock can generate a probability density envelope by collecting 

the predicted binding probabilities of all grid points within the query pocket (see Fig S4 for the 

pocket information). Regions predicted with higher probability suggest a greater likelihood of 

being occupied by the ligand (Fig 3C), making the probability density envelope a valuable tool for 

ligand design and ligand binding pose prediction. To assess the precision and robustness of our 

method's predicted probability density envelope with regards to ligand occupancy, we analyzed 18 

pre-aligned structures (Fig S4) of CDK2 (the inactive form) and CDK2/Cyclin (the active form). 

Fig 3B illustrates the distances between ligand heavy atoms and grid points associated with various 

predicted binding probability ranges. Notably, grid points with high predicted binding probabilities 

(> 0.8) are very close to the actual locations of ligand atoms, with an average distance of 0.62 Å. 

This finding indicates that our model's predicted high binding probability regions closely 

correspond to the actual locations of the ligand heavy atoms. Thus, our model shows great promise 

for predicting ligand poses by aligning them with the predicted probability density envelope.  

We also applied FeatureDock to predict binding probability density envelopes on different 

conformational states of the same protein. As shown in Fig S5, the probability density envelopes 

of the inactive and active CDK2 exhibit substantial differences in the region proximal to Tyr15, 

located at the glycine-rich loop (G-loop, 11-16). Consequently, an allosteric ligand binding near 

Tyr15 may hinder the structural transition from the inactive to the active state, thereby inhibiting 

the CDK2 activation. This prediction is consistent with the reported ANS allosteric binding site60 

located between the ATP binding pocket and C-helix which can inhibit cyclin binding. 
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Figure 3. Performance and explainability of CDK2 predictions. (A) Comparisons of cross-entropy loss 

of the validation set of three different architectures: FNN, ResNet, and Transformer. (B) Distance 

distributions of true ligand atoms to grid points. (C) Query box and the probability density envelope of 

1B38 (inactive CDK2). The darker blue regions have higher probabilities. 

3.2. Identifications of chemical features contributing most to ligand binding 

Our FeatureDock tool generates attention maps for each input chemical feature using the attention 

weights from the Transformer architecture (see Fig S3 and Eq. 1). Each attention map records the 

contributions of a specific chemical feature in predicting the binding probabilities of all grid points 

in the binding pocket. For example, Fig 4B visualizes the attention maps of two representative 

chemical features (hydrophobicity and polar residues) of grid points in the binding pocket for an 

inactive form of CDK2 structure (PDB ID: 1B3861). In Fig 4A, we report the average attention 

weights per given amino acid surrounding the binding pocket. Among all the hydrophobic residues, 

Phe82 and Phe80 contribute the most to the ligand binding, with contributions of 2.6% and 2.0%, 

respectively (top panel of Fig 4A). The attention weights from our FeatureDock tool is consistent 

with the previous results obtained from the pharmacophore model62. In this pharmacophore model, 

hydrophobic pharmacophores containing Phe82 and Phe80 emerged as frequently occurring 

features based on multicomplex-based analysis constructed on 124 CDK2 cocrystal structures. For 

polar amino acids surrounding the binding pocket, Gln85 and Gln131-Asn132 are predicted by our 
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FeatureDock to mostly contribute to the ligand binding (bottom panel of Fig 4A). Among these 

residues, Gln85 has also been predicted by the previous pharmacophore modeling study62 as a 

favorable interacting residue for pharmacophore binding. Moreover, previous Molecular 

Dynamics (MD) simulation studies63, 64 also pinpointed Gln85 as a key residue in designing ligands 

selectively binding to CDK2. Specifically, replacing the chemical groups on the ligand near Gln85-

Lys89 with more electronegative ones enhances ligand selectivity for CDK2 over CDK7. This 

previous finding supports our observation that Gln85 contributes as large as 3.9% to the ligand 

binding. In addition, while Gln131 and Asn132 currently show low statistical occupancy as 

hydrogen bond acceptors or donors in the pharmacophore model62, we anticipate that designing 

ligands to interact with these two residues via favorable hydrogen bonding interactions could 

improve the CDK2 ligand selectivity, as both of these residues show high contributions in our 

attention analysis (bottom panel of Fig 4A). 

 

Figure 4. Model interpretability visualized by attention weight of different input properties. (A) 

Heatmap of property contribution to the amino acids of interest by averaging attention weights of grid 

points around each amino acid. The picked residues frequently form contact with ligands in cocrystal 

structures. The text of hydrophobic residues and polar residues are colored in magenta and green, 

respectively. The range of attention weights is [0, 1]. (B) The attention weight map of different properties 

of the spatial grid points. Regions in darker color have higher contribution values in the attention analysis. 

3.3. FeatureDock outperforms DiffDock, Smina and AutoDock Vina in differentiating strong 

and weak inhibitors 

As discussed in the Introduction section, distinguishing between strong and weak inhibitors 

remains challenging for docking algorithms during virtual screening, as all inhibitors tend to fit 
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reasonably well in the binding pockets. In this section, we demonstrate that our FeatureDock tool 

outperforms traditional docking methods (Smina22 and AutoDock Vina21), as well as the recently 

developed diffusion-based generative model (DiffDock28) in this task for an inactivated form of 

CDK2 and the ACE receptor. In FeatureDock, we defined a scoring function based on Eq. 2, which 

assesses the agreement between the locations of ligand atoms and the predicted probability density 

envelopes. To optimize the ligand's position and orientation in the binding pocket, we implemented 

an optimization procedure using the L-BFGS-B algorithm to minimize the objective function 

defined in Eq. 3. For additional details on our optimization protocol and the preparation of query 

structures and compound libraries for virtual screening, please refer to Methods sections 2.4 and 

2.5. To evaluate the performance of virtual screening, we used two metrics: KL divergence and 

AUC. A higher KL divergence indicates that the model can more effectively distinguish strong and 

weak inhibitors. Similarly, a higher AUC demonstrates the scoring function’s effectiveness in 

ranking strong inhibitors above weak ones. The parameters used in benchmark docking methods 

are detailed in Methods section 2.6. 

Inactivated form of CDK2: We compiled a library containing 147 compounds followed by the 

filtering rules described in the Methods section 2.5. As shown in Fig 5A, FeatureDock achieved 

the largest KL divergence (0.67) in differentiating strong inhibitors from weak inhibitors, 

outperforming DiffDock (0.39), Smina (0.04), and Vina (0.04). The peaks of score distributions 

of FeatureDock showed better separation compared to DiffDock in Fig 5A. These results suggest 

that we can use the FeatureDock scoring function to select reliable candidates which achieve higher 

scores in the virtual screening. Moreover, the peak of strong inhibitors is mixed with that of weak 

inhibitors in both Smina and AutoDock Vina, which explains the high false positive ratios caused 

by the scoring functions used in these two docking methods. Furthermore, as shown in Fig 5B, the 

AUC showed that FeatureDock (0.74) and DiffDock (0.76) can rank strong inhibitors higher than 

the weak ones, while the binding affinity scores used by Smina (0.43) and Vina (0.43) ranked 

strong and weak inhibitors in this library worse than random guess. These two-evaluation metrics 

both support the effectiveness of FeatureDock’s scoring function (defined in Eq. 2) during virtual 

screening. 

In FeatureDock, we simultaneously score compounds and optimize their binding poses using the 

L-BFGS-B optimization algorithm. In Fig 5C, we show the optimal ligand poses obtained from 

FeatureDock overlaid with their predicted probability density envelopes for one strong inhibitor 

(CHEMBL402158) and two weak inhibitors (CHEMBL3421971 and CHEMBL3798066) of 

CDK2. In the FeatureDock pose of the strong inhibitor (CHEMBL402158), its 1H-indazole group 

occupies the highest probability regions (p >= 0.95) within the hydrophobic pocket near Phe80 

and Phe82 of CDK2. The remaining portion of this strong inhibitor extends into adjacent regions 

with similarly high probability values (0.90 <= p < 0.95). As a result, CHEMBL402158 exhibits a 

high score in FeatureDock, aligning with its experimentally measured strong IC50 of 7nM (Left 

panel of Fig 5C). For the weak inhibitor CHEMBL3421971 (Middle panel of Fig 5C), its benzene 

and piperazine groups also occupy the highest probability region (p>=0.95) near the hydrophobic 

residues Phe80 and Phe82. However, the linker atom connecting these function groups to the rest 

of the compound bypasses a region with substantially lower probabilities (as indicated by the red-

labelled atom in the Middle panel of Fig 5C). As a result, FeatureDock assigns a lower score to 
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CHEMBL3421971, consistent with its experimentally measured IC50 of approximately 13.7µM. 

As for the other weak inhibitor, CHEMBL3798066, a significant portion also occupies a relatively 

low probability region (atoms labelled in red in the Right panel of Fig 5C), resulting in a weak 

inhibitor (IC50 = 11µM). These examples indicate that FeatureDock provides not only an accurate 

scoring function, but also meaningful optimal ligand poses, making it promising for virtual 

screening. 

 

Figure 5. Probability density envelope guided virtual screening of an inactivated form of CDK2. (A) 

KL divergence of score distribution on strong inhibitors and weak inhibitors from a filtered CDK2 bioassay 

dataset which contains 147 compounds. (B) AUC of scoring functions on the 147-compound library. (C) 

True positive (the blue boxed) and true negative (the orange boxed) examples of predicted poses overlaid 

with the predicted probability density envelope. The colorbar represents colors of different probability 

values. Compound atoms in the regions of p>=0.95, 0.90<=p<0.95 and 0.80<=p<0.90 are colored in 

green, yellow, and red respectively. Surrounding protein structures are shown in white ribbon, with 

important binding residues Phe80 and Phe82 highlighted in white sticks. 

To further assess the accuracy of pose prediction from FeatureDock, we validated its predicted 

poses by comparing to the co-crystal structures for 11 native ligands of CDK2 (the inactivated 

form) that have cocrystal structures in PDBBind. The posing performance is evaluated by root 

mean square distance (RMSD) between the native pose and the predicted pose. An RMSD below 

2 Å is usually considered to be a good prediction in docking methods. After pose optimization 

described in Methods section 2.4, the RMSD converged after picking 4 top-scored poses for each 
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ligand in FeatureDock. The average and median RMSD achieved by our method are 2.4 Å and 2.1 

Å, which is significantly better than randomly choosing poses centered to the predicted regions 

while not optimized via soft alignment based on the probability density envelope. Examples of 

predicted poses in Fig 6 right panel show the alignment performance. 

 

Figure 6. Pose prediction from FeatureDock on CDK2. The query space of each protein refined by 

protein residues within [1, 6] Å away from the heavy atoms of its native ligand. The native rotamer was 

used in the posing process. Left panel: Distribution of root mean square distances (RMSDs) between 

predicted poses and native poses. Right panel: Examples of predicted poses. The ground truths and the 

predictions are presented in white sticks and magenta sticks, respectively. 

ACE receptor: We followed the filtering rules described in Methods section 2.5 and compiled a 

compound library containing 94 compounds. On ACE, FeatureDock also achieves the highest KL 

divergence (0.30) (Fig 7A) and AUC (0.69) (Fig 7B), outperforming DiffDock, Smina and 

AutoDock Vina. A relatively higher probability cutoff of 0.90 was used to re-score the compound 

occupancies for ACE based on the result of hyperparameter scanning (Fig S9). For the details of 

how to select the proper probability cutoff as a scoring hyperparameter for different protein 

systems, please refer to the Methods section 2.4. We visualized one true positive prediction and 

two true negative prediction to analyze the performance of scoring and pose prediction. As 

depicted in Fig 7C, the true positive prediction CHEMBL100413 occupied the regions of p>=0.95 

close to Tyr520, which is one of the lisinopril-binding residues65, 66. Furthermore, the predicted 

pose of CHEMBL100413 exhibits the correct orientation to form the hydrogen bond with Tyr520, 

which explains its high potent to inhibit ACE. The true negative prediction CHEMBL5220968 

occupied the same region of p>=0.95 except that the compound sticks out of the probability 

envelope due to the compound geometric constraint, leading to a lower score. Another true 

negative prediction CHEMBL5177969 achieved an even lower score because it totally missed the 

regions of highest probabilities. 
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Figure 7. Probability density envelope guided virtual screening of ACE. (A) KL divergence of score 

distribution on strong inhibitors and weak inhibitors from a filtered ACE bioassay dataset which contains 

94 compounds. (B) AUC of scoring functions on the 94-compound library. (C) True positive (the blue 

boxed) and true negative (the yellow boxed) examples of predicted poses overlaid with the predicted 

probability density envelope. Compound atoms in the regions of p>=0.95, 0.90<=p<0.95 and p<=0.80 are 

colored in green, yellow, and red respectively. The colorbar represents colors of different probability values. 

Surrounding protein structures are shown in white ribbon. The active site (NEXXH motif) and the Tyr520 

residue are shown as white sticks. 

4. Discussion 

FeatureDock predicts the binding poses and evaluates the binding potency of compounds based on 

their alignment with the probability density envelopes. Therefore, it provides more information 

about the ligand poses and orientations than other deep learning methods, including KDEEP
39 and 

PotentialNet40 that only predict protein-ligand binding affinity values and rely on 3-dimensional 

protein-ligand complexes as the input. 

In FeatureDock, we utilize the L-BFGS-B optimization algorithm to find the ligand pose that best 

fits to the predicted probability density envelope, and we acknowledge that this optimization 

process could be trapped into local energy minima. To address this issue, we perform independent 

optimization runs initiated from different compound rotamers and using different random seeds. 
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This strategy has successfully identified the correct binding pose for CDK2 (see Fig 6). In the 

future, to further improve the efficiency of pose sampling and optimization, one could incorporate 

E3-equivariant diffusion models to generate binding positions based on the probability density 

envelopes. 

When applying FeatureDock to virtual screening, it is important to select a proper probability 

cutoff in the scoring function. We recommend choosing its value by scanning the probability cutoff 

as a hyperparameter on the compound bioassay data and pick the best cutoff that achieves the 

highest AUC. Intuitively, for more rigid pockets that do not allow multiple binding modes, a higher 

probability cutoff can help refine the search space, focusing only on regions containing grid points 

with confident ligand binding predictions. For example, a higher cutoff value was chosen for ACE 

than CDK2 in the Results section 3.3, which is consistent with the observation that the ACE ligand 

binding pocket has lower flexibility compared to that of CDK2, as evaluated by higher B-factor 

values for ACE (Fig S11). When the bioassay data is not available, we would suggest using a 

balanced probability cutoff (e.g. 𝑐𝑢𝑡𝑜𝑓𝑓 = 0.90) to guarantee that high probability regions are 

prioritized to be occupied, while remaining a probability density envelope that can represent and 

cover the binding pocket adequately. This cutoff has shown effective in the virtual screening of 

both CDK2 and ACE (Fig S8 and S9).  

One challenge facing deep learning-based docking methods is their tendency to generate “invalid” 

ligand poses67. This occurs because these methods often produce poses with unphysical chemical 

bonds or steric clashes between the protein and ligand, as they do not explicitly include physical 

interactions during training and pose prediction. To address this challenge, we introduced a post-

analysis step to identify and remove unphysical poses generated by FeatureDock and DiffDock 

(Fig S14). In this step, we utilized AutoDock Vina for local optimization to identify steric clashes 

and other unphysical interactions that result in unfavorable affinity scores. Specifically, we rejected 

poses that with affinity scores larger than 0. It is important to note that we used docking affinity 

only to identify steric clashes, not to re-pose the conformations generated by FeatureDock or 

DiffDock. In the future, one could directly introduce a physical interaction term to avoid steric 

clashes in the objective function of the pose optimization process in the FeatureDock.  

5. Conclusions 

In this study, we introduced FeatureDock, a feature-based Transformer framework for predicting 

and scoring protein-ligand binding poses. FeatureDock extracts the physicochemical features of 

the protein’s local environment and utilizes a transformer encoder to predict probability density 

envelopes for given protein pockets. These predicted probability density envelopes help determine 

the binding preference of the ligand at grid points within the protein pockets. Compared to FNN 

and ResNet architectures, Transformer encoders demonstrate superior performance, achieving 

higher and more stable prediction accuracy throughout comprehensive model capacity tests. In 

addition, the attention mechanism in the Transformer encoder further shows potential for assisting 

rational drug design by elucidating the contribution of each chemical feature to the final predicted 

ligand binding probabilities. Using the predicted probability density envelopes, we designed a 

custom scoring function and a ligand-position optimization algorithm to score and predict the 

protein-ligand binding poses. In virtual screening of drug-like compounds, FeatureDock 
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outperforms DiffDock, Smina and AutoDock-Vina in distinguishing strong inhibitors from weak 

ones for both the inactivated form of CDK2 and ACE systems. FeatureDock also effectively 

predicts their binding poses accurately. We expect that FeatureDock holds potential to be widely 

applied in virtual screening, aiding in drug design. 
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