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Unraveling the nature of adsorbed olefins in zeolites is cru-
cial to understand numerous zeolite-catalyzed processes.
A well-grounded theoretical description critically depends
on both an accurate determination of the potential en-
ergy surface (PES) and a reliable account of entropic ef-
fects at operating conditions. Herein, we propose a trans-
fer learning approach to perform random phase approxima-
tion (RPA) quality enhanced sampling molecular dynam-
ics simulations, thereby approaching chemical accuracy on
both the determination and exploration of the PES. The
proposed methodology is used to investigate isobutene ad-
sorption in H–SSZ–13 as prototypical system to estimate
the relative stability of physisorbed olefins, carbenium ions
and surface alkoxide species (SAS) in Brønsted-acidic zeo-
lites. We show that the tert-butyl carbenium ion forma-
tion is highly endothermic and no entropic stabilization is
observed compared to the physisorbed complex within H–
SSZ–13. Hence, its predicted concentration and lifetime
are negligible, making a direct experimental observation un-
likely. Yet, it remains a shallow minimum on the free energy
surface over the whole considered temperature range (273–
873 K), being therefore a short-lived reaction intermediate
rather than a transition state species.

Introduction
Zeolites are microporous, crystalline aluminosilicate mate-
rials. The charge imbalance created by the defective substi-
tution of Si4+ with Al3+ can be compensated by the pres-
ence of an acidic proton (the Brønsted acid site, or BAS
for short) on one of the oxygen atoms in the Al first coor-
dination sphere. The BAS acidity, the strong confinement
effects of the micro-sized pores and their remarkable stabil-
ity have made Brønsted-acidic zeolites pivotal catalysts in
the traditional petrochemical industry as well as in novel
processes for the conversion of biomass-derived sustainable
feedstocks [1,2]. Most acid-catalyzed reactions in zeolites are
triggered by an initial transfer of the BAS from the frame-
work to the reacting substrate, potentially creating a pos-
itively charged intermediate. Therefore, understanding the
chemical nature and reactivity of the latter is of crucial in-
terest to obtain a comprehensive mechanistic view of the
chemical process under investigation [3].
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In this context, a particularly challenging case study is
the adsorption of olefins in zeolites (Figure 1 a). When
unsaturated hydrocarbons approach the BAS, the double
C=C bond interacts with the electrophilic proton forming
a so-called π-complex. A complete proton transfer from the
zeolite to the molecule creates a positively-charged carbe-
nium ion, which can then chemisorb on one of the oxygen
atoms in the first coordination sphere of the Al site to form
a surface alkoxide species (SAS). The persistent nature of
each of these adsorbed species at operating conditions has
been the topic of extensive theoretical and experimental
studies [3]. It is generally accepted that their relative sta-
bility is affected by a series of factors, including tempera-
ture, zeolite topology and substitution degree of the double
bond which, in general, create a subtle balance between
enthalpic and entropic contributions. Enthalpically, SAS
would be preferred but their stability may decrease due to
steric hindrance in small concave environments [4,5]. Carbe-
nium ions are thought to be entropically stabilized, however
such stabilization may strongly depend on the zeolite topol-
ogy. Thus far, disentangling entropic and enthalpic effects
has remained challenging for both theory and experiment.
In this contribution, we study isobutene in H–SSZ–13 (CHA
topology) to reveal the persistent nature of its various ad-
sorbed states. This case is selected as isobutene is the small-
est alkene with a tertiary carbon atom and the limited unit
cell size of H–SSZ–13 allows for the highest level of theory
calculations.

A large number of theoretical works have investigated
isobutene chemisorption in zeolites, initially using gas-phase
clusters [8–15] and then moving to more realistic, fully peri-
odic models. These can be inquired with static approaches,
only relying on a limited number of points on the potential
energy surface (PES) [4,16–29], or with dynamic approaches,
that better mimic operating conditions [5,30,31]. A more de-
tailed overview of the theoretical investigations in periodic
models performed thus far is taken up in Table S1 of the
Supplementary Information. On the one hand, seminal work
of Sauer and co-workers clearly shows that standard gen-
eralized gradient approximation density functional theory
(GGA DFT), with or without empirical dispersion correc-
tions, is unreliable when modeling species with a net charge
separation such as carbenium ions in zeolites [20,22,29]. High-
level (at least MP2) single point corrections based on clus-
ter models increase the carbenium ion energy by tens of
kJ·mol−1 with respect to the neutral alkene. On the other
hand, typical industrial processes involving olefins—such as
fluid catalytic cracking [32] (FCC)—are conducted at very
high temperatures (∼ 800 K). Static simulations with har-
monic thermal corrections are not well-suited to model mo-
bile and weakly bounded species in the zeolite voids [33,34].
Therefore, studies conducted with operando methodologies
based on constant temperature molecular dynamics (MD)
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Figure 1. a. The three investigated intermediates formed upon isobutene adsorption in Brønsted acidic zeolites. b. The conventional
H–SSZ–13 unit cell used in this work. The inset shows the nomenclature of the four oxygen atoms in the first coordination sphere of the
Al defect adopted herein. Al is depicted in blue, O in red and H in white, while the rest of the framework is shown in grey sticks for the
sake of clarity. c. Schematic depiction of the three nonequivalent H–SSZ–13 cages. The location of the Al tetrahedron is highlighted with
grey spheres. d. Simplified representation of the MACE architecture [6]; the atomic coordinates are parsed in atomic environments which are
passed through a series of interaction layers; this yields a set of features based on which the atomic energies are computed. e. Summary of
the two-stage procedure proposed in this contribution: the interaction layers and the first set of energy readouts (blue) are trained based on
PBE-D3-level reference data – energy and forces – obtained using active learning [7]. A second set of readouts (red) are trained on a small
number of RI-RPA energies. See the Supplementary Sections 2.5 and 2.6 for more information.

suggest that thermal effects can remarkably stabilize the
mobile carbenium ion, making it a prominent intermedi-
ate at reaction conditions [5,30]. This effect may however be
highly dependent on the zeolite topology [5]. While MD-
based approaches seem attractive to unravel the nature of
adsorbed species at operating conditions, they require hun-
dreds of thousands energy and forces evaluations, making
it impossible to go beyond GGA DFT when evaluating the
PES.

The extent to which carbenium ions are relevant inter-
mediates in high temperature processes such as FCC has
therefore remained unclear. Various experimental attempts
have been performed to identify the predominant intermedi-
ate(s); because some studies report data in favor of transient
tertiary carbenium ions [25,35–38] while others did not detect
them [39–43] or did not provide definitive evidence [44], the
experimental results remain inconclusive [3]. From a theo-
retical viewpoint, attempts have been made to reconcile en-
hanced sampling molecular dynamics with high-level calcu-
lations, using for instance corrections based on single-point
cluster evaluations [31], machine learning assisted free energy
perturbation theory [45,46], or similar methods [47]. These ap-
proaches have however been shown to produce wrong results
when the high- and low-level method do not explore suffi-
ciently overlapping regions in phase space [48], and were still
based on ab initio molecular dynamics.

To fully solve these issues, we harness the power of state-
of-the-art machine learning potentials (MLPs) and propose
an efficient approach based on transfer learning [49–52]. Start-
ing from a machine learning model trained on a production
level of theory, we augment its accuracy towards a higher-
level electronic structure method with outstanding data ef-
ficiency. We showcase the power of this methodology by
investigating the conversion of isobutene in tert-butylcation
and surface tert-butoxide species in the H–SSZ–13 zeolite
with RI-RPA [53,54] (random phase approximation using a
resolution-of-identity approach) quality enhanced sampling
molecular dynamics (ESMD) simulations. Our results, aris-
ing from a total of 60 ns RI-RPA quality ESMD, show that
within H–SSZ–13 the tert-butylcation is not entropically
stabilized compared to the physisorbed neutral isobutene
within the temperature range 323–823 K. By approaching
chemical accuracy in both the enthalpy and entropy esti-
mates of the reaction, physisorbed isobutene is predicted to
be the only species present in significant amounts within
the zeolite pores while the concentrations of tert-butylca-
tion and tert-butoxide are negligible. The carbenium ion
remains an elusive intermediate, with a computed lifetime
that is however too short to be observed with currently avail-
able experimental techniques.
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Results and Discussion
The proposed transfer learning approach is used to investi-
gate the adsorption of isobutene in the H–SSZ–13 zeolite.
The framework presents a relatively small unit cell where
all tetrahedral atoms are equivalent by symmetry. We use
the same equilibrated conventional unit cell of our previous
investigation on the proton hopping reaction [55]. A single
Si atom is substituted with Al (Si/Al = 35), breaking the
unit cell symmetry and creating four nonequivalent oxygen
atoms in the first coordination of the Al defect and three
nonequivalent cages in which the isobutene can be located
(Figure 1 b,c). The isobutene conversion in the tert-butyl-
cation and the surface tert-butoxide is captured by means of
two collective variables (CVs, Figure 2 a). CVs are functions
of the atomic coordinates which should be able to describe
the progress of the reaction under investigation. One CV de-
scribes the proton transfer from the zeolite to isobutene with
a difference in coordination numbers (CNs). The first CN
is between the primary carbon atoms (Cp) and all hydrogen
atoms in the system, while the second between the four ze-
olite oxygen atoms in the first coordination sphere of the Al
defect (Oz) and, again, all hydrogen atoms. The other CV
is a CN between the tertiary carbon atom (Ct) and Oz (ad-
ditional details are reported in Supplementary Section 2.3).
Two assumptions will be made to keep the complexity of
the problem manageable: (1) the formation of the primary
surface isobutoxide species can be ignored. The reaction is
known to proceed through a high energy barrier [22,24] and
does not lead to the formation of a carbenium ion, the main
focus of this study. (2) It will be assumed that the reactivity
of isobutene is entirely independent of inter-cage diffusion
and that it does not prefer to reside in any specific cage.
An integrated reaction-diffusion model is beyond the scope
of this study and does not impact its conclusions.

An accurate computational estimate of both enthalpic
and entropic contributions to the reaction free energy re-
quires millions of energy and force evaluations. We employ
state of the art graph neural networks (GNNs) to learn a
computationally efficient representation of the ab initio po-
tential energy surface in order to be able to simulate the dy-
namics of the system on such a long time scale. The incorpo-
ration of equivariant feature representations into GNNs has
reduced the required training set sizes to about a few thou-
sand structures for a chemical reaction in zeolites [55], each of
which is to be labeled with the correct ab initio energy and
atomic forces [7]. The key challenge is that we cannot gener-
ate this amount of training data for the required (post-HF)
level of theory. First, (RI-)MP2 or RPA energy evaluations
require at least two orders of magnitude more memory and
compute time than regular GGA DFT. Second, the calcula-
tion of the nuclear gradients introduces additional memory
requirements and is moreover very hard to converge with
respect to basis set and grid size. To overcome these is-
sues, we developed a transfer learning approach which (1)
reduces the required number of post-HF single-point evalu-
ations by an order of magnitude, and (2) only requires the
post-HF energy during training (and not the nuclear gradi-
ents, i.e. forces). The approach is schematically illustrated
in Figure 1 (d, e), and is founded on the empirical observa-
tion that the interaction layers within the GNN implicitly
learn an informative feature representation for the chemical
environment of each atom in the system [51,52,56]. In par-
ticular, we observe that if we train a baseline GNN model
to PBE-D3(BJ) energy and forces, the resulting interaction

layers can be used to train a small additional energy correc-
tion ∆E which captures the difference between the learned
PBE-D3(BJ) baseline output and the target post-HF en-
ergy. Importantly, the prediction of this ∆E requires only a
small number of additional weights (∼ 1% extra), and can
be learned based on just a few hundred energy-only post-
HF single points—see Supplementary Section 2.6 for more
information.

Based on our benchmarks, we determined RI-RPA/cc-
QT(Al,Si)Z as our target level of theory (see Supplemen-
tary Section 2.2), whereas the baseline level of theory was
PBE-D3(BJ). We employ a combination of active learning
and enhanced sampling to train a baseline GNN model to
PBE-D3(BJ) reference data using psiflow [7,57,58]. Quan-
tum mechanical evaluations are performed with CP2K [59],
using either a MOLOPT-TZVP or correlation-consistent cc-
QT(Al,Si)Z basis set for respectively the PBE-D3 and RI-
RPA levels of theory [60–62]. Umbrella sampling simulations
are used to sample the phase space in the active learning
loop as well as in the production runs to derive all free en-
ergy surfaces (FESs), which are computed with the weighted
histogram analysis (WHAM) method as implemented in
the ThermoLIB library [63]. All computational details are
reported in Supplementary Section 2, whereas Supplemen-
tary Section 3 presents an extensive validation of the entire
workflow. In particular, we show that (1) the baseline GNN
perfectly reproduces the PBE-D3(BJ) reaction free energy
profile as obtained from brute force AIMD umbrella sam-
pling, and (2) that our transfer learning approach allows us
to achieve an RMSE of only 0.3 meV/atom on the target
RI-RPA potential energy surface. Nevertheless, the entire
active learning workflow requires only 3682 PBE-D3(BJ)
single-point calculations, with an additional ∼200 energy-
only RI-RPA calculations to parameterize the ∆E predic-
tion. Hereafter, all results of PBE-D3(BJ) quality are ob-
tained using the vanilla baseline GNN. The results of RI-
RPA quality are obtained with the same GNN augmented
with an additional set of readout layers that predicts ∆E
(Figure 1 e).

As previously mentioned, the introduction of the Al sub-
stitution breaks the CHA unit cell symmetry and creates 4
nonequivalent O atoms in the first coordination sphere and 3
nonequivalent cages (Figure 1 b,c). In principle, isobutene
can be located in any of the 3 cages and the BAS/tert-
butoxide can be bound to any of the 4 oxygen atoms. While
some combinations can be excluded by simple steric consid-
erations (for instance, when the BAS is on O3 it is exclu-
sively accessible from cage C), we tested all remaining paths
at 623 K to select the most favorable one(s) (Supplementary
Section 4.1). At the end, the two most promising ones were
selected: in the first, isobutene is located in cage B and
the BAS/tert-butoxide are formed on O4. This path ex-
hibits the lowest free energy barriers for both reactive steps.
However, based on our previous investigation of the proton
hopping reaction in H–SSZ–13 [55], O4 is also the least popu-
lated site—which is in line with a higher activity. Hence, we
also selected an additional path in which isobutene resides
in cage C, the BAS is located on O3 and the tert-butoxide
is formed on O2. This path presents moderate free energy
barriers and, moreover, O3 was also computed to be the
most populated site.

The two paths are investigated with both PBE-D3(BJ)
and RI-RPA quality MLP US simulations over the temper-
ature range 323–823 K in steps of 100 K. While a com-
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Figure 2. a. Graphical depiction of the atoms included in the CNs
that constitute the two final CVs used in the US simulations. b.
The computed FES changes remarkably when moving from the PBE-
D3(BJ) to the RI-RPA PES. Showcased as examples are the 623 K
FESs for isobutene conversion in cage B. The orange lines highlight
the FES partition in the regions corresponding to isobutene (I), to
the tert-butylcation (II) and to the tert-butoxide (III). A complete
overview of the computed FESs is provided in Supplementary Section
4.2.

plete overview of all the computed FESs and free energy
barriers is reported in Supplementary Section 4.2, we show-
case the 623 K FESs of cage B in Figure 2 b to illustrate
the main differences between PBE-D3(BJ) and RI-RPA, as
these can be generalized to both cages and all temperatures.

Starting from the protonation reaction (I→II), a more ac-
curate level of theory compensates—as expected—the defi-
ciencies of GGA DFT. Indeed, the raw free energy barrier
increases from ∼ 30 kJ·mol−1 to ∼ 80 kJ·mol−1 and the
tert-butylcation is lifted in energy with respect to isobutene,
going from ∼ +20 kJ·mol−1 to ∼ +70 kJ·mol−1. This
shift reflects the one observed for the 0 K electronic energy
and agrees with the reference results of Plessow et al. [28]

(Supplementary Section 3.1). Yet, the tert-butylcation re-
mains a minimum on the FES at all temperatures, indi-
cating that it is a transient reaction intermediate rather
than a transition state. Quite some difference is also seen
in the FES region concerning the tert-butoxide formation
(II→III). While PBE-D3(BJ) does not predict the tert-
butoxide to be a minimum, the RI-RPA FES has a clear
transition state between the two intermediates. The overall
stability of the alkoxide is similar for both levels of theory
(∼ +80 kJ·mol−1), in line with the 0 K results (Supplemen-
tary Section 3.1).

From the computed 2-dimensional FESs a CV-independent
free energy for an intermediate A can be retrieved by inte-
gration over the respective CV region:

FA = −kBT log

(∫
A
exp

(
−F (q1, q2)

kBT

)
dq1dq2

)
(1)

q1 and q2 are the two CVs, T is the reaction tempera-
ture and kB Boltzmann’s constant. The boundaries used
to define the three regions associated with isobutene, tert-
butylcation and tert-butoxide are highlighted with orange
dotted lines in Figure 2 b. This allowed us to compute the
free energy differences between the three intermediates for
both cages and both levels of theory over the whole tem-
perature range. Remark that for PBE-D3(BJ) the surface
tert-butoxide (III) is not a minimum on the FES, i.e. there
is no free energy barrier separating it from II. Hence, its
computed free energy is arbitrary as the state boundaries
are ill-defined. However, it can still provide an useful mean
of comparison with the RI-RPA results where the state is
metastable. The results are shown in Figure 3 a–d, where
it can be seen how the free energy differences have in all
cases an almost perfect linear behavior over the considered
temperature range. This allowed us to rely on the simple
relation

∆FA→B = ∆UA→B − T∆SA→B (2)

and perform linear regression to estimate the internal energy
(∆UA→B) and entropy (∆SA→B) variations of the reactions.
Given the linear behavior of the data points, these variations
can be approximated as temperature-independent over the
considered temperature range.

Starting from the formation of the tert-butylcation (I→II),
PBE-D3(BJ) predicts a small positive internal energy varia-
tion in both the considered cages (+16 kJ·mol−1). The main
cause for the lower free energy difference observed in cage B
is the entropy variation, which goes from being slightly neg-
ative in cage C to moderately positive in cage B. Moving to
RI-RPA has a dramatic effect on the results: first, the inter-
nal energy difference between I and II drastically increases
to more than +55 kJ·mol−1 in both cages. Additionally, the
entropy variation decreases by ∼ 10 J·K−1·mol−1 in both
cages, becoming moderately negative for cage C and close to
zero for cage B. In any case, our results indicate that there
exists no entropic stabilization of weakly bounded carbe-
nium ions in H–SSZ–13 compared to the physisorbed com-
plex, and their previous observation in MD simulations [5]
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Figure 3. The tert-butylcation does not benefit from any entropic stabilization with respect to neutral isobutene in the H–SSZ–13 pores.
a–d. Free energy difference between isobutene and tert-butylcation (I→II) and isobutene and tert-butoxide (I→III) computed with PBE-
D3(BJ) and RI-RPA in cage B and cage C. The internal energy and entropy differences obtained from linear regression are also reported. e,
f. Fractional coverages of the 3 intermediates derived from the PBE-D3(BJ) and RI-RPA free energy differences in cage C (e) and cage B
(f).

is therefore exclusively related to the deficiencies of GGA
DFT. This is made clear by observing the equilibrium pop-
ulation of the three intermediates (Figure 3 e,f). Especially
for cage B, PBE-D3(BJ) predicts a significant concentration
of tert-butylcation above 400 K, which also becomes easily
observable in unbiased MD simulations given the underesti-
mated free energy barrier. On the other hand, the RI-RPA
results clearly foresee neutral isobutene as the only species
present in the zeolite for any temperature, with the concen-
trations of tert-butylcation and tert-butoxide being nearly
zero.

To support these conclusions, we used the MLPs to run
1 ns long unbiased MD simulations at 323, 623 and 823 K
both in cage B and C (a complete overview of the results
is reported in Supplementary Section 4.4). When using ei-
ther isobutene or the tert-butylcation as initial structure,

PBE-D3(BJ) allows frequent jumps between the two states,
which become more frequent when increasing the temper-
ature (Supplementary Figure S22). With RI-RPA, on the
other hand, the tert-butylcation always deprotonates within
5 ps and neutral isobutene is the only observed species for all
temperature. Only in one simulation at 823 K we observed a
transient formation of tert-butylcation lasting for few ps, in
line with the results of the enhanced sampling simulations.
In order to better understand the differences in behavior be-
tween isobutene and the tert-butylcation, we performed two
additional simulations in cage B and C at 623 K with half-
quadratic potential walls to restrain the system in the tert-
butylcation region (II in Figure 2 b). Interestingly, the tert-
butylcation has a large mobility in cage B, because the Al
defect is located at half the cage height. Hence, it explores
a similar space volume as isobutene (Figure 4). Conversely,
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Figure 4. Density maps showing the location of the tertiary isobutene carbon atom during 1 ns long PBE-D3(BJ) and RI-RPA MD simulations
of isobutene and tert-butylcation at 623 K. The surfaces are obtained with the volmap extension implemented in VMD [64] (resolution of 0.2
Å). The isovalues are arbitrarily chosen to be (from the exterior) 0.005, 0.01, 0.02 and 0.04. Zeolite atoms are represented with white sticks,
only the Al tetrahedron is highlighted with colored spheres (Al in blue, O in red) for the sake of clarity. See also Supplementary Section 4.4.

cage C has the Al defect located at its base. While isobutene
shifts between a BAS-bound π-complex and a free Van der
Waals complex, the tert-butylcation remains in tight prox-
imity to the negative Al. This reflects in a larger entropic
penalty, which is in line with the lower ∆SI→II for cage C
derived from enhanced sampling simulations. When com-
paring PBE-D3(BJ) and RI-RPA (Figure 4) no major dif-
ferences can be seen, indicating that the entropy decrease
of RI-RPA is not related to a reduced mobility of the in-
termediates in the framework and making it challenging to
pinpoint a specific cause for the observation.

The formation of tert-butoxide (I→III) is predicted to be
moderately endothermic by both levels of theory, with an
internal energy variation with respect to neutral isobutene
of +25 kJ·mol−1 in both cages according to PBE-D3(BJ)
and +18 (cage C) or +7 kJ·mol−1 (cage B) according to
RI-RPA. The difference could in this case be attributed to
limitations of RI-RPA, which was shown to modestly over-
stabilize the surface-bonded species (Supplementary Section
3.1). As expected, the entropy variation of the reaction is
in all cases largely negative, which makes the formation of
tert-butoxide highly unfavorable at all temperatures (Figure
3 e,f).

The final question we tried to answer is whether the tert-
butylcation, despite being clearly present in negligible con-
centrations in H–SSZ–13, might survive long enough to be
detected experimentally. Tuma and Sauer [22] reported a
half life τ1/2 = ln 2/kII→I of 59 µs in ferrierite, which is
sufficiently long for detection by fast spectroscopies such
as UV-vis. To estimate a lifetime for the tert-butylcation
in H–SSZ–13, we computed the backward kinetic constant
kII→I from our simulations within the transition state the-

ory (TST) approximation (Supplementary Section 4.3). Our
results indicate that the half life of the intermediate in H–
SSZ–13 is extremely short, where for both cage B and C is
in the order of hundreds of fs or few ps at most, in agree-
ment with the results of the unbiased MD simulations (Sup-
plementary Section 4.4). This, joined with its extremely
low concentration, would make its experimental observation
highly unlikely.

Conclusion
In this contribution, we propose a transfer learning approach
based on state-of-the-art machine learning interatomic po-
tentials to perform RI-RPA quality ESMD simulations. We
select a relevant and challenging case study to showcase the
capability of the methodology, namely the chemisorption
of isobutene in the H–SSZ–13 zeolite. The reaction pro-
ceeds through a weakly bounded tert-butylcation interme-
diate, whose mobility is hardly captured by static simula-
tions with harmonic corrections. Additionally, its charged
nature makes standard GGA DFT unreliable in capturing
its relative stability, with an overstabilization in the order
of tens of kJ·mol−1. Our approach allows for the first time
to approach chemical accuracy both in the internal energy
and entropy estimates with a modest computational cost.

By performing RI-RPA quality US simulations over a
broad range of temperatures, we show that the entropy dif-
ference between the neutral isobutene and the tert-butylcation
is around zero or even slightly negative independently on
the level of theory. Yet, moving from PBE-D3(BJ) to RI-
RPA drastically increases the endothermic nature of the
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reaction, leading to equilibrium populations dominated by
the neutral isobutene, while the concentrations of the tert-
butylcation and tert-butoxide intermediates are negligible.
Yet, the tert-butylcation remains a minimum on the FES for
all considered temperatures, indicating that it is a transient
reaction intermediate rather than a transition state species.
This is in line with the available experimental evidences for
H–ZSM–5, where the intermediate was captured with nucle-
ophilic moieties [25,38]. Our estimate for the tert-butylcation
half life is drastically lower than previous reports from static
simulations in ferrierite, in the order of few picoseconds at
most, making its direct experimental observation highly un-
likely.

Of course, our conclusions strictly hold for H–SSZ–13
only and frameworks with different pore shapes and sizes
could lead to different observations [4,5]. One of the main
strength of our methodology, being based on graph neu-
ral networks, is that it provides a per-atom environment-
dependent correction. Hence, as the parent model, it can
be highly transferable provided that a sufficiently diverse
training set is provided. Moreover, it also has the potential
of being used with cluster-based corrections, where only the
atoms directly involved in the correction (adsorbed molecule
and active site) are modelled with the target level of theory.
This could allow to model significantly larger systems (that
are impossible to evaluate in full with RI-RPA) with un-
precedented accuracy and further reduce the gap between
theory and experiment.
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A transfer learning approach
is proposed to perform en-
hanced sampling molecular dy-
namics simulations with arbi-
trary accuracy. We study the
chemisorption of isobutene in
the H–SSZ–13 zeolite with RI-
RPA and show that carbenium
ions are not present in significant
concentrations at reaction tem-
peratures.
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